
(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 1, No. 1, 2012

64 | P a g e

www.ijarai.thesai.org

The Solution of Machines’ Time Scheduling Problem

Using Artificial Intelligence Approaches

Ghoniemy S.

Computer Engineering Dept.,

Faculty of Computers and Information Technology, Taif

University

Taif, KSA.

Shohla M. A.

Computer Engineering Dept.,

Faculty of Computers and Information Technology, Taif

University

Taif, KSA.

El-sawy A. A.

Computer Science Dept.,

Faculty of Computers and Information Technology, Taif

University

Taif, KSA.

Gihan E. H. Ali

Mathematics Dept.,

Faculty of Science and Education, Khurma Branch, Taif

University,

Taif, KSA.

Abstract—The solution of the Machines’ Time Scheduling

Problem (MTSP) is a hot point of research that is not yet

matured, and needs further work. This paper presents two

algorithms for the solution of the Machines’ Time Scheduling

Problem that leads to the best starting time for each machine in

each cycle. The first algorithm is genetic-based (GA) (with non-

uniform mutation), and the second one is based on particle

swarm optimization (PSO) (with constriction factor). A

comparative analysis between both algorithms is carried out. It

was found that particle swarm optimization gives better penalty

cost than GA algorithm and max-separable technique, regarding

best starting time for each machine in each cycle.

Keywords- Machine Time Scheduling; Particle swarm optimization;

Genetic Algorithm; Time Window.

I. INTRODUCTION

A great deal of research has been focused on solving
scheduling problems. One of the most important scheduling
problems is the Machine Time Scheduling Problem (MTSP).
This problem was investigated in [1] as a parameterized
version of the MTSP, which was defined in [2], with penalized
earliness in starting and lateness in the completion of the
operation. The authors in [1] applied the optimal choice
concept which is given in [3] and some theoretical results from
[4] to obtain the optimal values of the given parameters.

In [5] the authors investigated two cycles MTSP and
introduced an algorithm to find the optimal choice of
parameters, which represent the earliest possible starting time
for the second cycle. In [6] an algorithm was developed (MTSP
Algorithm (MTSPA)) for multi-cycle MTSP which found the
starting time for each machine in each cycle by using the max-
separable technique.

The processing times in the previous researches were
deterministic. The authors in [7] discussed how to solve the
MTSP when the processing time for each machine is
stochastic. To solve this problem, the Monte Carlo simulation

was suggested to handle the given stochastic processing times.
A generalization was introduced in [8] to overstep the cases at
which an empty feasible set of solutions is described by the
system.

This paper examines two approaches for solving the MTSP;
PSO (with constriction factor), and GA (with non-uniform
mutation). A comparative analysis between both algorithms is
to be carried out for the solution that minimizes the penalty
cost regarding the best starting time for each machine in each
cycle.

The paper is organized as follows. Part 2 formulates the
problem. Part 3 introduces the proposed GA, as well as its
implementation. Part 4 presents the PSO Algorithm, and its
implementation. Both algorithms, in addition to the max-
separable technique, are applied for a specific scenario.
Obtained results are investigated in Part 5. The paper is
terminated by conclusions and proposals for future work.

II. PROBLEM FORMULATION

In machines’ time scheduling problem there are n
machines, each machine carries out one operation j with

processing time pj for
},...,1{ nNj 

and the machines work in
k cycles.

Let xjr represent starting time of the jth machine in cycle r

for all
Nj

,
},...,1{ kKr 

(k number of cycles). Machine j
can start its work in cycle r only after the machines in a given

set
)()(, jj NN

N (
)(jN is the set of precedence machines)

had finished their work in the (r-1)th cycle, so we can define the
starting time in the (r+1)th cycle as follows:

KrNipxx jrjr
i

Nj
ir 



 ,)(max
)(1

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 1, No. 1, 2012

65 | P a g e

www.ijarai.thesai.org

Assuming that the starting time xjr is constrained by a time

interval [ljr, Ljr] for each
Nj

,
Kr

 , then the set of feasible
starting times xjr is described by the following system for each

Kr
:

)1(

,)(max 1)(

NjLxl

Nixpx

jrjrjr

irjrjr
Nj i



 


Assume also that for some echological reasons, there are a

given recommended time interval [ajr, bjr], Ni , Kr

such that:

)2(],,[],[jrjrjjrjr bapxx 

The violation of (2) will be penalized by the following
penalty function

 Krxfxf jrjr
Nj




min)(max)(

where the penalty function in a certain cycle r is given by:

Njpxfxfxf jrjrjrjrjrjrjr  }0),(),({max)()2()1(

where)1(

jrf : R R is a decreasing continuous function such

that)()1(

jrjr af =0,

and)2(

jrf : R R is an increasing continuous function such that

)()2(

jrjr bf =0

To minimize the maximum penalty in each cycle r, we
should solve the following problem:

NjLxl

Nixpx

tosubject

xf

jrjrjr

irjrjr

Nj
i











)3()(max

:

min)(

1
)(

III. PROPOSED APPROACHES FOR SOLVING THE MTSP

A. Using Genetic Algorithm (GA):

GA maintains a set of candidate solutions called population
and repeatedly modifies them. At each step, the GA selects
individuals from the current population to be parents and uses
them to produce the children for the next generation. Candidate
solutions are usually represented as strings of fixed length,
called chromosomes. A fitness or objective function is used to
reflect the goodness of each member of population [9]. The
principle of genetic algorithms is simple [10]:

 Encoding of the problem in a binary string.

 Random generation of a population. This one includes
a genetic pool representing a group of possible
solutions.

 Reckoning of a fitness value for each subject. It will
directly depend on the distance to the optimum.

 Selection of the subjects that will mate according to
their share in the population global fitness.

 Genomes crossover and mutations.

 And then start again from point 3.

This is repeated until some condition (for example number
of populations or improvement of the best solution) is satisfied.

Non-uniform mutation has been used to reduce the
disadvantage of random mutation in the real-coded GA [11].
This new operator is defined as follows. For each individual

t

iX
in a population of tth generation, create an offspring

1t

iX

through non-uniform mutation as follows: if

},...,,{ 21 m

t

i xxxX 
is a chromosome (t is the generation

number) and the element xk is selected for this mutation, the

result is a vector
},...,,{ 21

1

m

t

i xxxX 

 where

(4)
.1),(

.0),(










israndomaifLBxtx

israndomaifxUBtx
x

kk

kk

k




and LB and UB are the lower and upper bounds of the

variables xk. The function
),(yt

returns a value in the range

[0,y] such that
),(yt

 approaches to zero as t increases. This
property causes this operator to search the space uniformly
initially (when t is small), and very locally at later stages. This
strategy increases the probability of generating a new number
close to its successor than a random choice. We use the
following function:

(5)).1.(),(
)1(b

T

t

ryyt




Where r is a uniform random number from [0, 1], T is the
maximal generation number, and b is a system parameter
determining the degree of dependency on the iteration number.

 In [12], the authors introduced a new mutation operator
characterized by its non-uniformness. The operator has been
used in the parameter optimization of the controllers of a
supply ship. Four different kinds of controllers have been
considered and optimized, providing a wide range of
optimization problems with their own unique search spaces to
test the mutation operator.

The main steps for solving the MTSP using GA are as
follows:

1) Reformulation:
Each machine boundaries will be reformulated (calculate

the new boundaries) based on its' successors machines
boundaries. For each machine, the new lower boundary is
called h and the new upper boundary is called H.

2) Initial population:
First, the chromosome is defined as a set of starting times

for the machines in all cycles. So, S is the size of the
chromosome is equal to n multiplied by k (n number of
machines and k number of cycles). The gene xircp is the starting
times for machine i in cycle r in chromosome c in population p

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 1, No. 1, 2012

66 | P a g e

www.ijarai.thesai.org

(Q number of chromosomes and W number of population)
which satisfy the constraint in (Pr). The value of xircp is

generated randomly where irir Hxh ircp 
.

3) Other generation:
The value of fitness for each chromosome in the previous

population had been calculated. The next generation is created
by selecting the best chromosomes which have the greatest
value in the objective function. T is a percent of the previous
population which determines the number of best chromosomes
that transfer to the next generation.

4) Crossover:
The remaining chromosomes are divided as a pair. Each

chromosome in each pair is divided in certain cycle v then
swap between v to k cycle in first chromosome and v to k
cycles in the second chromosome.

5) Mutation:
The chromosome will be mutated based on the non-uniform

mutation; equation (4), and equation (5).

The steps form 3 to 5 will be repeated until the last number
of population. The solution is the first chromosome of the last
population.

6) GAnuM-MTSP Algorithm:

GA1: Reformulate the boundaries for each machine in each cycle as
follows:

N
ikik

iLH Put , Nj
jr

jr lh  ,

))min(,(min
1

j
irjUi

jrjr pHLH 


where 1,2,...,1}:{
)(

 krNjNiU
i

j

GA2: Put p = 1.
GA3: Put c = 1.
GA4: Put r = 1.
GA5: Put i = 1.

GA6: If 1r then Nipxh jr
ircpi

Nj
ir 


)(max

)(1

GA7: Generate random number for xircp where

irir Hxh ircp  .

GA8: If i < n then i = i + 1 go to GA6.
GA9: If r < k then r = r + 1 go to GA5.
GA10: If c < Q then c = c + 1 go to GA4.

GA11: .,,)1(Qckrnixircppircx 

GA12: Sort descending)(cpxcpf if p = W then go to GA26.

GA13: Put c = Q – (T*Q).
GA14: Put r = v.
GA15: Put i = 1.
GA16: Swap between xircp and xir(c+1)p.
GA17: If i < n then i = i + 1 go to GA16.
GA18: If r < k then r = r + 1 go to GA15.
GA19: If c < Q then c = c + 2 go to GA14.
GA20: Put c = 1.
GA21: Put r = 1.
GA22: Put i = 1.

GA23: Generate random number rand between 0 and 1.

GA24:)1).((5.0
)1(b

w

p

irapirirapirap rxHxxthenrandif




GA25:)1).((then5.0if
)1(b

T

t

iriratiratirat rhxxxrand




GA26: If i < n then i = i + 1 go to GA23.
GA27: If r < k then r = r + 1 go to GA22.
GA28: If c < Q then c = c + 1 go to GA21.
GA29: If p < W then p = p + 1 go to GA3.

GA30: The solution is .,1 krnix pir 

7) Simulation Results:

Consider the MTSP with the following parameters:

 n = 5, i.e. N = {1,2,3,4,5}, p = {2,4.5,6.25,4,5}, the

machines boundaries are as shown in Table I, and the

machines relations are as shown in Table II. Assume further

that Njbpxxaxf jrjrjrjrjrjrjr )0,,(max)(

where aj, bj are for all Nj  given constants so that we have

in our case for all Nj 

jrjrjrjrjrjrjrjrjrjr bpxpxfxaxf )()()2()1(

Input values of air and bir for each cycle are as shown in

Table I.

TABLE I. MACHINE BOUNDARIES

Cycle (r) r = 1 r = 2 r = 3

lir i=1,2,…,5 {1,0,0,3,1} {4,6,6,5,6} {10,11,12,9,11.5}

Lir

i=1,2,…,5
{5,4,3,5,6} {6.5,7,7.5,7.25,6.5} {13,12,15,12,14}

TABLE II. MACHINE RELATIONS

i 1 2 3 4 5

N(i) {1,2,3} {2} {2,3} {1,4,5} {1,3,5}

Uj {1,4,5} {1,2,3} {1,3,5} {4} {4,5}

TABLE III. MACHINES PENALTY BOUNDARIES

Cycle (r) r=1 r=2 r=3

air i=1,2,…,5
{1,1,1,3,3} {5,7,6,5,7} {11,12,11,10,13}

bir i=1,2,…,5
{4,6,8,5,5} {8,9,8,6.5,8} {13,15,14,12,14}

The GA-MTSP algorithm is implemented and run for
solving the allocated problem on a computer with processor
Intel Centrino 1.6 GHz with 215 MB RAM. The population
size has been tested by 40, 60, 80 and 100 chromosomes. The
result shows that, the best population size is 100 chromosome
as shown in figure (1-a). The number of chromosomes that will
be kept in the next population has been tested by 30%, 20%,

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 1, No. 1, 2012

67 | P a g e

www.ijarai.thesai.org

10%, 5%, 2.5% and 1.25% of population size. It was found
that, the best number of chromosomes that will be kept in the
next population equals 1.25% from population size as shown in
figure (1-b). This means that the best chromosome, which has
the best fitness function, will be transferred to the next
population. The rest of chromosomes will be crossovered
together to generate the rest of next population. It means that
the probability of crossover is 98.75%, which is another
parameter of GA. Using single point crossover, it was found
that the best position of cutting point is 33% of the
chromosome size as shown in figure (1-c). Finally, the Genetic
algorithm parameters that give the best starting times have been
determined:

TABLE IV. MACHINE STARTING TIME BY GANUM-MTSP

 M1 M2 M3 M4 M5

C1 1.18 0.85 0.07 3.1 1.36

C2 6.49 6.07 6.67 7.3 6.48

C3 13 11.27 13.13 11.5 13.3

The best value for the objective function f is 35.26.
Assuming that α is the cost, and then the penalty cost equals
35.26 α

B. Using Particle Swarm Optimization (PSO)

The PSO method is a member of wide category of Swarm
Intelligence methods for solving the optimization problems. It
is a population based search algorithm where each individual is
referred to as particle and represents a candidate solution. Each
particle in PSO flies through the search space with an adaptable
velocity that is dynamically modified according to its own
flying experience and also the flying experience of the other
particles. Further, each particle has a memory and hence it is
capable of remembering the best position in the search space
ever visited by it. The position corresponding to the best fitness
is known as pbest and the overall best out of all the particles in
the population is called gbest [9].

The modified velocity and position of each particle can be
calculated using the current velocity and the distance from the
pbestj to gbest as shown in the following formulas:

)(**)(***)(

,,22

)(

,,11

)(

,

)1(

,

t

gjgj

t

gjgj

t

gj

t

gj xgbestrcxpbestrcvwv 

)1(

,

)(

,

)1(

,

  t

gj

t

gj

t

gj vxx

With j=1, 2, …,n and g=1, 2, …, m

n =number of particles in a group;

m = number of members in a particle;

t = number of iterations (generations);
)(

,

t

gjv =velocity of particle j at iteration t,

w = inertia weight factor;

c1, c2 = cognitive and social acceleration factors, respectively;

r1, r2 = random numbers uniformly distributed in the range (0,

1);
)(

,

t

gjx = current position of j at iteration t;

pbestj = pbest of particle j;

gbest = gbest of the group.

a) Population size

b) No. of chromosomes kept in next generation

c) Position of the cutting point crossover

Figure 1. Genetic algorithm parameters

The index of best particle among all of the particles in the
group is represented by the gbest. In PSO, each particle moves
in the search space with a velocity according to its own
previous best solution and its group’s previous best solution.
The velocity update in a PSO consists of three parts; namely
momentum, cognitive and social parts.

The balance among these parts determines the performance
of a PSO algorithm. The parameters c1 & c2 determine the
relative pull of pbest and gbest and the parameters r1 & r2 help
in stochastically varying these pulls [9]. [13] Showed that

combining them by setting the inertia weight,


, to the
constriction factor, v, improved performance across a wide
range of problems as follows:

)}(**)(***{)(

,,22

)(

,,11

)(

,

)1(

,

t

gjgj

t

gjgj

t

gj

t

gj xgbestrcxpbestrcvwv  

34.5

34.75

35

35.25

35.5

35.75

36

36.25

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

A
v
e
ra

g
e
F

Generation

GAnuM-MTSP

size(40)

size(60)

size(80)

size(100)

34.5

34.75

35

35.25

35.5

35.75

36

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

A
v
e
ra

g
e
F

Generation

GAnuM-MTSP

30%

20%

10%

5%

2.5%

1.25
%

34.5

34.75

35

35.25

35.5

35.75

36

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

A
v
e
ra

g
e
F

Generation

GAnuM-MTSP

20%

50%

33%

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 1, No. 1, 2012

68 | P a g e

www.ijarai.thesai.org

.4,
42

2
21

2



 ccccwhere

ccc


In [14] PSO is combined with the Lagrangian Relaxation
(LR) framework to solve a power-generator scheduling
problem known as the unit commitment problem (UCP). In
terms of the solution quality, the PSO-LR provided a “best
solution” with a lower cost than GA for problem sizes larger
than 20 units, and than LR for problem sizes 20 and 80 units.
PSO-LR also provided a “best solution”, for the problem size
of 10 units, with a much lower cost than using PSO alone.

A novel approach based on Particle Swarm Optimization
(PSO) for scheduling jobs on computational grids is introduced
in [15]. The proposed approach is to dynamically generate an
optimal schedule so as to complete the tasks within a minimum
period of time as well as utilizing the resources in an efficient
way. When compared to genetic algorithm (GA) and
simulating Annealing (SA), an important advantage of the PSO
algorithm is its speed of convergence and the ability to obtain
faster and feasible schedules.

Application and performance comparison of PSO and GA
optimization techniques were presented in [9], for Thyristor
Controlled Series Compensator (TCSC)-based controller
design. Results indicate that in terms of computational time, the
GA approach is faster. The computational time increases
linearly with the number of generations for GA, whereas for
PSO the computational time increases almost exponentially
with the number of generations. The higher computational time
for PSO is due to the communication between the particles
after each generation. However, the PSO seems to arrive at its
final parameter values in fewer generations than the GA.

The main steps for solving the MTSP by PSO are as
follows:

1) Reformulation:
Each machine boundaries will be reformulated (calculate

the new boundaries) based on its' successors machines
boundaries. For each machine the new lower boundary is called
h and the new upper boundary is called H.

2) Initial iteration:
First, the particle is defined as a set of starting times for the

machines in all cycles. The particle is represented by D-
dimensional, where D is equal to N multiplied by K (where N
number of machines and K number of cycles). The xirpt is the

starting time for machine i in cycle r in particle p, Qp ,..,2,1

in iteration t, Tt ,..,2,1 (where Q is number of particles in

the SWARM and T is number of iterations) which satisfy the
constraints in (P). The value of xirpt is generated randomly

where irir Hxh irpt  .

The xirpt must satisfy the second constrain which is

)(max
)1()(

j
ptrji

Nj
irpt pxx 




. Determine the pbestp which

is the best position of particle p that makes the best value of the
objective function. Then determine the gbest which is the best
particle that make the best value of the objective function in all
iterations.

3) Other generation:
The next iteration created by modifying the velocity of each

particle by the following equation:

)}(**)(***{ 2211)1(irptirirptirpirpttirp xgbestrcxpbestrcvwv  

Then the particle position will be update by the following

equation:

)1()1(  tirpirpttirp vxx

The new iteration has been created with new position of
SWARM. Calculate the objective function then find the pbestp
and gbest. Repeat this step until last iterations. The solution is
the gbest in the last iteration.

4) PSOc-MTSP Algorithm:

A1: Reformulate the boundaries for each machine in each cycle

as follows:

N
ikik

iLH Put , Nj
jr

jr lh  ,

))min(,(min
1

j
irjUi

jrjr pHLH 


 Where

1,2,...,1}:{
)(

 krNjNiU
i

j

A2: Put t = 1.

A3: Put p = 1.

A4: Put r = 1.

A5: Put i = 1.

A6: If 1r then)(max
)1()(

j
ptrji

Nj
ir pxh 



.

A7: Generate random number for xircp where

irir Hxh ircp  .

A8: If i < n then i = i + 1 go to A6.

A9: If r < k then r = r + 1 go to A5.

A10: pbestp = f (xirpt) pt KrNi ,..,1,,..,1  .

A11: If p < Q then p = p + 1 go to A4.

A12: find max (f (pbestp) pt) .,..,1 Qp 

A13:
maxppbestgbest 

A14: t = t + 1.

A15: Put p = 1.

A16:

)}(

)(*{

)1(

22)1(11)1(









tirp

tirpptirpirpt

xgbest

rcxpbestrcvwv 

.

A17: irpttirpirpt vxx  )1(.

A18: if xirpt is not feasible then go to A20.

A19: if f (xirpt) pt > f (xirpt) p(t-1) then pbestp = xirpt

A20:
maxppbestgbest  .

A21: If p < Q then p = p + 1 go to A16.

A22: If t < T then go to A15.

A23: The solution is gbest.

5) Simulation Results

The PSOc-MTSP algorithm has been implemented and run
for the same scenario used in Part 3.1.2. The program is run
100 times for determining the suitable parameters. Using test

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 1, No. 1, 2012

69 | P a g e

www.ijarai.thesai.org

sizes of 5, 20, 40 and 50 particle in the swarm, we found that,
the best swarm size equals 20 as show in figure (2-a). After
testing the w value by 0.1, 0.5, 0.9 and 0.9→ 0.1 (decreasing
value) we found that the best value of w equals 0.5 as show in
figure (2-b). The last parameters, we need to determine, are c1,
c2. Using the values 0.5, 1, 1.5, 1.7, 1.9 and 2, for c1 and c2 we
found that the best value for c1, c2 equal 1.5 as shown in figure
(2-c). Finally, the swarm parameters that give the best starting
times have been determined is shown below.

TABLE V. MACHINE STARTING TIME BY PSOC-MTSP

 M1 M2 M3 M4 M5

C1 1.95 1.25 0.0 3 1.26

C2 6.24 6 6.26 7 6.23

C3 12.5 11.26 12.5 11.27 12.5

The best value for the objective function f equals 32.9.

Assuming that the cost equal α. Then the penalty cost equals
32.9 α.

C. Discussion

From previous experimental results we found that, solving
the MTSP using particle swarm optimization algorithm (PSOc-
MTSP), leads to 32.9α penalty cost in 420 iterations that took
11 seconds. When solving the MTSP using genetic algorithm
(GAnuM-MTSP), the penalty cost was 35.25 α, reached in
generation 41 that took 2 seconds. But when the MTSP was
solved using max-separable algorithm in [2], the penalty cost
was 35.75 α in less than 0.5 seconds, (Figure 3).

a) swarm size

b) w value

c) c1, c2 value

Figure 2. Determination of the swarm parameters

Figure 3. The result of solving MTSP problem by SWARM, GA and Max-

separable

D. Conclusion

The machine time scheduling problem (MTSP) was solved
using particle swarm optimization (with constriction factor),
genetic algorithm (GA) (with non-uniform mutation), and max-
separable technique. We found that, particle SWARM
optimization gives the lowest penalty cost of the MTSP
problem, followed by GA algorithm. The max-separable
technique gives the highest penalty cost. That means that
particle swarm optimization algorithm is the most suitable for
solving the MTSP problem, giving the best starting time for
each machine in each cycle.

REFERENCES

[1] [1] Y. Sok and K. Zimmermann: “Optimal Choice of Parameters in
Machine Time Scheduling Problems with Penalized Earliness in Starting
Time and Lateness”, AUC-Mathematica et Physica, V33, No 1, pp.53-
61. 1992.

[2] M. Vlach and K. Zimmermann, “Machine Time Scheduling
Synchronization of Starting Times”, the Proceeding of the MME’99
Conference, Prague, Czech Republic, 1999.

[3] S. Zlobec: “Input Optimization I: Optimal Realizations of Mathematical
Models,” Mathematical Programming, V 31, pp.245-268, 1985.

[4] S. Zlobec: “Input Optimization III: Optimal Realizations of
Mathematical Models,” Mathematical Programming, V 17, No 4,
pp.429-445, 1986.

[5] A. Tharwat and K. Zimmermann: “Optimal Choice of Parameters in
Machine Time Scheduling Problems Case I,” Conference MMEI,
Liberc, Czech Republic, 1998.

32

32.5

33

33.5

34

34.5

35

35.5

36

36.5

37

37.5

38

1 201 401 601 801 1001 1201 1401 1601 1801

A
v
e
ra

g
e
F

Iteration

PSOc-MTSP

size(5)

size(20)

size(40)

size(50)

32

32.5

33

33.5

34

34.5

35

35.5

36

36.5

1 501 1001 1501

A
v
e
ra

g
e
 F

Iteration

PSOc-MTSP
size 20

W=0.9-0.1

W=0.9

W=0.5

W=0.1

32

32.5

33

33.5

34

34.5

35

35.5

36

36.5

1 51 101 151 201 251 301 351 401 451

A
v
e
ra

g
e
 F

Iteration

PSOc-MTSP
S= 20, W=0.5

C=0.5

C=1

C=1.5

C=1.7

C=1.9

C=2

31

31.5

32

32.5

33

33.5

34

34.5

35

35.5

36

36.5

1 33 65 97 129 161 193 225 257 289 321 353 385 417 449 481

P
e
n
a
lit

y

Iterations

MTSP problem

PSOc-MTSP

GAnuM-MTSP

MAX-Seprable

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 1, No. 1, 2012

70 | P a g e

www.ijarai.thesai.org

[6] A. Tharwat and A. Abuel-Yazid: “Multi-Cycles Machine Time
Scheduling Problem”, First International Conference on Informatics and
Systems, Cairo, Egypt, 2002.

[7] S. A. Hassan*, A.A. Tharwat*, I.A. El-Khodary*, A. A. El-Sawy "Using
Monte Carlo Simulation to Solve Machine Time Scheduling Problems
With Stochastic Processing Time" Mathematical methods in Economics
conference: MME’2003, Prague, Czech Republic.

[8] A. Tharwat and A. Abuel-Yazid: "Generalized Algorithm For Muulti-
Cycle Machine Time Scheduling", Proceeding of Meatip3 Conference,
Assuit, Egypt, 2002.

[9] S. Panda and N. P. Padhy,"Comparison of Particle Swarm Optimization
and Genetic Algorithm for TCSC-based Controller Design",
International Journal of Computer Science and Engineering, Volume 1
Number 1, 2007.

[10] Jean-Philippe Rennard, "Genetic Algorithm Viewer: Demonstration of a
Genetic Algorithm", Ph.D. May 2000.

[11] Zhao X. and Gao X-S., "Evolutionary Programming Based on Non-
Uniform Mutation", MM Research Preprints, MMRC, AMSS, Academia

Sinica, No. 23, December 2004, Pages: 352-374.

[12] Alfaro-Cid E., McGookin E. W., Murray-Smith D. J., "A Novel Non-
uniform Mutation Operator and its Application to the Problem of
Optimizing Controller Parameters", IEEE, Vol. 2, 2005,pages: 1555 -
1562.

[13] Alec Banks, Jonathan Vincent, Chukwudi Anyakoha “A review of
particle swarm optimization. Part II: hybridisation, combinatorial,
multicriteria and constrained optimization, and indicative applications”
NATURAL COMPUTING Volume 7, Number 1, 109-124.

[14] H. H. BALCI and J. F. VALENZUELA,"scheduling electric power
generators using particle swarm optimization combined with the
lagrangian relaxation method", Int. J. Appl. Math. Comput. Sci., Vol. 14,
No. 3, 411–421, 2004.

[15] H. Liu, A. Abraham and C. Grosan, "A Novel Variable Neighborhood
Particle Swarm Optimization for Multi-objective Flexible Job-shop
Scheduling Problems", IEEE International Conference on Digital
Information Management, Lyon, France, IEEE Press, USA, ISBN 1-
4244-1476-8, pp. 138-145, 2007.

