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Abstract—The solution of the Machines’ Time Scheduling 

Problem (MTSP) is a hot point of research that is not yet 

matured, and needs further work. This paper presents two 

algorithms for the solution of the Machines’ Time Scheduling 

Problem that leads to the best starting time for each machine in 

each cycle. The first algorithm is genetic-based (GA) (with non-

uniform mutation), and the second one is based on particle 

swarm optimization (PSO) (with constriction factor). A 

comparative analysis between both algorithms is carried out.  It 

was found that particle swarm optimization gives better penalty 

cost than GA algorithm and max-separable technique, regarding 

best starting time for each machine in each cycle. 

Keywords- Machine Time Scheduling; Particle swarm optimization; 

Genetic Algorithm; Time Window. 

I. INTRODUCTION 

A great deal of research has been focused on solving 
scheduling problems. One of the most important scheduling 
problems is the Machine Time Scheduling Problem (MTSP). 
This problem was investigated in [1] as a parameterized 
version of the MTSP, which was defined in [2], with penalized 
earliness in starting and lateness in the completion of the 
operation. The authors in [1] applied the optimal choice 
concept which is given in [3] and some theoretical results from 
[4] to obtain the optimal values of the given parameters.  

In [5] the authors investigated two cycles MTSP and 
introduced an algorithm to find the optimal choice of 
parameters, which represent the earliest possible starting time 
for the second cycle. In [6] an algorithm was developed (MTSP 
Algorithm (MTSPA)) for multi-cycle MTSP which found the 
starting time for each machine in each cycle by using the max-
separable technique.  

The processing times in the previous researches were 
deterministic. The authors in [7] discussed how to solve the 
MTSP when the processing time for each machine is 
stochastic. To solve this problem, the Monte Carlo simulation 

was suggested to handle the given stochastic processing times. 
A generalization was introduced in [8] to overstep the cases at 
which an empty feasible set of solutions is described by the 
system.  

This paper examines two approaches for solving the MTSP; 
PSO (with constriction factor), and GA (with non-uniform 
mutation). A comparative analysis between both algorithms is 
to be carried out for the solution that minimizes the penalty 
cost regarding the best starting time for each machine in each 
cycle.  

The paper is organized as follows. Part 2 formulates the 
problem. Part 3 introduces the proposed GA, as well as its 
implementation. Part 4 presents the PSO Algorithm, and its 
implementation. Both algorithms, in addition to the max-
separable technique,  are applied for a specific scenario. 
Obtained results are investigated in Part 5. The paper is 
terminated by conclusions and proposals for future work. 

II. PROBLEM FORMULATION  

In machines’ time scheduling problem there are n 
machines, each machine carries out one operation j with 

processing time pj for 
},...,1{ nNj 

and the machines work in 
k cycles.  

Let xjr represent starting time of the jth machine in cycle r 

for all
Nj

, 
},...,1{ kKr 

(k number of cycles). Machine j 
can start its work in cycle r only after the machines in a given 

set 
)()( , jj NN

N (
)( jN is the set of precedence machines) 

had finished their work in the (r-1)th cycle, so we can define the 
starting time in the (r+1)th cycle as follows: 

KrNipxx jrjr
i

Nj
ir 



 ,)(max
)(1  
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Assuming that the starting time xjr is constrained by a time 

interval [ljr, Ljr] for each
Nj

, 
Kr

 , then the set of feasible 
starting times xjr is described by the following system for each 

Kr
: 

)1(

,)(max 1)(

NjLxl

Nixpx

jrjrjr

irjrjr
Nj i



 


 

Assume also that for some echological reasons, there are a 

given recommended time interval [ajr, bjr], Ni , Kr  

such that: 

       )2(],,[],[ jrjrjjrjr bapxx   

The violation of (2) will be penalized by the following 
penalty function  

                     Krxfxf jrjr
Nj




min)(max)(  

where the penalty function in a certain cycle r is given by:   

Njpxfxfxf jrjrjrjrjrjrjr  }0),(),({max)( )2()1(
  

where )1(

jrf : R R is a decreasing continuous function such 

that )()1(

jrjr af =0,  

and )2(

jrf : R R is an increasing continuous function such that 

)()2(

jrjr bf =0  

To minimize the maximum penalty in each cycle r, we 
should solve the following problem:    

NjLxl

Nixpx

tosubject

xf

jrjrjr

irjrjr

Nj
i











)3()(max

: 

min)(

1
)(

 

III. PROPOSED APPROACHES FOR SOLVING THE MTSP 

A. Using Genetic Algorithm (GA): 

GA maintains a set of candidate solutions called population 
and repeatedly modifies them. At each step, the GA selects 
individuals from the current population to be parents and uses 
them to produce the children for the next generation. Candidate 
solutions are usually represented as strings of fixed length, 
called chromosomes. A fitness or objective function is used to 
reflect the goodness of each member of population [9]. The 
principle of genetic algorithms is simple [10]: 

 Encoding of the problem in a binary string. 

 Random generation of a population. This one includes 
a genetic pool representing a group of possible 
solutions. 

 Reckoning of a fitness value for each subject. It will 
directly depend on the distance to the optimum. 

 Selection of the subjects that will mate according to 
their share in the population global fitness. 

 Genomes crossover and mutations. 

 And then start again from point 3. 

This is repeated until some condition (for example number 
of populations or improvement of the best solution) is satisfied. 

Non-uniform mutation has been used to reduce the 
disadvantage of random mutation in the real-coded GA [11]. 
This new operator is defined as follows. For each individual 

t

iX
in a population of tth generation, create an offspring 

1t

iX

through non-uniform mutation as follows: if 

},...,,{ 21 m

t

i xxxX 
is a chromosome (t is the generation 

number) and the element xk is selected for this mutation, the 

result is a vector
},...,,{ 21

1

m

t

i xxxX 

 where 

(4)             
.1  ),(

.0  ),(










israndomaifLBxtx

israndomaifxUBtx
x

kk

kk

k



 

 
and LB and UB are the lower and upper bounds of the 

variables xk. The function 
),( yt

returns a value in the range 

[0,y] such that 
),( yt

 approaches to zero as t increases. This 
property causes this operator to search the space uniformly 
initially (when t is small), and very locally at later stages. This 
strategy increases the probability of generating a new number 
close to its successor than a random choice. We use the 
following function: 

(5) ).1.(),(
)1( b

T

t

ryyt


  

Where r is a uniform random number from [0, 1], T is the 
maximal generation number, and b is a system parameter 
determining the degree of dependency on the iteration number. 

 In [12], the authors introduced a new mutation operator 
characterized by its non-uniformness. The operator has been 
used in the parameter optimization of the controllers of a 
supply ship. Four different kinds of controllers have been 
considered and optimized, providing a wide range of 
optimization problems with their own unique search spaces to 
test the mutation operator.  

The main steps for solving the MTSP using GA are as 
follows: 

1) Reformulation: 
Each machine boundaries will be reformulated (calculate 

the new boundaries) based on its' successors machines 
boundaries. For each machine, the new lower boundary is 
called h and the new upper boundary is called H.  

2) Initial population: 
First, the chromosome is defined as a set of starting times 

for the machines in all cycles. So, S is the size of the 
chromosome is equal to n multiplied by k (n number of 
machines and k number of cycles). The gene xircp is the starting 
times for machine i in cycle r in chromosome c in population p 
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(Q number of chromosomes and W number of population) 
which satisfy the constraint in (Pr). The value of xircp is 

generated randomly where irir Hxh ircp 
. 

3) Other generation: 
The value of fitness for each chromosome in the previous 

population had been calculated. The next generation is created 
by selecting the best chromosomes which have the greatest 
value in the objective function. T is a percent of the previous 
population which determines the number of best chromosomes 
that transfer to the next generation. 

4) Crossover: 
The remaining chromosomes are divided as a pair. Each 

chromosome in each pair is divided in certain cycle v then 
swap between v to k cycle in first chromosome and v to k 
cycles in the second chromosome. 

5) Mutation: 
The chromosome will be mutated based on the non-uniform 

mutation; equation (4), and equation (5).  

The steps form 3 to 5 will be repeated until the last number 
of population. The solution is the first chromosome of the last 
population. 

6) GAnuM-MTSP Algorithm:  

 
 

GA1: Reformulate the boundaries for each machine in each cycle as 
follows:   

N
ikik

iLH Put , Nj
jr

jr lh  ,  

))min(,(min
1

j
irjUi

jrjr pHLH 


 

where 1,2,...,1}:{
)(

 krNjNiU
i

j  

GA2: Put p = 1. 
GA3: Put c = 1.   
GA4: Put r = 1. 
GA5: Put i = 1. 

GA6: If 1r then Nipxh jr
ircpi

Nj
ir 


 )(max

)(1   

GA7: Generate random number for xircp where 

irir Hxh ircp  . 

GA8: If i < n then i = i + 1 go to GA6. 
GA9: If r < k then r = r + 1 go to GA5. 
GA10: If c < Q then c = c + 1 go to GA4. 

GA11: .,,)1( Qckrnixircppircx     

GA12: Sort descending )( cpxcpf  if p = W then go to GA26. 

GA13: Put c = Q – (T*Q). 
GA14: Put r = v. 
GA15: Put i = 1. 
GA16: Swap between xircp and xir(c+1)p. 
GA17: If i < n then i = i + 1 go to GA16. 
GA18: If r < k then r = r + 1 go to GA15. 
GA19: If c < Q then c = c + 2 go to GA14. 
GA20: Put c = 1.   
GA21: Put r = 1. 
GA22: Put i = 1. 

GA23: Generate random number rand between 0 and 1.  

GA24: )1).((5.0
)1( b

w

p

irapirirapirap rxHxxthenrandif


  

GA25: )1).((then5.0if
)1( b

T

t

iriratiratirat rhxxxrand


  

GA26: If i < n then i = i + 1 go to GA23. 
GA27: If r < k then r = r + 1 go to GA22. 
GA28: If c < Q then c = c + 1 go to GA21. 
GA29: If p < W then p = p + 1 go to GA3. 

GA30: The solution is .,1 krnix pir   

 

7) Simulation Results: 

Consider the MTSP with the following parameters: 

 n = 5, i.e.  N = {1,2,3,4,5},  p = {2,4.5,6.25,4,5}, the 

machines boundaries are as shown in Table I, and the 

machines relations are as shown in Table II. Assume further 

that Njbpxxaxf jrjrjrjrjrjrjr  )0,,(max)(  

where aj, bj are for all Nj  given constants so that we have 

in our case for all Nj   

jrjrjrjrjrjrjrjrjrjr bpxpxfxaxf  )()( )2()1(  

Input values of air and bir for each cycle are as shown in 

Table I. 

TABLE I.  MACHINE BOUNDARIES 

Cycle (r) r = 1 r = 2 r = 3 

lir i=1,2,…,5 {1,0,0,3,1} {4,6,6,5,6} {10,11,12,9,11.5} 

Lir 

i=1,2,…,5 
{5,4,3,5,6} {6.5,7,7.5,7.25,6.5} {13,12,15,12,14} 

TABLE II.  MACHINE RELATIONS 

i 1 2 3 4 5 

N(i) {1,2,3} {2} {2,3} {1,4,5} {1,3,5} 

Uj {1,4,5} {1,2,3} {1,3,5} {4} {4,5} 

TABLE III.  MACHINES PENALTY BOUNDARIES 

Cycle (r) r=1 r=2 r=3 

air i=1,2,…,5 
{1,1,1,3,3} {5,7,6,5,7} {11,12,11,10,13} 

bir i=1,2,…,5 
{4,6,8,5,5} {8,9,8,6.5,8} {13,15,14,12,14} 

 

The GA-MTSP algorithm is implemented and run for 
solving the allocated problem on a computer with processor 
Intel Centrino 1.6 GHz with 215 MB RAM. The population 
size has been tested by 40, 60, 80 and 100 chromosomes. The 
result shows that, the best population size is 100 chromosome 
as shown in figure (1-a). The number of chromosomes that will 
be kept in the next population has been tested by 30%, 20%, 
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10%, 5%, 2.5% and 1.25% of population size. It was found 
that, the best number of chromosomes that will be kept in the 
next population equals 1.25% from population size as shown in 
figure (1-b). This means that the best chromosome, which has 
the best fitness function, will be transferred to the next 
population. The rest of chromosomes will be crossovered 
together to generate the rest of next population. It means that 
the probability of crossover is 98.75%, which is another 
parameter of GA. Using single point crossover, it was found 
that the best position of cutting point is 33% of the 
chromosome size as shown in figure (1-c). Finally, the Genetic 
algorithm parameters that give the best starting times have been 
determined: 

TABLE IV.  MACHINE STARTING TIME BY GANUM-MTSP 

 M1 M2 M3 M4 M5 

C1 1.18 0.85 0.07 3.1 1.36 

C2 6.49 6.07 6.67 7.3 6.48 

C3 13 11.27 13.13 11.5 13.3 
 

The best value for the objective function f is 35.26. 
Assuming that α is the cost, and then the penalty cost equals 
35.26 α  

B. Using Particle Swarm Optimization (PSO) 

The PSO method is a member of wide category of Swarm 
Intelligence methods for solving the optimization problems. It 
is a population based search algorithm where each individual is 
referred to as particle and represents a candidate solution. Each 
particle in PSO flies through the search space with an adaptable 
velocity that is dynamically modified according to its own 
flying experience and also the flying experience of the other 
particles. Further, each particle has a memory and hence it is 
capable of remembering the best position in the search space 
ever visited by it. The position corresponding to the best fitness 
is known as pbest and the overall best out of all the particles in 
the population is called gbest [9].  

The modified velocity and position of each particle can be 
calculated using the current velocity and the distance from the 
pbestj to gbest as shown in the following formulas: 

)(**)(*** )(

,,22

)(

,,11

)(

,

)1(

,

t

gjgj

t

gjgj

t

gj

t

gj xgbestrcxpbestrcvwv   

)1(

,

)(

,

)1(

,

  t

gj

t

gj

t

gj vxx  

With j=1, 2, …,n and g=1, 2, …, m 

n =number of particles in a group; 

m = number of members in a particle; 

t = number of iterations (generations); 
)(

,

t

gjv =velocity of particle j at iteration t, 

w = inertia weight factor; 

c1, c2 = cognitive and social acceleration factors, respectively; 

r1, r2 = random numbers uniformly distributed in the range (0, 

1); 
)(

,

t

gjx = current position of j at iteration t; 

pbestj = pbest of particle j; 

gbest = gbest of the group. 

 

a) Population size 

 

b) No. of chromosomes kept in next generation 

 

c) Position of the cutting point crossover 

Figure 1.   Genetic algorithm parameters 

The index of best particle among all of the particles in the 
group is represented by the gbest. In PSO, each particle moves 
in the search space with a velocity according to its own 
previous best solution and its group’s previous best solution. 
The velocity update in a PSO consists of three parts; namely 
momentum, cognitive and social parts.  

The balance among these parts determines the performance 
of a PSO algorithm. The parameters c1 & c2 determine the 
relative pull of pbest and gbest and the parameters r1 & r2 help 
in stochastically varying these pulls [9]. [13] Showed that 

combining them by setting the inertia weight,


, to the 
constriction factor, v, improved performance across a wide 
range of problems as follows: 

)}(**)(***{ )(

,,22

)(

,,11

)(

,

)1(

,

t

gjgj

t

gjgj

t

gj

t

gj xgbestrcxpbestrcvwv    
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In [14] PSO is combined with the Lagrangian Relaxation 
(LR) framework to solve a power-generator scheduling 
problem known as the unit commitment problem (UCP). In 
terms of the solution quality, the PSO-LR provided a “best 
solution” with a lower cost than GA for problem sizes larger 
than 20 units, and than LR for problem sizes 20 and 80 units. 
PSO-LR also provided a “best solution”, for the problem size 
of 10 units, with a much lower cost than using PSO alone. 

A novel approach based on Particle Swarm Optimization 
(PSO) for scheduling jobs on computational grids is introduced 
in [15]. The proposed approach is to dynamically generate an 
optimal schedule so as to complete the tasks within a minimum 
period of time as well as utilizing the resources in an efficient 
way. When compared to genetic algorithm (GA) and 
simulating Annealing (SA), an important advantage of the PSO 
algorithm is its speed of convergence and the ability to obtain 
faster and feasible schedules. 

Application and performance comparison of PSO and GA 
optimization techniques were presented in [9], for Thyristor 
Controlled Series Compensator (TCSC)-based controller 
design. Results indicate that in terms of computational time, the 
GA approach is faster. The computational time increases 
linearly with the number of generations for GA, whereas for 
PSO the computational time increases almost exponentially 
with the number of generations. The higher computational time 
for PSO is due to the communication between the particles 
after each generation. However, the PSO seems to arrive at its 
final parameter values in fewer generations than the GA. 

The main steps for solving the MTSP by PSO are as 
follows: 

1) Reformulation: 
Each machine boundaries will be reformulated (calculate 

the new boundaries) based on its' successors machines 
boundaries. For each machine the new lower boundary is called 
h and the new upper boundary is called H.  

2) Initial iteration: 
First, the particle is defined as a set of starting times for the 

machines in all cycles. The particle is represented by D-
dimensional, where D is equal to N multiplied by K (where N 
number of machines and K number of cycles). The xirpt is the 

starting time for machine i in cycle r in particle p, Qp ,..,2,1  

in iteration t, Tt ,..,2,1  (where Q is number of particles in 

the SWARM and T is number of iterations) which satisfy the 
constraints in (P). The value of xirpt is generated randomly 

where irir Hxh irpt  .  

The xirpt must satisfy the second constrain which is

)(max
)1()(

j
ptrji

Nj
irpt pxx 




. Determine the pbestp which 

is the best position of particle p that makes the best value of the 
objective function. Then determine the gbest which is the best 
particle that make the best value of the objective function in all 
iterations. 

3) Other generation: 
The next iteration created by modifying the velocity of each 

particle by the following equation: 

)}(**)(***{ 2211)1( irptirirptirpirpttirp xgbestrcxpbestrcvwv  

 
Then the particle position will be update by the following 

equation: 

 )1()1(   tirpirpttirp vxx  

The new iteration has been created with new position of 
SWARM. Calculate the objective function then find the pbestp 
and gbest. Repeat this step until last iterations. The solution is 
the gbest in the last iteration. 

4)  PSOc-MTSP Algorithm:  
 

 

A1: Reformulate the boundaries for each machine in each cycle 

as follows:   

N
ikik

iLH Put , Nj
jr

jr lh  ,  

))min(,(min
1

j
irjUi

jrjr pHLH 
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 Where 

1,2,...,1}:{
)(

 krNjNiU
i

j  

A2: Put t = 1. 

A3: Put p = 1.   

A4: Put r = 1. 

A5: Put i = 1. 

A6: If 1r  then )(max
)1()(

j
ptrji

Nj
ir pxh 



. 

A7: Generate random number for xircp where

irir Hxh ircp  . 

A8: If i < n then i = i + 1 go to A6. 

A9: If r < k then r = r + 1 go to A5. 

A10: pbestp = f (xirpt) pt KrNi ,..,1,,..,1  . 

A11: If p < Q then p = p + 1 go to A4. 

A12: find max (f (pbestp) pt) .,..,1 Qp   

A13: 
maxppbestgbest   

A14: t = t + 1. 

A15: Put p = 1. 

A16: 

)}(

**)(***{

)1(

22)1(11)1(






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tirp

tirpptirpirpt

xgbest

rcxpbestrcvwv 

. 

A17: irpttirpirpt vxx   )1( . 

A18: if xirpt is not feasible then go to A20. 

A19: if f (xirpt) pt > f (xirpt) p(t-1) then pbestp = xirpt 

A20: 
maxppbestgbest  . 

A21: If p < Q then p = p + 1 go to A16. 

A22: If t < T then go to A15. 

A23: The solution is gbest.  
 

5) Simulation Results 

The PSOc-MTSP algorithm has been implemented and run 
for the same scenario used in Part 3.1.2. The program is run 
100 times for determining the suitable parameters. Using test 



(IJARAI) International Journal of Advanced Research in Artificial Intelligence,  

Vol. 1, No. 1, 2012 

69 | P a g e  

www.ijarai.thesai.org 

sizes of 5, 20, 40 and 50 particle in the swarm, we found that, 
the best swarm size equals 20 as show in figure (2-a). After 
testing the w value by 0.1, 0.5, 0.9 and 0.9→ 0.1 (decreasing 
value) we found that the best value of w equals 0.5 as show in 
figure (2-b). The last parameters, we need to determine, are c1, 
c2. Using the values 0.5, 1, 1.5, 1.7, 1.9 and 2, for c1 and c2 we 
found that the best value for c1, c2 equal 1.5 as shown in figure 
(2-c). Finally, the swarm parameters that give the best starting 
times have been determined is shown below. 

TABLE V.  MACHINE STARTING TIME BY PSOC-MTSP 

 M1 M2 M3 M4 M5 

C1 1.95 1.25 0.0 3 1.26 

C2 6.24 6 6.26 7 6.23 

C3 12.5 11.26 12.5 11.27 12.5 

 
The best value for the objective function f equals 32.9. 

Assuming that the cost equal α. Then the penalty cost equals 
32.9 α. 

C. Discussion  

From previous experimental results we found that, solving 
the MTSP using particle swarm optimization algorithm (PSOc-
MTSP), leads to 32.9α penalty cost in 420 iterations that took 
11 seconds. When solving the MTSP using genetic algorithm 
(GAnuM-MTSP), the penalty cost was 35.25 α, reached in 
generation 41 that took 2 seconds. But when the MTSP was 
solved using max-separable algorithm in [2], the penalty cost 
was 35.75 α in less than 0.5 seconds, (Figure 3). 

 
a) swarm size 

 
b) w value 

 
c) c1, c2 value 

Figure 2.  Determination of the swarm parameters  

 

Figure 3.  The result of solving MTSP problem by SWARM, GA and Max-

separable 

D.  Conclusion 

The machine time scheduling problem (MTSP) was solved 
using particle swarm optimization (with constriction factor), 
genetic algorithm (GA) (with non-uniform mutation), and max-
separable technique. We found that, particle SWARM 
optimization gives the lowest penalty cost of the MTSP 
problem, followed by GA algorithm. The max-separable 
technique gives the highest penalty cost. That means that 
particle swarm optimization algorithm is the most suitable for 
solving the MTSP problem, giving the best starting time for 
each machine in each cycle. 
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