
(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 1, No. 2, 2012

25 | P a g e

www.ijarai.thesai.org

Sensor Location Problems As Test Problems Of

Nonsmooth Optimization And Test Results Of A Few

Nonsmooth Optimization Solvers

Fuchun Huang
School of Engineering and Science, Victoria University

Melbourne, Australia

Abstract—In this paper we address and advocate the sensor

location problems and advocate them as test problems of

nonsmooth optimization. These problems have easy-to-

understand practical meaning and importance, easy to be even

randomly generated, and the solutions can be displayed visually

on a 2-dimensional plane. For testing some nonsmooth

optimization solvers, we present a very simple sensor location

problem of two sensors for four objects with the optimal solutions

known by theoretical analysis. We tested several immediately

ready-to-use optimization solvers on this problem and found that

optimization solvers MATLAB’s ga() and VicSolver’s UNsolver

can solve the problem, while some other optimization solvers like

Excel solver, Dr Frank Vanden Berghen’s CONDOR, R’s

optim(), and MATLAB’s fminunc() cannot solve the problem.

Keywords-sensor location problems; mathematical programming;

nonsmooth optimization solver; test problems.

I. INTRODUCTION

Nonsmooth optimization is an important research field of
optimization and has wide applications in real life. Although
there are many test problems of nonsmooth optimization [1],
some of them are too academic and lack practical backgrounds
and importance, while some others are not so flexible in
generating random problems of various sizes for testing
purposes. Hence it is still good to have more test problems, in
particular if the problems have easily understandable practical
meanings and importance, and more preferably visual displays.
In this paper we address sensor location problems and advocate
them as a new group of test problems of nonsmooth
optimization solvers. The problems are generally nonsmooth
and difficult to solve. We present test results of a simple sensor
location problem solved by some nonsmooth optimization
solvers, which are: Excel solver developed by FrontLine
Solvers [2], CONDOR developed by Frank Vanden Berghen
[3], R’s optim() function [4], MATLAB’s fminunc() function
and some other solvers [5], and VicSolver’s UNsolver [6]. All
these solvers have directly ready-to-use (that is, no need to
compile or link by using a compiler) evaluation versions
available to anyone, hence the test results reported in this paper
can be repeated by anybody.

This paper is organized as following. Section II addresses
the sensor location problem from different practical
backgrounds, section III explains the abovementioned ready-to-
use solvers and their test results and section IV summarizes the

main points and results of the paper and points out some future
work.

A. Sensor location problems

We use Figure 1 to help us illustrate the sensor location
problems. Suppose we want to use three sensors to sense n
objects in an area. The locations of the n objects are known, as
shown in Figure 1. We want to determine the “best” locations
of the three sensors. There could be different criteria for
determining the “best” locations. One of them is to minimize
the largest squared distance from an object to the nearest
sensor, that is,

1) Sensor Location Problem: For sensing n objects at

locations: (ox(i),oy(i)): i=1,2,…,n, find locations of s sensors:

(sx(j),sy(j)): j=1,2,…,s, such that the largest squared distance

from an object to the nearest sensor
max(min((ox(i)-sx(j))2+(oy(i)-sy(j))2,j=1,2,…s),i=1,2,…,n)

is minimized.

Figure 1. Locations of n objects and 3 sensors.

The same type of location problems could come from
different real life backgrounds. The following are just two
versions of them among many others, which might be good for
teaching purposes.

2) Well Location Problem: For serving n houses at

locations: (ox(i),oy(i)): i=1,2,…,n, find locations of s wells:

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 1, No. 2, 2012

26 | P a g e

www.ijarai.thesai.org

3) (sx(j),sy(j)): j=1,2,…,s, such that the largest squared

distance from a house to the nearest well max(min((ox(i)-

sx(j))2+(oy(i)-sy(j))2,j=1,2,…s),i=1,2,…,n) is minimized.

4) Light Location Problem: For lighting n target locations:

(ox(i),oy(i)): i=1,2,…,n, find locations of s lights: (sx(j),sy(j)):

j=1,2,…,s, such that the largest squared distance from a target

location to the nearest light max(min((ox(i)-sx(j))2+(oy(i)-

sy(j))2,j=1,2,…s),i=1,2,…,n) is minimized.

The sensor location problem may have constraints. For
example, we may want to determine the best locations of three
sensors on two roads only, as shown below in Figure 2.

Figure 2. n objects and two roads.

So, in general, the sensor location problem is stated as in
the following:

Sensor Location Problem: For sensing n objects at
locations: O(i): i=1,2,…,n, find locations of s sensors: S(j):
j=1,2,…,s, such that the largest squared distance from an object
to the nearest sensor

max(min(distance(O(i),S(j)),j=1,2,…s),i=1,2,…,n)

is minimized.

The largest squared distance from an object to the nearest
sensor, as a function of the locations of the sensors, is a
continuous but nonsmooth function. The function of a very
simple situation yields the nonsmooth surface as shown in
Figure 3.

The sensor location problems are like the facility location
problems explained in [7] hence in general very difficult to
solve. As test problems of nonsmooth optimization, however,
they have the merits that they have easily understandable
practical backgrounds and importance, the object locations can
be randomly generated and there can be a 2-dimensional visual
display of the solutions. When the number of objects is small,
the optimal solution can be obtained by examining different
mappings of objects to different sensors. However, when the
number of objects increases, the number of different mappings
quickly becomes so huge that checking all different mappings
becomes impossible. For example, if there are 100 objects and

5 sensors, then the number of mappings is 5100. Hence smarter
algorithms of nonsmooth optimization are necessary for
solving medium to large scale sensor location problems.

Figure 3. The 3-dimensional surface of a 2-dimensional function of a simple
sensor location problem.

II. A SIMPLE SENSOR LOCATION PROBLEM AND TEST RESULTS

OF SOME SOLVERS

For testing different solvers of nonsmooth optimization, we
have this simple sensor location problem: the four objects are
in blue at the corners of a square, that is, (0,0), (0,1), (1,1),
(1,0), as shown in Figure 4 below. We want to determine the
best locations of two sensors, and apparently we can see there
are two optimal solutions: {(0, 0.5), (1, 0.5)} and {(0.5, 0),
(0.5, 1)}, as shown in red in Figure 4 below.

Figure 4. One optimal solution of the two sensor location problem

Figure 5. Another optimal solution of the two sensor location problem

There are many published computer programs for
nonsmooth optimization, and an incomplete list can be found at
http://napsu.karmitsa.fi/nsosoftware/. Here in this paper we
focus on only some ready-to-use programs, not those programs
in source codes or in a binary library which needs a compiler or

http://napsu.karmitsa.fi/nsosoftware/

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 1, No. 2, 2012

27 | P a g e

www.ijarai.thesai.org

linker to compile or link the program to a user’s main program.
The ready-to-use programs tested in this paper are: Excel solver
developed by FrontLine Solvers [2], CONDOR developed by
Dr Frank Vanden Berghen [3], R’s optim() function [4],
MATLAB’s fminunc() function and some other solvers [5],
and VicSolver’s UNsolver developed by Dr Fuchun Huang [6].
In testing these solvers, we use the initial sensor locations
{(0.5, 0.5), (0.5, 0.5)}, which is not a local minima as the
objective function would decrease if one sensor moves to the
left (or up) a little bit and the other moves to the right (or
down) a little bit.

A. Frontline Solvers

Frontline’s Excel solver has three methods or algorithms:
GRG nonlinear for solving smooth nonlinear optimization
problems; Simplex LP for solving linear problems; and
Evolutionary for nonsmooth problems, as shown below in the
solvers application interface wizard.

Figure 6. Excel solver’s three methods.

For solving the sensor location problem stated at the
beginning of this section, we put initial values (x1=0.5, y1=0.5,
x2=0.5, y2=0.5) of the locations of the two sensors in cells
B1:B4, and the largest squared distance from an object to the
nearest sensor is computed by the following formula in cell E1:

E1=MAX(MIN(B1^2+B2^2, B3^2+B4^2), MIN((B1-
1)^2+(B2-0)^2, (B3-1)^2+(B4-0)^2), MIN((B1-0)^2+(B2-1)^2,
(B3-0)^2+(B4-1)^2), MIN((B1-1)^2+(B2-1)^2, (B3-1)^2+(B4-
1)^2)), as shown in Figure 7.

When solve the problem by ‘Evolutionary’ method as
shown in Figure 6, it ends up with the message that ‘Solver
cannot improve the current solution’.

When solve the problem by ‘GRG nonlinear’ method, it
also ends up with the message that ‘Solver cannot improve the
current solution’.

Figure 7. Excel Solver’s Evolutionary method to solve the sensor location

problem of two sensors.

B. CONDOR’s result

CONDOR [3] is a constrained, non-linear, derivative-free
parallel optimizer for continuous, high computing load, noisy
objective functions developed by Dr Frank Vanden Berghen.
CONDOR is also available via NEOS Server [8].

The following file is the AMPL [9] code for solving the
sensor location problem at the beginning of the section:

var x{i in 1..4};

minimize f:

max(

min(x[1]^2+x[2]^2, x[3]^2+x[4]^2),

min((x[1]-1.0)^2+(x[2]-0.0)^2, (x[3]-1.0)^2+(x[4]-

0.0)^2),

min((x[1]-0.0)^2+(x[2]-1.0)^2, (x[3]-0.0)^2+(x[4]-

1.0)^2),

min((x[1]-1.0)^2+(x[2]-1.0)^2, (x[3]-1.0)^2+(x[4]-

1.0)^2)

);

let x[1] := 0.5;

let x[2] := 0.5;

let x[3] := 0.5;

let x[4] := 0.5;

display x;

display f;

When the file is submitted to NEOS server to be solved by

CONDOR, the following ‘optimal’ solution is returned:

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 1, No. 2, 2012

28 | P a g e

www.ijarai.thesai.org

Best Value Objective=2.575139e-01 (nfe=324)

rho=1.000000e-04; fo=2.575139e-01; NF=325

rho=1.000000e-04; fo=2.575139e-01; NF=325

CONDOR 1.06 finished successfully.

325 (312) function evaluations

Final obj. funct. Value=0.25751389

_svar [*] :=

1 0.971055

2 0.50182

3 0.0866737

4 0.500002

We see the optimal solution and the minimum value

 “Final obj. funct. Value=0.25751389”

are not so close to the truly optimal solution and minimum
value 0.25.

C. R’s optim() function

R [4] is a free software environment for statistical
computing and graphics. It compiles and runs on a wide variety
of UNIX platforms, Windows and MacOS. The version of R
we used is 2.14.1. R’s optim() function has five methods for
multi-dimensional optimization: “Nelder-Mead”, “BFGS”,
“CG”, “L-BFGS-B”, “SANN”.

The following are R codes of the sensor location problem
with optimal value (from theoretical analysis but tested by the
code):

> # number of sensors:

> ns=2

>

> sxy=rep(0,2*ns);

>

> fr <- function(sxy)

+ {

+ sx=sxy[1:ns];

+ sy=sxy[(ns+1):(ns+ns)];

+

+ dmax=0.0;

+ for(i in 1:no){

+ j=1; dmin=(sx[j]-ox[i])^2+(sy[j]-oy[i])^2;

+ for(j in 2:ns){d=(sx[j]-ox[i])^2+(sy[j]-oy[i])^2;

if(d<dmin)dmin=d;};

+ if(dmax<dmin)dmax=dmin;

+ }

+ return(dmax);

+ };

>

> # optimal

> fr(c(0,1,0.5,0.5))

[1] 0.25

The following are R codes of solving the problem by
Nelder-Mead method:

> sxy=c(0.5,0.5,0.5,0.5)

> optres=optim(sxy, fr, NULL, method = "Nelder-

Mead", control=list(maxit=999999));

control=list(maxit=999999));

> cat(optres$value, fill=T);

0.5

> cat(optres$par[1:(ns+ns)], fill=T);

0.5 0.5 0.5 0.5

We see the solver cannot improve the initial values. The
other methods, “BFGS”, “CG”, “L-BFGS-B”, “SANN” all
have the same results, that is, none of them can improve the
initial values.

D. MATLAB’s fminunc() function and other solvers

MATLAB [5] is a numerical computing environment and
fourth-generation programming language developed by
MathWorks. The version of MATLAB we used is 7.11.1. The
following shows the MATLAB m-file of the two-sensor four-
object problem stated at the beginning of the section, and
running results of the optimization function fminunc() with
default option settings:

function f=s2o4(x)

f=0.0;

f=max(f,min((x(1)-0.0)^2+(x(2)-0.0)^2,(x(3)-

0.0)^2+(x(4)-0.0)^2));

f=max(f,min((x(1)-1.0)^2+(x(2)-0.0)^2,(x(3)-

1.0)^2+(x(4)-0.0)^2));

f=max(f,min((x(1)-0.0)^2+(x(2)-1.0)^2,(x(3)-

0.0)^2+(x(4)-1.0)^2));

f=max(f,min((x(1)-1.0)^2+(x(2)-1.0)^2,(x(3)-

1.0)^2+(x(4)-1.0)^2));

end

>> s2o4([0.5;0.5;0.5;0.5])

ans =

 0.5000

>>

 x = fminunc(@s2o4,[0.5;0.5;0.5;0.5])

Warning: Gradient must be provided for trust-region

algorithm;

 using line-search algorithm instead.

> In fminunc at 347

Initial point is a local minimum.

Optimization completed because the size of the

gradient at the initial point

is less than the default value of the function

tolerance.

<stopping criteria details>

x =

 0.5000

 0.5000

 0.5000

 0.5000

We see the solver cannot improve the initial values, and
wrongly claims the initial point is a local minimum. Other
option settings of the solver yield the same results.

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 1, No. 2, 2012

29 | P a g e

www.ijarai.thesai.org

MATLAB has several other solvers and their results are
presented and explained below and in Figure 8.

>> fminsearch(@s2o4,[0.5 0.5 0.5 0.5])

ans =

 0.5000 0.5000 0.5000 0.5000

Optimization running.

Objective function value: 0.5

Optimization terminated:

 the current x satisfies the termination criteria

using OPTIONS.TolX of 1.000000e-004

 and F(X) satisfies the convergence criteria using

OPTIONS.TolFun of 1.000000e-004

>> simulannealbnd(@s2o4,[0.5 0.5 0.5 0.5])

Optimization terminated: change in best function

value less than options.TolFun.

ans =

 0.5000 0.5000 0.5000 0.5000

>>

Figure 8. MATLAB’s optimization tool wizard.

We see MATLAB’s fminsearch() and simulannealbnd()
cannot solve the problem, and the solver ga() using genetic
algorithm returns the objective function value 0.250163 by
using population size 2000 and iteration number 168. As the
population size and iteration number increases, the returned
objective values become closer and closer to the true minimum,
which is 0.25.

E. Unsolver

VicSolver’s UNsolver [6] is an unconstrained derivative-
free nonsmooth optimization solver developed by Dr Fuchun
Huang of Victoria University, Australia. UNsolver uses
FEFAR [10] as an application programming user’s interface for
users to specify an unconstrained smooth or nonsmooth
optimization problem. The following is the LEFAR [10] code
for the sensor location problem at the beginning of the section.

!! optimal 2 sensors for 4 points

function frf(if123,fmin,b)

real :: fmin

real, dimension(4) :: b

integer :: if123

if(if123==1)

 b(1)=0.5

 b(2)=0.5

 b(3)=0.5

 b(4)=0.5

end if

fmin=0.0

if(if123<=2)

fmin=max(fmin,min(b(1)^2+b(2)^2, b(3)^2+b(4)^2));

fmin=max(fmin,min((b(1)-1)^2+(b(2)-0)^2, (b(3)-

1)^2+(b(4)-0)^2));

fmin=max(fmin,min((b(1)-0)^2+(b(2)-1)^2, (b(3)-

0)^2+(b(4)-1)^2));

fmin=max(fmin,min((b(1)-1)^2+(b(2)-1)^2, (b(3)-

1)^2+(b(4)-1)^2));

end if

if(if123==3)

 print,fmin

 print,b(1)

 print,b(2)

 print,b(3)

 print,b(4)

end if

end function

The following is the running result of UNsolver:

C:\ISMtalk>UNsolver.exe

 Input the file name of the function:

2s4a.far

 fmin= 0.50000000000000000 at

0.50000000000000000 0.50000000000000000

0.50000000000000000 0.50000000000000000

.

 fmin= 0.25000000000000000 at

0.0000000000000000 1.0000000000000000

0.50000000000000000 0.50000000000000000

 fmin= 0.25000000000000000 at

0.0000000000000000 1.0000000000000000

0.50000000000000000 0.50000000000000000

.

 fmin= 0.25000000000000000 at

0.0000000000000000 1.0000000000000000

0.50000000000000000 0.50000000000000000

 fmin= 0.25000000000000000 at

0.0000000000000000 1.0000000000000000

0.50000000000000000 0.50000000000000000

We see UNsolver finds one of the two optimal solutions.

An evaluation version and some other test results of UNsolver
are available from http://sites.google.com/site/VicSolver.

III. SUMMARY REMARKS AND FUTURE SCOPE

We present the sensor location problems and advocate them
as test problems of nonsmooth optimization.

These problems have easy-to-understand practical meaning
and importance, easy to be even randomly generated, and the
solutions can be displayed visually on a 2-dimensional plane.
For testing some ready-to-use nonsmooth optimization solvers,

http://sites.google.com/site/VicSolver

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 1, No. 2, 2012

30 | P a g e

www.ijarai.thesai.org

we present a very simple sensor location problem of two
sensors for four objects with the optimal solutions known by
theoretical analysis. We tested several optimization solvers on
this problem and found that optimization solvers MATLAB’s
ga() and VicSolver’s UNsolver can solve the problem, while
some other optimization solvers like Excel solver, Dr Frank
Vanden Berghen’s CONDOR, R’s optim(), and MATLAB’s
fminunc() cannot solve the problem. In the near future some
medium to large scale “standard” sensor location problems will
be generated and put online for researchers testing nonsmooth
optimization solvers.

ACKNOWLEDGMENT

The author thanks Professor Yosihiko Ogata, Professor
Satoshi Ito, Professor and Director Tomoyuki Higuchi and The
Institute of Statistical Mathematics, Tokyo, Japan, for
supporting his research visit to the institute from the 5th of
January to the 28th of February in 2012.

REFERENCES

[1] L. Luksan and J. Vlcek, “Test Problems for Nonsmooth Unconstrained
and Linearly Constrained Optimization,” Technical Report, No. 798,
Institute of Computer Science, Academy of Sciences of the Czech
Republic, 2000.

[2] Frontline Solvers, http://www.solver.com/sdkplatform2.htm, retrived on
March 29, 2012.

[3] F. V. Berghen, “CONDOR, a parallel, direct, constrained optimizer for
high-computing-load, black box objective functions”, Proceeedings of

the third MIT conference on Computational Fluid and Solid Mechanics,
Elsevier, June 14-17, 2005.

[4] R Development Core Team, “R: A language and environment for
statistical computing”, R Foundation for Statistical Computing, Vienna,
Austria, ISBN 3-900051-07-0, URL http://www.R-project.org/, 2011.

[5] Wikipedia, “MATLAB”, http://en.wikipedia.org/wiki/MATLAB,
retrived on March 29, 2012.

[6] F. Huang, “UNsolver: a new solver of unconstrained nonsmooth
optimization problems”, http://sites.google.com/site/VicSolver.

[7] F. V. Berghen, J. Cardinal and S. Langerman, “Min-max-min Geometric
Facility Location Problems”, 22nd European Workshop on
Computational Geometry, Delphi, March 27-29, 2006.

[8] J. Czyzyk, M.P. Mesnier, and J.J. More, “The NEOS Server”, IEEE
Computational Science and Enginnering, Vol. 5, pages 68-75, 1998.

[9] R. Fourer, D.M. Gay, and B.W. Kernighan, AMPL: A Modeling
Language for Mathematical Programming. Scientific Press, San
Francisco, CA, 1993.

[10] F. Huang, “A New Application Programming Interface And A Fortran-
like Modeling Language For Evaluating Functions and Specifying
Optimization Problems At Runtime”, International Journal of Advanced
Computer Science and Applications, vol. 3, issue 4, pp. 1-5, April 2012.

AUTHORS PROFILE

Dr Fuchun Huang is a Senior Lecturer in the School of Engineering and
Science at Victoria University, Melbourne, Australia. He was awarded a PhD

degree by The Graduate University of Advanced Studies, Tokyo, Japan, and

has published papers on computational statistics, in particular Monte Carlo
methods, pseudo-likelihood and generalized pseudo-likelihood methods, and

developed solver software for solving smooth and nonsmooth optimization

problem. He is a member of The Japan Statistical Society.

http://www.solver.com/sdkplatform2.htm
http://www.r-project.org/
http://en.wikipedia.org/wiki/MATLAB
http://sites.google.com/site/VicSolver

