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Abstract—In 2010,we proposed CRFNFP[1] algorithm to enhance 

long-range terrain perception for outdoor robots through the 

integration of both appearance features and spatial contexts. And 

our preliminary simulation results indicated the superiority of 

CRFNFP over other existing approaches in terms of accuracy, 

robustness and adaptability to dynamic unstructured outdoor 

environments. In this paper, we further study on the comparison 

experiments for navigation behaviors of robotic systems with 

different scene perception algorithms in real outdoor scenes. We 

implemented 3 robotic systems and repeated the running jobs 

under various conditions. We also defined 3 criterion to facilitate 

comparison for all systems: Obstacle Response Distance (ORD), 

Time to Finish Job (TFJ), and Distance of the Whole Run 

(DWR). The comparative experiments indicate that, the 

CRFNFP-based navigating system outperforms traditional local-

map-based navigating systems in terms of all criterions. And the 

results also show that the CRFNFP algorithm does enhance the 

long-range perception for mobile robots and helps planning more 

efficient paths for the navigation. 

Keywords- autonomous nagivation; stereo vision; machine 

learning; conditional random fields; scene analysis. 

I. INTRODUCTION 

Navigation in an unknown and unstructured outdoor 
environment is a fundamental and challenging problem for 
autonomous mobile robots. The navigation task requires 
identifying safe, traversable paths that allow the robot to 
progress toward a goal while avoiding obstacles. 

Standard approaches to complete the task use ranging 
sensors such as stereo vision or radar to recover the 3-D shape 
of the terrain. Various features of the terrain such as slopes or 
discontinuities are then analyzed to determine traversable 
regions [2-5]. However, ranging sensors such as stereo visions 
only supply short-range perception and gives reliable obstacle 
detection to a range of approximately 5m[6]. Navigating solely 
on short-range perception can lead to incorrect classification of 
safe and unsafe terrain in the far field, inefficient path 
following or even the failure of an experiment due to 
nearsightedness [7, 8]. 

To address nearsighted navigational errors, near-to-far-
learning-based, long-range perception approaches are 
developed, which collect both appearances and stereo 
information from the near field as inputs for training 
appearance-based models and then applies these models in the 
far field in order to predict safe terrain and obstacles farther out 
from the robot where stereo readings are unavailable [9-11]. 
We restrict our discussion to the online self-supervised learning 

since the diversity of the terrain and the lighting conditions of 
outdoor environments make it infeasible to employ a database 
of obstacle templates or features, or other forms of predefined 
description collections. The winner of DARPA Grand 
Challenge[10] combines sensor information from a laser range 
finder and a pose estimation system to first identify a nearby 
patch (a set of neighboring pixels) of drivable surface. And 
then the vision system takes this patch and uses it to construct 
appearance models to find the drivable surface outward into the 
far range. Happold and Ollis[9] propose a method for 
classifying the traversability of terrain by combining 
unsupervised learning of color models that predict scene 
geometry with supervised learning of the relationship between 
geometric features and the traversability. A neural network is 
trained offline on hand-labeled geometric features computed 
from the stereo data. An online process learns the association 
between color and geometry, enabling the robot to assess the 
traversability of regions for which there is little range 
information by estimating the geometry from the color of the 
scene and passing this to the neural network. The system of 
Bajracharya[11] consists of two learning algorithms: a short-
range, geometry-based local terrain classifier that learns from 
very few proprioceptive examples; and a long-range, image-
based classifier that learns from geometry-based classification 
and continuously generalizes geometry to the appearance. 

Appearance-based near-to-far learning methods mentioned 
above do support the long-range perception which provides the 
“look-ahead” capability for complementing the traditional 
short-range stereo- or LIDAR-based sensing. However, 
appearance-based methods assume that the near-field mapping 
from the appearance to traversability is the same as the far-field 
mapping. Such an assumption does not necessarily hold due to 
the complex terrain geometry and varying lighting conditions 
in unstructured outdoor environment. Therefore, how to use 
other strategies or information to compensate for the mapping 
deviation begins to draw more attention. 

Lookingbill and Lieb[12] use a reverse optical flow 
technique to trace back the current road appearance to how it 
appeared in previous image frames in order to extract road 
templates at various distances. The templates can be then 
matched with distant possible road regions in the imagery. 
However, trackable features, on which the reverse flow 
technique is based, are subject to the image saturation and 
scene elements occurrence patterns. Furthermore, changing 
illuminant conditions can result in unacceptable rates of 
misclassification. Noting that the visual size of features scales 
inversely with the distance from camera, Hadsell and 
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Sermanet[13] normalize the image by constructing a horizon-
leveled input pyramid in which similar obstacles have similar 
heights, regardless of their distances from the camera. 
However, the distance estimation for different regions of 
images introduces extra uncertainties. In addition, this approach 
does not consider the influence of changing lighting conditions 
on appearances. Procopio[8] proposes the use of classifier 
ensembles to learn and store terrain models over time for the 
application to future terrain. These ensembles are validated and 
constructed dynamically from a model library that is 
maintained as the robot navigates terrain toward some goal. 
The outputs of the models in the resulting ensemble are 
combined dynamically and in real time. The main contribution 
of the ensembles approach is to leverage robots’ past 
experience for classification of the current scene. However, 
since the validation of models is based on the stereo readings 
from the current scene, this approach is still subject to the 
mapping deviation. 

In 2010, we proposed the model of CRFNFP[1] to 
incorporate both the spatial contexts and appearance 
information to enhace the perception robustness and self-
adaptability to changing illuminant conditions. And simulation 
results indicated the superiority of CRFNFP over other existing 
approaches. In this paper, we further implement the CRFNFP 
model in a robotic system to study on the navigating behaviors 
in real scenes. 

An outline of this paper is as follows: We first briefly 
describe the CRFNFP framework in section II. The system 
implementation of the robot will be detailed in section III and 
section IV provides the experiment results. We conclude our 
paper in section V with our further research in this area. And 
section VI indicates our future research. 

II. CRFNFP FRAMEWORK 

A. Model Summary 

CRFNFP framework is a near-to-far learning strategy to 
recognize the far-field of the current scene. We first over 
segment the current scene into superpixels (a superpixel is a set 
of neighboring pixels) and update the classification database 
using training samples from stereo readings of near-field of the 
current scene. Then we incorporate both local appearance of 
and spatial relationshops (contexts) between regions in the 
CRFNFP framework to estimate the traversability of regions of 
the current scene. 

The problem to be solved by CRFNFP is how to design a 
specific CRF framework with respect to the self-supervised, 
near-to-far learning in unstructured outdoor environments. To 
the best of our knowledge, ours is the first work that introduces 
and adapts the CRF-based framework to model the spatial 
contexts and to improve the long-range perception for mobile 
robots. 

B. Model Definition 

Let the observed data (local appearance) from an input 

image be given by 
{ }i i

S
X x

, where S  is the set of sites (one 

site corresponds to one superpixel in our application) and ix
is 

the data from the i th site. The corresponding labels at the 

image sites, which indicate the category of the traversability of 

a region, are given by
{ }i il 

S
L

. In this work, we will be only 

concerned with binary classification, i.e., 
{ 1,1}il  

, -1 for 
ground and 1 for obstacle. 

Our CRFNFP model is based on the Conditonal Random 
Fields (CRF) model, so we first explain the CRF model. 

CRF Definition: Let G=(S,E) be a graph such that L  is 

indexed by the vertices of G . Then L X( , ) is said to be a 

conditional random field if, when conditioned on X , the 

random variables il  obey the Markov property with respect to 

the graph: i i il lX,L X,L
is-{} N

P( | )=P( | )
, where iS-{} is the set 

of all nodes in the graph except the node i , iN
 is the set of 

neighbors of the node i  in G . 

Given the observation X , the CRFNFP defines the joint 

distribution over the labels L  as 

1
( | ) exp ( , ) ( , , )

i

i i ij i j
i i j

l l l
  

 
    

 
L X X X

S S N

P A I
Z             

(1) 

Where Z is a normalizing constant known as partition 

function, and iA
 and ijI

 are the association and interaction 
potentials respectively. 

The association potential is constructed by a Bayes 
Classifier, which directly maps appearance to traversability. 
And the interaction potential aims to incorporate spatial 
relationships and serves as the data-dependent smoothing 
function. 

As a result, the CRFNFP framework not only includes 
appearance features as its prediction basis, but also incorporates 
spatial relationships between terrain regions in a principled 
way. Please refer to the reference[1] for the details of CRFNFP 
framework. 

III. IMPLEMENTATION OF ROBOTIC SYSTEM 

A. Summary of Hardware Components 

 
Figure 1. UGV used for navigation experiment. 
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The UGV is a four-wheeled, 8 DOF mobile robot with each 
wheel individually driven and steered to obtain the desired 
maneuverability. And the hardware of the UGV (as shown in 
Figure 1) mainly consist of vehicle body, an industrial personal 
computer (IPC), stereovision, AHRS (attitude and heading 
reference system), GPS (global positioning system). The 
hardware block diagram in Figure 2 shows the connection 
relationships among all components. 

The GPS offers the global position while the AHRS 
combined with all the encoder provides the local position of the 
UGV. The stereo vision continuously takes picture of the 
current scenes, which is transmitted to the IPC. And the IPC 
will process all the information and provide the optimal control 
decision to further drive the UGV. 

 

Figure 2. Hardware block diagram of UGV. 

B. Flowchart Of Navigation Algorithm 

The navigation job can be summarized as follows: given the 
target point, the robot goes from the start point to the endpoint 
while intelligently avoiding all the obstacles by taking 
corresponding actions. 

The flowchart of Figure 3 shows that, the robot takes 
actions based on 3 sources of information: 

1) Near-field local mapping: This mapping can model the 

local environment around the robot and provide the guidance 

for the robot to avoid close-range obstacles such as obstacles 

within 5 meters. 

2) Far-field path planning: The inference results of far-

field scenes can be used to generate the cost image, which 

represents the distant-range obstacle distribution (even 

obstacles up to 100 meters away). So the far-field path 

planning can lead the robot to avoid the distant obstacles ahead 

of time. And the correspondinng trajectory can be shorter and 

smoother while the robot reaches the same target point. 

3) Directional deviation computation: The directional 
deviation is defined as the angle between the target point 
direction and the forward direction of the UGV. The robot 
needs to approach the target point while minimizing the 
directional deviation as much as possible.  

 

Figure 3. Flowchart of main algorithm of the navigation software. 

IV. EXPERIMENTAL ANALYSIS 

A. Experimental Design 

The experiments were carried out in the playground of 
Nanjing Agricultural University in december of 2009. The 
playground was muddy and full of weeds. The corresponding 
obstacles were manually arranged rectangular banners with the 
height of 1.2 meters as shown in Figure 4. 

 

Figure 4. Playground for navigation experiments. 

The experiments aim to validate that the CRFNFP model 
does enhance the long-range perception for mobile robots and 
helps to plan more efficient paths for the navigation job. 

To achieve this goal, we arranged several sets of 
experiments under conditions of different obstacle color, 
system configuration and weather. There were 3 colors for 
obstacles: red(R), yellow(Y), and mixed(M, red banners 
combined with yellow ones). The weather condition contains 
sunny(S) and cloudy(C). The 3 system were configured as 
follows: 
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1) System A: CRFNFP-based far-field scene inference and 

subsequent far-field path planning, near-field local mapping, 

directional deviation computation; 

2) System B: Bayes-classifier-based far-field scene 

inference and subsequent far-field path planning, near-field 

local mapping, directional deviation computation; 

3) System C: Near-field local mapping, directional 

deviation computation. 
The above mentioned Bayes-classifier can be regarded as a 

simplified CRFNFP model, which doesn’t incorporate the 
spatial contexts for the recognition of scenes. In our 
implementation, all the algorithms are programmed under 
Visual C++ 6.0. Our CPU processor in the robot is 2.26 GHz 
Intel Core Duo P8400. And the running frequencies of A, B, C 
systems are 2Hz, 7Hz and 15Hz respectively with image 
resolution 320×240. 

We ran system A and system B 5 times respectively for 
every combination of weather and obstacle color. And we ran 
system C only 2 times under the sunny and mixed obstacle 
color condition because system C were run only based on near-
field local mapping and directional deviation computation, 
which means system C is not sensitive to the weather and 
obstacle color conditions. Furthermore, we mannually drove 
the robot one time to collect data for comparison. In all runs, 
the walking speed of the robot is 0.3m/s. We list typical 
experimental data in TABLE 1. 

Figure 5 shows the typical running trajectories of different 
system configurations and the corresponding obstacles 
positions. In each subplot, the start point (S) and the circle G 
represent the position of vehicle and the target point 
respectively. In our experiments, if the distance between the 
vehicle and the target point is within 2 meters, we consider the 
job is already finished. In Figure 5(a), we collected one running 
trajectory of each system configuration represented by different 
line styles. And Figure 5(b), Figure 5(c) and Figure 5(d) show 
two running trajectories of each system configuration 
respectively. All the quantitative data of the six trajectories are 
listed in TABLE 1 by bold-type. 

B. Evaluation Criterion 

To the best of our knowledge, the research of long-range 
terrain perception for outdoor robots was started just from 
several years ago. And there is no generally accepted 
evaluation criterion. In order to better illustrate the significance 
of our experimental results, we define 3 creterion as follows: 

1) Obstacle Response Distance (ORD for short): It is 

defined as the distance between the robot and the obstacle 

when the robot begins to recognize the obstacle steadily. Take 

Error! Reference source not found.(a) as an example, the 

distance between point C and the longest banner is the ORD of 

system A while the distance between point A and the longest 

banner is the ORD of system C. 

2) Time to Finish Job (TFJ for short): It is defined as the 

total time for the robot to finish the job. 

3) Distance of the Whole Run (DWR for short): It is 

defined as the distance that the robot experienced during the 

whole run. 

Furthermore, we simplified the expressions of experimental 
conditions in TABLE 1 to facilitate the listing. For example, 
MIX-A-SUNNY-1 represents the condition of sunny, mixed 
color banner with the system A and Round 1. 

TABLE I. Typical Running Results of Experiments 

Experimental Condition DWR (m) 
TFJ 

(s) 
ORD (m) 

MIX-A-SUNNY-1 86.436 279 47 

MIX-A-SUNNY-2 84.519 273 49 

MIX-B-SUNNY-1 84.321 273 48 

MIX-B-SUNNY-2 90.556 291 28 

MIX-C-SUNNY-1 94.177 304 5 

MIX-C-SUNNY-2 113.460 366 4 

RED-A-SUNNY-1 87.345 283 46 

RED-A-SUNNY-2 86.748 282 47 

RED-B-SUNNY-1 88.574 285 40 

RED-B-SUNNY-2 84.891 274 45 

YELLOW-A-SUNNY-1 88.644 286 39 

YELLOW-A-SUNNY-2 85.784 277 47 

YELLOW-B-SUNNY-1 83.525 269 48 

YELLOW-B-SUNNY-2 106.880 345 4 

YELLOW-B-SUNNY-3 93.335 302 16 

YELLOW-B-SUNNY-4 86.745 282 45 

YELLOW-B-SUNNY-5 84.311 273 48 

YELLOW-A-CLOUDY-1 87.675 282 42 

YELLOW-A- CLOUDY-2 86.987 280.5 47 

YELLOW-B- CLOUDY-1 84.587 274 49 

YELLOW-B- CLOUDY-2 88.985 285 40 

YELLOW-B- CLOUDY-3 95.366 307.5 15 

YELLOW-B- CLOUDY-4 87.961 284 41 

YELLOW-B- CLOUDY-5 92.388 298 22 

MANUAL 83.500 269 — 
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Figure 5. Trajectories of different runs of various system configuration. 

 

C. Experimental Results 
1) First, we invastigate the navigation behavior of 

System C: 

The robot based on system C doesn’t infer any scenes, and 
the walking strategy can be summaried as: 

a) If there are obstacles within the range of 8 meters 

around the robot, the robot turns left or right to avoid the 

obstacles; 

b) If there are not obstacles within the range of 8 meters 

around the robot, the robot needs to caculate the directional 
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deviation and the corresponding the turning angle, which 

controls the robot to walk towards the target point. 

As is shown by the dash-dotted line in Figure 5(a), the 
trajectory of the robot can be divided into 3 segments: SA, AB 
and BE. 

During the segment of SA, there are no obstacles. The robot 
will generally head the direction of target point G. We found 
the actual direction of trajectory didn’t coincide with that of 
target point but with small-amplitude oscillations. We 
considered it’s caused by the oscillation of the control input, 
which, in turn, is resulted by GPS input drift and the large 
inertia of the UGV. 

The robot found the close-range obstacle and decided to 
turn right sharply to avoid the obstacle during the segment of 
AB. The obstacle was almost 5 meters before the robot when 
the robot began to turn right. Therefore, we consider the 
obstacle response distance of system C in this run to be 5 
meters. It’s obvious that the total length of SA and AB is larger 
than that of other two trajectories. And the polyline walking of 
SA and AB can be thought as the first reason for the 
inefficiency of system C. 

The controlling mode of system C in segment BE is similar 
to that of SA. The main difference of BE to other trajectories in  
Figure 5(a) lies in that when at the point B, the robot didn’t 
head the target pointing G and the system C cost additional 30 
control cycles to adjust the heading. So the extra time for 
heading adjustment can be thought as the second reason for the 
inefficiency of system C. 

The third reason for the inefficiency of system C lies in the 
uncertainty of the turning direction decision when the robot 
confronted close-range obstacles. If the robot first recognize the 
banner as a left-anterior obstacle and it will turn right; and if 
the robot first recognize the banner as a right-anterior obstacle 
and it will turn left. Figure 5(d) shows the two trajectories of 
system C under the same experimental condition. The solid and 
the dash-dotted lines indicated the robot chose different turning 
directions in two rounds of running. The corresponding data of 
MIX-C-SUNNY-1 and MIX-C-SUNNY-2 in Error! 
Reference source not found. show that the decision of turning 
left made the robot cost another 62 seconds to reach the same 
target point (304 seconds and 366 seconds respectively). An 
extreme example is that if one end of the banner (point X) 
extends to the point Y, the robot at the point of M may still 
choose to turn left with a large probability, which will make the 
robot take more time to reach the same target point. 

In summary, the polyline walking, heading adjustment and 
the uncertainty of the turning direction decision are the main 
reasons for the inefficiency of system C. And it’s obvious that 
all these reasons, in turn, are caused by the incompetency of 
system C to incorporate the global obstacle distribution while 
making decisions. 

2) Second, we invastigate the navigation behavior of 

System B: 
Different from system C, system B makes decision based 

on the distribution of both close-range and distant-range 
obstacles, which can help the robot to avoid the obstacle ahead 
of time. The solid trajectory in Figure 5(c) shows that the 

obstacle response distance of system B in this round is 48 
meters, which is much larger than that of system C. 

However, we also found that, the dash-dotted trajectory 
(YELLOW-B-SUNNY-2 in TABLE 1) in in Figure 5(c)  
indicated that it’s 23 meters longer than the other trajectory 
(YELLOW-B-SUNNY-1 in TABLE 1). To find the real reason 
for this inefficiency, we used the data accumulated during the 
experiment to offline simulate the whole run. The simulation 
showed that the uncertain recognition of distant-range obstacles 
during the segment BC caused the oscillation of the turning 
decision of system B. As a result, the robot randomly turns left 
or right during the segment BC. And on the other side, the solid 
trajectory turns right continuously to avoid the longest banner 
ahead of time, which made the whole trajectory smoother and 
shorter. 

During the segment CD of the dash-dotted trajectory, the 
far-field scene inference and subsequent far-field path planning 
cannot provide meaningful guidance for the robot. The reason 
is that when the obstacle is too close to the robot, the system 
can’t see the whole traversable region in the image plane 
because of the limitation of field-of-view of the stereo vision. 
Therefore, the long-range inference is not necessarily suitable 
for all kinds of scenes. And we plan to leave this problem to 
further research. 

To summarize, the uncertain recognition of distant-range 
obstacles is the main reason for the inefficiency of system B. 
And the intrinsic reason for this is that the Bayes-classifier-
based far-field scene inference used by system B only 
incorporates the appearance information while recognizing the 
scene, which is easily affected by the changing illumination of 
outdoor environments. 

3) Third, we invastigate the navigation behavior of System 

A: 
System A performed better than system B and C under 

same conditions in terms of DWR, TFJ and ORD as shown in 
TABLE 1. 

The ORD of system C is 4 or 5 meters while that of system 
A is at least 39 meters, which shows that the CRFNFP-based 
navigating system does enhance the long-range perception for 
mobile robots. 

The average of DWR and TFJ of system A are about 86.8 
meters and 280 seconds respectively, while the average of 
DWR and TFJ of system C are 103.8 meters and 335 seconds, 
which indicates that the CRFNFP model does help the robot to 
plan more efficient paths for the navigation. 

V. CONCLUSIONS 

We designed comparison experiments to further validate 
the CRFNFP algorithm, which is proposed by us in 2010, in 
real challenging scenes. The comparative experiments indicate 
that, the CRFNFP-based navigating system outperforms 
traditional local-map-based navigating systems in terms of all 
criterion defined by us in this paper.  

And the results also show that the CRFNFP algorithm does 
enhance the long-range perception for mobile robots and helps 
planning more efficient paths for the navigation. 
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VI. FUTURE RESEARCH 

Our further research may refer to the incorporation of other 
kinds of contexts, such as semantic contexts and temporal 
contexts. And we try to simulate the attention mehcanism of 
human beings into perception algorithms. 
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