
(IJARAI) International Journal of Advanced Research in Artificial Intelligence,  

Vol. 1, No. 1, 2012 

42 | P a g e  

www.ijarai.thesai.org 

Solving the Resource Constrained Project Scheduling 

Problem to Minimize the Financial Failure Risk 
 

Zhi-Jie Chen, Chiuh-Cheng Chyu 

Department of Industrial Engineering and Management 

Yuan-Ze University 

Taiwan 

 

 
Abstract—In practice, a project usually involves cash in- and out-

flows associated with each activity. This paper aims to minimize 

the payment failure risk during the project execution for the 

resource-constrained project scheduling problem (RCPSP). In 

such models, the money-time value, which is the product of the 

net cash in-flow and the time length from the completion time of 

each activity to the project deadline, provides a financial 

evaluation of project cash availability. The cash availability of a 

project schedule is defined as the sum of these money-time values 

associated with all activities, which is mathematically equivalent 

to the minimization objective of total weighted completion time. 

This paper presents four memetic algorithms (MAs) which differ 

in the construction of initial population and restart strategy, and 

a double variable neighborhood search algorithm for solving the 

RCPSP problem. An experiment is conducted to evaluate the 

performance of these algorithms based on the same number of 

solutions calculated using ProGen generated benchmark 

instances. The results indicate that the MAs with regret biased 

sampling rule to generate initial and restart populations 

outperforms the other algorithms in terms of solution quality. 

Keywords-RCPSP; cash availability; memetic algorithms; variable 

neighborhood search. 

I.  INTRODUCTION 

Cash flow is critical to the success of executing a project. 
The term cash flow is used to describe the net difference, at any 
point in time, between income (revenue) and project 
expenditures; negative cash flow is outgoing (cash out-flow), 
while positive cash flow is income (cash in-flow). In practice, 
cash in-flows often arise from payments due to the completion 
of specified parts of the project. On the other hand, cash out-
flows are caused by the execution of activities, such as resource 
usage and necessity expenditure. Both cash in- and out- flows 
may occur at several points in time during execution of an 
activity. Usually, discount rates are taken into consideration. 
Some commonly used NPV maximization RCPSP models 
include progress payments, lump-sum payment at the pre-
specified project deadline, payments at activity completion 
times, etc. [1-4] carried out comparative studies on the above 
payment models. For an overview of RCPSP with objectives 
based on NPV, we refer to [5, 6]. 

This research presents a different financial model, which 
aims to minimize the risk of payment failure or maximize the 
cash availability during project execution. The goal is to 
provide a cautious and less complex model to minimize the 

payment failure risk during the project execution. To achieve 
this goal, the money-time value, which is the product of the 
cash in-flow and the length from the time the cash received to 
the project makespan, can provide a financial evaluation of 
project cash availability. The cash availability of a project 
schedule is defined as the total money-time values associated 
with all activities. This financial metric does not consider 
discount rate, and it will provide a conservative estimate of 
cash in-flows during the project execution, since cash on hand 
will grow in value over time. In the proposed model, the cash 
in-flows are assumed to occur at the completion time of each 
activity, and the cash amounts can be used during the rest of 
project execution time. Hereafter, we shall refer to this model 
as the project cash availability maximization problem 
(PCAMP) for the resource constrained project scheduling 
problem (RCPSP).  

The PCAMP is mathematically equivalent to the RCPSP 
with the objective of minimizing total weighted completion 
time (also known as total weighted flow time). This problem is 
strongly NP-hard since its sub-problem, single machine 
scheduling with total flow time minimization objective subject 
to precedence constraints, is strongly NP-hard [7]. Thus, the 
heuristic approach will be appropriate for solving the PCAMP 
for RCPSP of large size. As the objective function of the 
PCAMP for RCPSP is regular, the optimal solution must be an 
active schedule [8]. The serial SGS procedure will generate the 
active schedules, where each activity is scheduled as early as 
possible [9]. A regular objective function is a non-decreasing 
function of the activity start times or finish times. 

To solve the PCAMP for RCPSP, we propose several 
memetic algorithms (MAs) that differ in initial population and 
restart strategy. The performance of these MAs will be 
compared to each other, as well as a double variable 
neighborhood search (DVNS) [10]. MAs are a population-
based meta-heuristic that incorporates evolutionary algorithms 
with local search [11]. In MAs, the term “memes” refers to the 
strategies that are employed to improve individuals or 
solutions. The strategies involve local refinement, perturbation, 
constructive methods, restart policy, etc. Ong and Keane [12] 
discussed the importance of selecting local search methods in 
MAs. An appropriate local search method will significantly 
improve the efficiency of the solution search. Merz and 
Freisleben [13] presented an MA framework with a restart 
strategy, in which mutation operator is used to generate a new 



(IJARAI) International Journal of Advanced Research in Artificial Intelligence,  

Vol. 1, No. 1, 2012 

43 | P a g e  

www.ijarai.thesai.org 

and diverse population when the current population is judged to 
be convergent. 

Variable neighborhood search (VNS) was introduced by 
Mladenović and Hansen [14], and its principles and 
applications were further detailed in [15]. The basic idea of 
VNS is to perform a systematic change of neighborhood and to 
find a local optimal solution with respect to each neighborhood 
using a local search algorithm. This algorithm explores 
increasingly distant neighborhoods of the incumbent solution 
and jumps from there to a new one when an improvement has 
been made. 

The remainder of this paper is organized as follows: Section 
2 defines the problem; Section 3 illustrates the solution 
methods; Section 4 presents the numerical results; Section 5 
concludes this research. 

II. PROBLEM DESCRIPTION 

The RSPSP can be described as follows. A project consists 
of a set N = {0, 1,…, J+1} of activities (nodes), where 
activities 0 and J+1 are dummies, and respectively represent 
the start time and the completion time of the project. A set of 
precedence relationships between activity pairs must be 
specified for the project. An activity list (AL) is a sequence of 
activities that follows the precedence constraints. Activity 
preemption is not allowed. The duration of an activity j is 
denoted by dj, and its requirement for renewable resource type 
k is rjk, k = 1,…, K. The availability of a resource type k for 
each time period is Rk units.  

This model aims to minimize the risk of payment failure 
during project execution, which in turn to maximize the project 
cash availability. The following are notations and formulation 
of the PCAMP model. 

Notation 

j : Index of activity, j = 0, 1, 2,…, J + 1 

t : Index of time, t = 1,…, D 

D  : Project deadline 

k : Index of renewable resource type, k = 1,…, K 

dj  : Duration of activity j 

j  : Cash in-flow of executing activity j 

rjk  : Per period usage of resource k by activity j 

Rk  : Availability level of resource k per period 

DPj  : Direct predecessors of activity j 

fj  : completion time of activity j 

S(t) : Set of activities in progress at time t 

Mathematical model 

 Maximize  )(
1 j

J
j j fD 

  

Subject to  

 jij dff     for all i  DPj (2) 

  
)( ktSj jk Rr  

 k = 1,…, K; t=1,…, D (3) 

 0jf  and integers   j = 0, 1,…, J+1 

Equation (1) is the model objective that computes the cash 
availability during the project execution. Constraint set (2) 
describes the precedence relationships among activities. 
Constraint set (3) specifies the usage limit per period for each 
renewable resource type at any time during project execution. 

III. SOLUTION METHODS 

All algorithms presented in this research will employ local 
search to refine a newly produced solution. Three local search 
methods are used: (1) left move at random, (2) 2-swap, and (3) 
forward/backward improvement (FBI; also known as 
justification procedure [16]). This section first introduces the 
three local search methods, and then the proposed MAs and 
DVNS. These algorithms use activity list (AL) as the encoding 
scheme and forward serial list scheduling (F-SLS) as the 
decoding scheme. An AL offers the order to schedule the 
activities in the project. Fig. 1 displays a simple example with a 
single resource availability of 5 units, where activities 0 and 9 
are dummy and they represent the start and finish events of the 
project, respectively. Fig. 2 shows the encoding and decoding 
schemes through an AL = {1, 3, 4, 2, 6, 5, 8, 7}. 

0

1

2

3

4

5

6

7

8

9

(3, 1)

(2,3)

(2, 2)

(2, 3)

(1, 4)

(4, 1)

(3, 2)

(2, 3)

(rj, dj) 

R = 5

 

Figure 1.  Example of project network 

1 3 4 2 6 5 8 7

1

3

4

2

6

5

8
7

0 2 4 6 8 10 12

AL

 

Figure 2.  Example of decoding AL 

A.  Local Search methods 

In the left move method, a position is randomly selected 
from the AL, and the activity on that position is then randomly 
placed leftward into a position allowed by precedence relations.  



(IJARAI) International Journal of Advanced Research in Artificial Intelligence,  

Vol. 1, No. 1, 2012 

44 | P a g e  

www.ijarai.thesai.org 

In Fig. 2 example, if position 5 is selected, the 
corresponding activity 6 can be placed on either position 3 or 4, 
but not position 2 (i.e. activity 3). 

In the 2-swap method, an activity is randomly selected from 
the AL, and then the corresponding left- and right-move limits 
are determined. Then, within these two limits, a second activity 
is randomly selected for possible swapping. The procedure 
performs swapping when these two activities have different 
start times in the current schedule and the swap does not violate 
the precedence constraints. In Fig. 2 example, if activity 6 is 
selected, then it can swap with activities 4, 2, and 5. 

The FBI method consists of two steps: in the forward step, 
the activities are scheduled as late as possible according to the 
order of their finish times in the current schedule; then in the 
backward step, the activities are scheduled as early as possible 
based on the order of their start times in the schedule generated 
in the forward step. The FBI method has been proved very 
effective in improving solutions for RCPSP with the objective 
of minimizing makespan [17]. Fig. 3 shows the forward step 
(i.e. right justification) and Fig. 4 shows the backward step (left 
justification) using the schedule in Fig. 2. 

1

3

4

2

6

5

8

7

0 2 4 6 8 10 12
 

Figure 3.  Forward step schedule 

1
3

4

2

6

5
8

7

0 2 4 6 8 10
 

Figure 4.  Backward step schedule 

B. Memetic Algorithms 

Memetic algorithms (MAs) are sometimes referred to as 
genetic local search algorithms. In this research, we present a 
multi-start MA framework which employs the FBI to improve 
each newly produced individual. In each generation, a modified 
order based recombination operator is applied to produce 
offspring. The MA will restart with a new population when the 
current population contains at least 80% identical individuals. 
This situation is regarded as the population having entered into 
a convergence state, and continuing evolution will have little 
chance of making further improvement under the 
recombination operation. 

Our MA considers the following policies to produce 
individuals of the initial population and restart population: (1) 

randomly generated individuals followed by FBI for initial 
population, and a series of 2-swap followed by FBI for restart 
population; (2) regret biased sampling [18] followed by FBI for 
both initial and restart populations (also denoted as RBS + 
RBS); (3) regret biased sampling followed by FBI for initial 
population, and a series of 2-swap followed by FBI for restart 
population (also denoted as RBS + 2-swap); (4) randomly 
generated individuals followed by FBI for initial population 
and no restart. For any method, the best individual will be 
retained when generating a new population. We shall refer to 
the MA with policy k as MA

k
 for k = 1,…, 4. Fig. 5 describes 

the pseudo code of the MAs. 

When generating a population using the RBS rule, at each 
step an activity i is selected from current candidate list CL 
according to the following probability: 

 P(i) = 
                        

∑                           
 () 

 

Figure 5.  Framework of memetic algorithms 

The recombination is performed by a modified order-based 
procedure described as follows: Randomly select k positions 
and determine the set A(k) that contains the elements that 
correspond to those positions in parent b. Place the elements of 
A(k) one by one to the k positions according to their order in 
parent a. Fill out the remaining positions by the activities in 
parent b at the corresponding positions. Repair the offspring if 
it violates precedence relations of activities. Fig. 6 illustrates 
this operation via Fig. 1 network. Suppose k = 3 and the 
positions are 2, 4, and 7. The corresponding activities in parent 
b, A(k) = {1, 5, 6}. Since DP3 = 6, the child {2, 1, 4, 6, 7, 3, 5, 
8} violates the precedence order and the violation will be fixed 
by moving activity 3 to the left position of activity 6.  

C. Double variable neighborhood algorithm 

Similarly, the proposed VNS uses AL and serial F-SLS for 
the coding schemes. Hansen and Mladenović [15] mentioned 
that three problem-specific questions must be considered when 
designing a VNS: (a) What neighborhood structures should be 
used and how many of them? (b) What should be their local 
search? (c) What strategy should be used in changing 
neighborhoods? The proposed VNS consists of the following 
features: (1) The initial solution is constructed by a greedy 
heuristic using the objective function values. (2) Two 
fundamental generators are used to construct the variable 
neighborhoods: 2-swap and left move. The distance of the 
generated neighborhood to the current solution is evaluated by 



(IJARAI) International Journal of Advanced Research in Artificial Intelligence,  

Vol. 1, No. 1, 2012 

45 | P a g e  

www.ijarai.thesai.org 

the number of the operations performed. (3) An enhanced local 
search procedure named short-term or inner VNS is used. The 
inner VNS uses the efficient local search method FBI, and aims 
to seek the best solution in the nearby area. 

1 3 4 2 6 5 8 7

2 1 4 5 7 3 6 8

2 1 4 6 7 3 5 8

2 1 4 3 6 7 5 8

Parent a

Parent b

child

child
 

Figure 6.  Modified order-based recombination 

Fig. 7 describes the framework of the DVNS. The relevant 
parameters are explained as follows: Nk is the k-th 
neighborhood, k = 1,…, Kmax and s < K1 < Kmax, where 
{N1,…,Ns} are used for the inner VNS and the remaining 

{Ns+1,…, NKmax} are used for the outer VNS; each Nk  {N1,…, 
NK1} is generated by performing k times of two-swap 

operations, and each Nk  {NK1+1,…, NKmax} by performing k – 
K1 times of left-move operations. In general, a 2-swap 
operation takes a longer computational time than a left-move 
operation, but the former will make a bigger change on the 
current solution structure. Each Nk will generate m neighboring 
solutions, each of which will produce two additional solutions 
by FBI. The DVNS will continue to move ahead to next 
neighborhood regardless of whether or not the current 
neighborhood search has found a new best solution. In the 
DVNS, parameters are set to m = 20, s = 5, K1 = 20, Kmax = 
30. In the performance comparison study, each algorithm will 
calculate MaxSol solutions. The DVNS will return to Ns+1 if the 
number of solutions calculated after NKmax is smaller than 
MaxSol. 

 

Figure 7.  Framework of algorithm DVNS 

IV. NUMERICAL RESULTS 

This section presents the experimental results for the four 
MAs and DVNS. The test sets come from J.60 and J.120 of the 
PSPLIB [19]. Test set J.60 contains 480 instances, while the set 
J.120 has 600 instances. Each instance set is characterized by 
three factors: (1) Network complexity (NC) with three levels, 
1.5, 1.8, 2.1; (2) Resource factor (RF) with four levels, 0.25, 
0.50, 0.75, 1.0; (3) Resource strength (RS). The RS for J.60 has 

four levels: 0.2, 0.5, 0.7, 1.0, whereas the RS for J.120 has five 
levels: 0.1, 0.2, 0.3, 0.4, and 0.5. The factor NC is the average 
number of successors of each job, RF is the average number of 
resource types used by a job, and RS signifies the strength of 
resource availability. Each combination of factors has 10 
instances. The J.120 test instances are much more difficult than 
J.60, mainly due to larger problem size and lower resource 
strength. The test environment is as follows: CPU: Intel Core i5 
3G, RAM: 2G DDRIII, HD: 500G 7200 rpm, OS: Win7, 
Language: Visual C#.Net. 

A. Generation of activity profit 

The profit of each activity is assumed to be a function of the 
resources consumed. The following describes the method to 
generate the profit for activity j using rjk units of resource type 
k, k = 1,…, K. For each resource type k, we generate a value bk 
at random from (1,000, 1,300), and set the unit cost for 
resource type k to ck = bk/Rk. The larger the resource limit, the 
cheaper the unit cost. The cost of activity j is defined as Cj = 

∑   
 
      , and the profit j = j  Cj, where the multiplier j 

is randomly generated from the interval of [0.3, 0.5]. The 
project deadline of each instance is set to 1.5 multiples of the 
minimum makespan, which can be found in PSPLIB (URL: 
http://129.187.106.231/psplib/). The critical path method 
(CPM) based upper bound is used to compare the results of 
these algorithms. 

B. Computation results 

An experiment was conducted to compare the performance 
of the proposed algorithms based on 1000 and 5000 schedules 
for J.60 and J.120 test sets. Each test set has 10 repetitions on 
each instance. The performance of an algorithm on a test set is 
evaluated based on the average deviation from the CPM upper 
bound. The deviation (in percentage) of an algorithm A for 
solving an instance is defined as follows:  

{(CPM upper bound – best objective value found by A) / 

CPM upper bound}  100%.  

The 1000-schedule experiment evaluates short running time 
performance of an algorithm, whereas the 5000-schedule 
evaluates moderate running time performance of an algorithm. 
A small average deviation indicates that the algorithm is able to 
achieve a high quality performance. 

TABLE I displays the performance of the algorithms for 
J.60 based on 1000 and 5000 schedules. The “min” column 
shows the best performance among 10 runs, the “avg” column 
presents the average performance, and the “max” column gives 
the worst performance. The results indicate that MA

2
 (i.e. RBS 

+ RBS) and MA
3
 (RBS + 2-swap) produce the best results in 

short and moderate running times. The DVNS, which uses 
enhanced local search on each new neighboring solution, 
outperforms the MA with randomly generated initial 
population and 2-swap restart strategy (MA

1
), as well as the 

MA without restart strategy (MA
4
). It is also observed that 

DVNS improves its performance the most when increasing 
schedules from 1000 to 5000.. MA

2
 and MA

3
 are next in this 

respect, and MA
1
 and MA

4
 are least effective in calculating 

additional solutions. Similar results can be observed for J.120 
in TABLE II. The deviations grow significantly for all 
algorithms since the problem size of J.120 is much larger. 

http://129.187.106.231/psplib/


(IJARAI) International Journal of Advanced Research in Artificial Intelligence,  

Vol. 1, No. 1, 2012 

46 | P a g e  

www.ijarai.thesai.org 

TABLE I.  ALGORITHM PERFORMANCE ON J.60 

  1000 schedules 

 min avg max CPU 

DVNS 5.63% 5.98% 6.43% 0.11s 

MA
1
  5.85% 6.11% 6.39% 0.12s 

MA
2
 5.54% 5.76% 6.00% 0.18s 

MA
3
 5.52% 5.75% 6.01% 0.15s 

MA
4
 5.89% 6.13% 6.37% 0.21s 

 5000 schedules 

 min avg max CPU 

DVNS 5.46% 5.69% 5.96% 0.55s 

MA
1
  5.75% 6.01% 6.29% 0.36s 

MA
2
 5.39% 5.59% 5.84% 0.86s 

MA
3
 5.37% 5.58% 5.85% 0.76s 

MA
4
 5.78% 6.03% 6.31% 0.47s 

TABLE II.  ALGORITHM PERFORMANCE ON J.120 

  1000 schedules 

 min avg max CPU 

DVNS 14.68% 15.29% 15.94% 0.43s 

MA
1
  14.97% 15.41% 15.82% 0.50s 

MA
2
 14.38% 14.77% 15.16% 0.46s 

MA
3
 13.76% 14.76% 15.15% 0.45s 

MA
4
 15.08% 15.50% 15.91% 0.49s 

 5000 schedules 

 min avg max CPU 

DVNS 14.19% 14.65% 15.17% 2.02s 

MA
1
 14.51% 14.95% 15.40% 2.43s 

MA
2
 13.76% 14.16% 14.59% 2.11s 

MA
3
 13.73% 14.14% 14.60% 2.01s 

MA
4
 14.48% 15.04% 15.49% 2.07s 

 

TABLE III shows the performance of MA
3
 for J.120 based 

on the factor RF. Each instance contains four resource types. 
Thus an RF of 0.25 implies that each activity in the project 
consumes one of the four resource types, whereas an RF of 1.0 
indicates that each activity consumes all four resource types. 
The problem becomes more difficult when RF increases, and 
the computation time increases as well. TABLE IV shows the 
results of MA

3
 based on RS for J.120. The smaller the RS 

value, the more scarce the resource. When RS decreases, the 
problem becomes harder and the project completion time will 
be longer. TABLE V presents the results of MA

3
 on four 

hardest problems. The most difficult problem is (RF, RS) = 
(1.0, 0.1). In addition, the RS influences the problem difficulty 

more significantly than the RF. The average deviation for (1.0, 
0.1) is 30.48% and for (0.75, 0.1) is 29.46%, but for (1.0, 0.2) 
is 24.18% and for (0.75, 0.2) is 22.58%. 

TABLE III.  RESULTS OF MA3
 BASED ON RF FOR J.120 

RF min avg max  

0.25 6.40% 6.65% 6.95% 

0.5 13.35% 13.82% 14.34% 

0.75 16.74% 17.24% 17.77% 

1 18.42% 18.85% 19.32% 

TABLE IV.  RESULTS OF MA3
 BASED ON RS FOR J.120 

RS min avg max  

0.1 24.12% 24.76% 25.45% 

0.2 18.39% 18.91% 19.46% 

0.3 12.62% 13.02% 13.49% 

0.4 8.60% 8.91% 9.24% 

0.5 4.91% 5.11% 5.34% 

TABLE V.  RESULTS OF MA3
 FOR HARD INSTANCES OF J.120 

(RF,RS) min avg max  

(0.75,0.1) 28.74% 29.46% 30.22% 

(0.75,0.2) 21.99% 22.58% 23.25% 

(1,0.1) 29.87% 30.48% 31.10% 

(1,0.2) 23.69% 24.18% 24.72% 

V. CONCLUSIONS 

This research presents a new model to minimize the 
financial failure risk during the project execution. The model 
assumes that cash out-flows may occur at any times during 
activity execution, and all returns (in-flows) will be received 
upon activity completion times. In practice, the project owner 
would like to schedule activities to best prepare for cash out-
flows until project completion time from a simple and 
conservative financial viewpoint.  

The proposed project cash availability maximization model 
can be shown to be mathematically equivalent to the RCPSP 
with the objective of minimizing total weighted flow time, 
which is strongly NP-hard. Thus, the meta-heuristic approach is 
appropriate for solving this problem. Two solution approaches 
are presented: memetic algorithms (MAs) and a double 
variable neighborhood search termed DVNS. Our experimental 
results indicate that MA with good constructive heuristic for 
initial population and with restart strategy will produce high 
quality results. 

ACKNOWLEDGMENT 

This work was supported by the National Science Council 
in Taiwan under Grant NSC 99-2221-E-155-029. 



(IJARAI) International Journal of Advanced Research in Artificial Intelligence,  

Vol. 1, No. 1, 2012 

47 | P a g e  

www.ijarai.thesai.org 

REFERENCES 

[1] M. Vanhoucke, E. Demeulemeester, and W. Herroelen, “Maximizing the 
net present value of a project with linear time-dependent cash flows,” 
Int. J. Prod. Res., vol. 39, pp. 3159-3181, 2001. 

[2] M. Vanhoucke, E. Demeulemeester, and W. Herroelen, “Progress 
payments in project scheduling problems,” Eur. J. Oper. Res., vol. 148, 
pp. 604-620, 2003. 

[3] G. Ulusoy, F. Sivrikaya-Serifoglu, and S. Sahin, “Four payment models 
for the mult-mode resource constrained project scheduling problem with 
discounted cash flows,” Ann. Oper. Res., vol. 102 , pp. 237-261, 2001. 

[4] M. Mika, G. Waligóra, and J. Węglarz, “Simulated annealing and tabu 
search for multi-mode resource-constrained project scheduling with 
positive discount cash flows and different payment models,” Eur. J. 
Oper. Res., vol. 164, pp. 639-668, 2005. 

[5] E. Demeulemmester, and W. S. Herroelen, Project Scheduling: A 
research handbook. Kluwer’s International Series, 2002. 

[6] S. Hartmann, and D. Briskorn, “A survey of variants and extensions of 
the resource-constrained project scheduling problem,” Eur. J. Oper. Res., 
vol. 207, pp. 1-14, 2010. 

[7] M. Pinedo, Scheduling: Theory, Algorithms, and Systems, 3rd edition, 
Springer, 2008, pp. 605. 

[8] K. Neumann, C. Schwindt, and J Zimmermann, Project scheduling with 
time windows and scarce resources, Springer, 2002. 

[9] R. Kolisch, “Serial and parallel resource-constrained project scheduling 
methods revisited – Theory and computation”, Eur. J. Oper. Res., vol. 
90, pp. 320-333, 1996. 

[10] C. C. Chyu, and Z. J. Chen, “Scheduling jobs under constant period-by-
period resource availability to maximize project profit at a due date”, Int. 
J. Adv. Manuf. Technol., vol. 42, pp. 569-580, 2009. 

[11] P. Moscato, On evolutions, search, optimization, genetic algorithms and 
martial arts: toward memetic algorithms, Technical Report, Caltech 
Concurrent Computer Program Report, California Institute Technology, 
Pasadena, CA, 1989. 

[12] Y. S. Ong, and A. J. Keane, “Meta-Lamarckian learning in memetic 
algorithms,” IEEE Trans. Evol. Comput., vol. 8, pp. 99-110, 2004. 

[13] P. Merz, and B. Freisleben, “A comparison of memetic algorithms, tabu 
search, and ant colonies for the quadratic assignment problem,” In 1999 
Congress on Evolutionary Computation (CEC'99), IEEE Press, 
Piscataway, NJ, 1999, pp. 2063–2070. 

[14] N. Mladenović, and P. Hansen, “Variable neighborhood search,” 
Comput. Oper. Res., vol. 24, pp. 1097–1100, 1997. 

[15] P. Hansen, and N. Mladenović, “Variable neighborhood search: 
principles and applications,” Eur. J. Oper. Res., vol. 130, pp. 449–467, 
2001. 

[16] V. Valls, F. Ballestin, and S. Quintanilla, “Justification and RCPSP: A 
technique that pays,” Eur. J. Oper. Res., vol. 165, pp. 375-386, 2005. 

[17] R. Kolisch, S. Hartmann, “Experimental evaluation of state-of-the-art 
heuristics for the resource-constrained project scheduling: An update,” 
Eur. J. Oper. Res., vol. 174, pp. 23-37, 2006. 

[18] R. Kolisch, “Project scheduling under resource constraints – efficient 
heuristics for several problem classes,” Physica, Heidelberg, 1995. 

[19] R. Kolisch, and A. Sprecher, “PSPLIB – a project scheduling problem 
library,” Eur. J. Oper. Res., vol. 96, pp. 205-216, 1996. 

AUTHORS PROFILE 

Zhi-Jie Chen is currently a PhD student of the Industrial Engineering and 
Management department at Yuan-Ze University, Chung-Li, Taiwan. His 
research interests include applied operations research, project 
scheduling, and meta-heuristics for combinatorial optimization 
problems.  

Chiuh-Cheng Chyu is currently an associate professor of the department of 
Industrial Engineering and Management at Yuan-Ze University. His 
current research interests are in the areas of applied operations research, 
multiple criteria decision-making, scheduling, and meta-heuristics for 
combinatorial optimization problems. 

 

 


