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Abstract—In this paper we address and advocate the sensor 

location problems and advocate them as test problems of 

nonsmooth optimization. These problems have easy-to-

understand practical meaning and importance, easy to be even 

randomly generated, and the solutions can be displayed visually 

on a 2-dimensional plane. For testing some nonsmooth 

optimization solvers, we present a very simple sensor location 

problem of two sensors for four objects with the optimal solutions 

known by theoretical analysis. We tested several immediately 

ready-to-use optimization solvers on this problem and found that 

optimization solvers MATLAB’s ga() and VicSolver’s UNsolver 

can solve the problem, while some other optimization solvers like 

Excel solver, Dr Frank Vanden Berghen’s CONDOR, R’s 

optim(), and MATLAB’s fminunc() cannot solve the problem. 
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I.       INTRODUCTION 

Nonsmooth optimization is an important research field of 
optimization and has wide applications in real life. Although 
there are many test problems of nonsmooth optimization [1], 
some of them are too academic and lack practical backgrounds 
and importance, while some others are not so flexible in 
generating random problems of various sizes for testing 
purposes. Hence it is still good to have more test problems, in 
particular if the problems have easily understandable practical 
meanings and importance, and more preferably visual displays. 
In this paper we address sensor location problems and advocate 
them as a new group of test problems of nonsmooth 
optimization solvers. The problems are generally nonsmooth 
and difficult to solve. We present test results of a simple sensor 
location problem solved by some nonsmooth optimization 
solvers, which are: Excel solver developed by FrontLine 
Solvers [2], CONDOR developed by Frank Vanden Berghen 
[3], R’s optim() function [4], MATLAB’s fminunc() function 
and some other solvers [5], and VicSolver’s UNsolver [6]. All 
these solvers have directly ready-to-use (that is, no need to 
compile or link by using a compiler) evaluation versions 
available to anyone, hence the test results reported in this paper 
can be repeated by anybody.  

This paper is organized as following. Section II addresses 
the sensor location problem from different practical 
backgrounds, section III explains the abovementioned ready-to-
use solvers and their test results and section IV summarizes the 

main points and results of the paper and points out some future 
work. 

A. Sensor location problems 

We use Figure 1 to help us illustrate the sensor location 
problems. Suppose we want to use three sensors to sense n 
objects in an area. The locations of the n objects are known, as 
shown in Figure 1. We want to determine the “best” locations 
of the three sensors. There could be different criteria for 
determining the “best” locations. One of them is to minimize 
the largest squared distance from an object to the nearest 
sensor, that is,  

1) Sensor Location Problem:  For sensing n objects at 

locations: (ox(i),oy(i)): i=1,2,…,n, find locations of s sensors: 

(sx(j),sy(j)): j=1,2,…,s, such that the largest squared distance 

from an object to the nearest sensor 
max(min((ox(i)-sx(j))2+(oy(i)-sy(j))2,j=1,2,…s),i=1,2,…,n) 

is minimized. 

 

Figure 1. Locations of n objects and 3 sensors. 

The same type of location problems could come from 
different real life backgrounds. The following are just two 
versions of them among many others, which might be good for 
teaching purposes.  

2) Well Location Problem:  For serving n houses at 

locations: (ox(i),oy(i)): i=1,2,…,n, find locations of s wells:  
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3) (sx(j),sy(j)): j=1,2,…,s, such that the largest squared 

distance from a house to the nearest well max(min((ox(i)-

sx(j))2+(oy(i)-sy(j))2,j=1,2,…s),i=1,2,…,n) is minimized. 

4) Light Location Problem:  For lighting n target locations: 

(ox(i),oy(i)): i=1,2,…,n, find locations of s lights: (sx(j),sy(j)): 

j=1,2,…,s, such that the largest squared distance from a target 

location to the nearest light max(min((ox(i)-sx(j))2+(oy(i)-

sy(j))2,j=1,2,…s),i=1,2,…,n) is minimized. 

The sensor location problem may have constraints. For 
example, we may want to determine the best locations of three 
sensors on two roads only, as shown below in Figure 2. 

 

Figure 2. n objects and two roads. 

So, in general, the sensor location problem is stated as in 
the following: 

Sensor Location Problem:  For sensing n objects at 
locations: O(i): i=1,2,…,n, find locations of s sensors: S(j): 
j=1,2,…,s, such that the largest squared distance from an object 
to the nearest sensor 

max(min(distance(O(i),S(j)),j=1,2,…s),i=1,2,…,n) 

is minimized. 

The largest squared distance from an object to the nearest 
sensor, as a function of the locations of the sensors, is a 
continuous but nonsmooth function. The function of a very 
simple situation yields the nonsmooth surface as shown in 
Figure 3.  

The sensor location problems are like the facility location 
problems explained in [7] hence in general very difficult to 
solve. As test problems of nonsmooth optimization, however, 
they have the merits that they have easily understandable 
practical backgrounds and importance, the object locations can 
be randomly generated and there can be a 2-dimensional visual 
display of the solutions. When the number of objects is small, 
the optimal solution can be obtained by examining different 
mappings of objects to different sensors. However, when the 
number of objects increases, the number of different mappings 
quickly becomes so huge that checking all different mappings 
becomes impossible. For example, if there are 100 objects and 

5 sensors, then the number of mappings is 5100. Hence smarter 
algorithms of nonsmooth optimization are necessary for 
solving medium to large scale sensor location problems. 

 

Figure 3. The 3-dimensional surface of a 2-dimensional function of a simple 
sensor location problem. 

II.    A SIMPLE SENSOR LOCATION PROBLEM AND TEST RESULTS 

OF SOME SOLVERS 

For testing different solvers of nonsmooth optimization, we 
have this simple sensor location problem: the four objects are 
in blue at the corners of a square, that is, (0,0), (0,1), (1,1), 
(1,0), as shown in Figure 4 below. We want to determine the 
best locations of two sensors, and apparently we can see there 
are two optimal solutions: {(0, 0.5), (1, 0.5)} and {(0.5, 0), 
(0.5, 1)}, as shown in red in Figure 4 below.  

 

Figure 4. One optimal solution of the two sensor location problem 

 

Figure 5. Another optimal solution of the two sensor location problem 

There are many published computer programs for 
nonsmooth optimization, and an incomplete list can be found at 
http://napsu.karmitsa.fi/nsosoftware/.  Here in this paper we 
focus on only some ready-to-use programs, not those programs 
in source codes or in a binary library which needs a compiler or 

http://napsu.karmitsa.fi/nsosoftware/
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linker to compile or link the program to a user’s main program. 
The ready-to-use programs tested in this paper are: Excel solver 
developed by FrontLine Solvers [2], CONDOR developed by 
Dr Frank Vanden Berghen [3], R’s optim() function [4], 
MATLAB’s fminunc() function and some other solvers [5], 
and VicSolver’s UNsolver developed by Dr Fuchun Huang [6]. 
In testing these solvers, we use the initial sensor locations 
{(0.5, 0.5), (0.5, 0.5)}, which is not a local minima as the 
objective function would decrease if one sensor moves to the 
left (or up) a little bit and the other moves to the right (or 
down) a little bit. 

A. Frontline Solvers 

Frontline’s Excel solver has three methods or algorithms: 
GRG nonlinear for solving smooth nonlinear optimization 
problems; Simplex LP for solving linear problems; and 
Evolutionary for nonsmooth problems, as shown below in the 
solvers application interface wizard. 

 

Figure 6. Excel solver’s three methods. 

For solving the sensor location problem stated at the 
beginning of this section, we put initial values (x1=0.5, y1=0.5, 
x2=0.5, y2=0.5) of the locations of the two sensors in cells 
B1:B4, and the largest squared distance from an object to the 
nearest sensor is computed by the following formula in cell E1: 

E1=MAX( MIN(B1^2+B2^2, B3^2+B4^2), MIN((B1-
1)^2+(B2-0)^2, (B3-1)^2+(B4-0)^2), MIN((B1-0)^2+(B2-1)^2, 
(B3-0)^2+(B4-1)^2), MIN((B1-1)^2+(B2-1)^2, (B3-1)^2+(B4-
1)^2)), as shown in Figure 7.  

When solve the problem by ‘Evolutionary’ method as 
shown in Figure 6, it ends up with the message that ‘Solver 
cannot improve the current solution’.  

When solve the problem by ‘GRG nonlinear’ method, it 
also ends up with the message that ‘Solver cannot improve the 
current solution’.  

 

 

Figure 7. Excel Solver’s Evolutionary method to solve the sensor location 

problem of two sensors.   

B. CONDOR’s result 

CONDOR [3] is a constrained, non-linear, derivative-free 
parallel optimizer for continuous, high computing load, noisy 
objective functions developed by Dr Frank Vanden Berghen. 
CONDOR is also available via NEOS Server [8].  

The following file is the AMPL [9] code for solving the 
sensor location problem at the beginning of the section:  

var x{i in 1..4}; 

 

minimize f:  

max( 

min(x[1]^2+x[2]^2, x[3]^2+x[4]^2), 

min((x[1]-1.0)^2+(x[2]-0.0)^2, (x[3]-1.0)^2+(x[4]-

0.0)^2), 

min((x[1]-0.0)^2+(x[2]-1.0)^2, (x[3]-0.0)^2+(x[4]-

1.0)^2), 

min((x[1]-1.0)^2+(x[2]-1.0)^2, (x[3]-1.0)^2+(x[4]-

1.0)^2) 

); 

 

let x[1] := 0.5; 

let x[2] := 0.5; 

let x[3] := 0.5; 

let x[4] := 0.5; 

 

display x; 

display f; 

 

When the file is submitted to NEOS server to be solved by 

CONDOR, the following ‘optimal’ solution is returned:  
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Best Value Objective=2.575139e-01 (nfe=324) 

rho=1.000000e-04; fo=2.575139e-01; NF=325 

rho=1.000000e-04; fo=2.575139e-01; NF=325 

CONDOR 1.06 finished successfully. 

325 ( 312) function evaluations 

Final obj. funct. Value=0.25751389 

_svar [*] := 

1  0.971055 

2  0.50182 

3  0.0866737 

4  0.500002 

 

We see the optimal solution and the minimum value 

 “Final obj. funct. Value=0.25751389” 

are not so close to the truly optimal solution and minimum 
value 0.25. 

C. R’s optim() function 

R [4] is a free software environment for statistical 
computing and graphics. It compiles and runs on a wide variety 
of UNIX platforms, Windows and MacOS. The version of R 
we used is 2.14.1. R’s optim() function has five methods for 
multi-dimensional optimization: “Nelder-Mead”, “BFGS”, 
“CG”, “L-BFGS-B”, “SANN”.  

The following are R codes of the sensor location problem 
with optimal value (from theoretical analysis but tested by the 
code): 

> # number of sensors: 

> ns=2 

>  

> sxy=rep(0,2*ns); 

>  

> fr <- function(sxy) 

+ {   

+ sx=sxy[1:ns]; 

+ sy=sxy[(ns+1):(ns+ns)]; 

+  

+ dmax=0.0;  

+ for(i in 1:no){  

+     j=1;    dmin=(sx[j]-ox[i])^2+(sy[j]-oy[i])^2; 

+ for(j in 2:ns){d=(sx[j]-ox[i])^2+(sy[j]-oy[i])^2; 

if(d<dmin)dmin=d;}; 

+ if(dmax<dmin)dmax=dmin; 

+ } 

+ return(dmax); 

+ }; 

>  

> # optimal 

> fr(c(0,1,0.5,0.5)) 

[1] 0.25 

The following are R codes of solving the problem by 
Nelder-Mead method: 

>   sxy=c(0.5,0.5,0.5,0.5)  

>   optres=optim(sxy, fr, NULL, method = "Nelder-

Mead", control=list(maxit=999999)); 

control=list(maxit=999999)); 

> cat(optres$value, fill=T); 

0.5 

> cat(optres$par[1:(ns+ns)], fill=T); 

0.5 0.5 0.5 0.5 

We see the solver cannot improve the initial values. The 
other methods, “BFGS”, “CG”, “L-BFGS-B”, “SANN” all 
have the same results, that is, none of them can improve the 
initial values. 

D. MATLAB’s fminunc() function and other solvers 

MATLAB [5] is a numerical computing environment and 
fourth-generation programming language developed by 
MathWorks. The version of MATLAB we used is 7.11.1. The 
following shows the MATLAB m-file of the two-sensor four-
object problem stated at the beginning of the section, and 
running results of the optimization function fminunc() with 
default option settings:  

function f=s2o4(x) 

f=0.0; 

f=max(f,min((x(1)-0.0)^2+(x(2)-0.0)^2,(x(3)-

0.0)^2+(x(4)-0.0)^2)); 

f=max(f,min((x(1)-1.0)^2+(x(2)-0.0)^2,(x(3)-

1.0)^2+(x(4)-0.0)^2)); 

f=max(f,min((x(1)-0.0)^2+(x(2)-1.0)^2,(x(3)-

0.0)^2+(x(4)-1.0)^2)); 

f=max(f,min((x(1)-1.0)^2+(x(2)-1.0)^2,(x(3)-

1.0)^2+(x(4)-1.0)^2)); 

end  

>> s2o4([0.5;0.5;0.5;0.5]) 

ans = 

    0.5000 

>>  

  x = fminunc(@s2o4,[0.5;0.5;0.5;0.5]) 

Warning: Gradient must be provided for trust-region 

algorithm; 

  using line-search algorithm instead.  

> In fminunc at 347 

Initial point is a local minimum. 

Optimization completed because the size of the 

gradient at the initial point  

is less than the default value of the function 

tolerance. 

<stopping criteria details> 

x = 

    0.5000 

    0.5000 

    0.5000 

    0.5000 

We see the solver cannot improve the initial values, and 
wrongly claims the initial point is a local minimum. Other 
option settings of the solver yield the same results. 
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MATLAB has several other solvers and their results are 
presented and explained below and in Figure 8. 

>> fminsearch(@s2o4,[0.5 0.5 0.5 0.5]) 

ans = 

    0.5000    0.5000    0.5000    0.5000 

Optimization running. 

Objective function value: 0.5 

Optimization terminated: 

 the current x satisfies the termination criteria 

using OPTIONS.TolX of 1.000000e-004  

 

 and F(X) satisfies the convergence criteria using 

OPTIONS.TolFun of 1.000000e-004 

 

>> simulannealbnd(@s2o4,[0.5 0.5 0.5 0.5]) 

 

Optimization terminated: change in best function 

value less than options.TolFun. 

ans = 

    0.5000    0.5000    0.5000    0.5000 

>> 

 

Figure 8. MATLAB’s optimization tool wizard. 

We see MATLAB’s fminsearch() and simulannealbnd() 
cannot solve the problem, and the solver ga() using genetic 
algorithm returns the objective function value 0.250163 by 
using population size 2000 and iteration number 168. As the 
population size and iteration number increases, the returned 
objective values become closer and closer to the true minimum, 
which is 0.25. 

E. Unsolver 

VicSolver’s UNsolver [6] is an unconstrained derivative-
free nonsmooth optimization solver developed by Dr Fuchun 
Huang of Victoria University, Australia. UNsolver uses 
FEFAR [10] as an application programming user’s interface for 
users to specify an unconstrained smooth or nonsmooth 
optimization problem. The following is the LEFAR [10] code 
for the sensor location problem at the beginning of the section.   

!! optimal 2 sensors for 4 points 

 

function frf(if123,fmin,b) 

real                :: fmin 

real, dimension(4)  :: b 

integer             :: if123 

 

if(if123==1) 

      b(1)=0.5 

      b(2)=0.5 

      b(3)=0.5 

      b(4)=0.5 

end if 

 

fmin=0.0 

if(if123<=2) 

fmin=max(fmin,min(b(1)^2+b(2)^2, b(3)^2+b(4)^2)); 

fmin=max(fmin,min((b(1)-1)^2+(b(2)-0)^2, (b(3)-

1)^2+(b(4)-0)^2)); 

fmin=max(fmin,min((b(1)-0)^2+(b(2)-1)^2, (b(3)-

0)^2+(b(4)-1)^2)); 

fmin=max(fmin,min((b(1)-1)^2+(b(2)-1)^2, (b(3)-

1)^2+(b(4)-1)^2)); 

end if 

 

if(if123==3) 

   print,fmin 

   print,b(1) 

   print,b(2) 

   print,b(3) 

   print,b(4) 

end if 

 

end function 

 

The following is the running result of UNsolver: 

 
C:\ISMtalk>UNsolver.exe 

 Input the file name of the function: 

2s4a.far 

  fmin=  0.50000000000000000      at   

0.50000000000000000       0.50000000000000000       

0.50000000000000000       0.50000000000000000 

 

. . . . . . 

 

 fmin=  0.25000000000000000      at    

0.0000000000000000        1.0000000000000000       

0.50000000000000000       0.50000000000000000 

 fmin=  0.25000000000000000      at    

0.0000000000000000        1.0000000000000000       

0.50000000000000000       0.50000000000000000 

 

. . . . . . 

 

 fmin=  0.25000000000000000      at    

0.0000000000000000        1.0000000000000000       

0.50000000000000000       0.50000000000000000 

 fmin=  0.25000000000000000      at    

0.0000000000000000        1.0000000000000000       

0.50000000000000000       0.50000000000000000 

 
We see UNsolver finds one of the two optimal solutions. 

An evaluation version and some other test results of UNsolver 
are available from http://sites.google.com/site/VicSolver.  

III.       SUMMARY REMARKS AND FUTURE SCOPE 

We present the sensor location problems and advocate them 
as test problems of nonsmooth optimization.  

These problems have easy-to-understand practical meaning 
and importance, easy to be even randomly generated, and the 
solutions can be displayed visually on a 2-dimensional plane. 
For testing some ready-to-use nonsmooth optimization solvers, 

http://sites.google.com/site/VicSolver
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we present a very simple sensor location problem of two 
sensors for four objects with the optimal solutions known by 
theoretical analysis. We tested several optimization solvers on 
this problem and found that optimization solvers MATLAB’s 
ga() and VicSolver’s UNsolver can solve the problem, while 
some other optimization solvers like Excel solver, Dr Frank 
Vanden Berghen’s CONDOR, R’s optim(), and MATLAB’s 
fminunc() cannot solve the problem.  In the near future some 
medium to large scale “standard” sensor location problems will 
be generated and put online for researchers testing nonsmooth 
optimization solvers.  
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