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Abstract— Security flaws in software applications today has been 

attributed mostly to design flaws. With limited budget and time 

to release software into the market, many developers often 

consider security as an afterthought. Previous research shows 

that integrating security into software applications at a later 

stage of software development lifecycle (SDLC) has been found to 

be more costly than when it is integrated during the early stages.  

To assist in the integration of security early in the SDLC stages, a 

new approach for assessing security during the design phase by 

neural network is investigated in this paper.  Our findings show 

that by training a back propagation neural network to identify 

attack patterns, possible attacks can be identified from design 

scenarios presented to it. The result of performance of the neural 

network is presented in this paper. 
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I. INTRODUCTION  

The role software applications play in today’s hostile 
computer environment is very important.  It is not uncommon 
to find software applications running our transportation 
systems, communication systems, medical equipment, banking 
systems, domestic appliances and other technologies that we 
depend on.  Since many of these software applications are 
missions critical, the need to ensure the security of their data 
and other resources cannot be overlooked. The increase of 
attacks aimed directly at software applications in the past 
decades calls for software applications to be able to defend 
itself and continue functioning. However, when software 
applications are developed without security in mind, attackers 
take advantage of the security flaws in them to mount multiple 
attacks when they are deployed. To address this problem a new 
research field called software security emerged in the last 
decade with the aim of building security into software 
application during development. This approach views security 
as an emergent property of the software and much effort is 
dedicated into weaving security into the software all through 
SDLC 

One of the critical areas in this approach is the area of 
software design and security which proactively deals with 
attacking security problems at the design phase of SDLC. 
Reportedly, 50% of security problems in software products 
today have been found to be design flaws [17]. Design-level 
vulnerability has been described as the hardest category of 
software defect to contend with. Moreover, it requires great 
expertise to ascertain whether or not a software application has 
design-level flaws which makes it difficult to find and 

automate [9].  Many authors also argue that it is much better to 
find and fix flaws during the early phase of software 
development because it is more costly to fix the problem at a 
late stage of development and much more costly when the 
software has been deployed [6][29][30].  Therefore, taking 
security into consideration at the design phase of SDLC will 
help greatly in producing secured software applications.  

There are different approaches and tools currently used for 
integrating security during the phases of SDLC. However, 
software design security tools and technologies for automated 
security analysis at the design phase have been slow in coming. 
This is still an area where many researches are currently being 
undertaken. Neural Networks has been one of the technologies 
used during software implementation and testing phase of 
SDLC for software defect detection in order to intensify 
software reliability and it has also been used in area of 
application security and network security in technologies such 
as authentication system, cryptography, virus detection system, 
misuse detection system and intrusion detection systems (IDS) 
[2] [4] [14] [20] [31][32]. This research takes a further step by 
using neural networks as a tool for assessing security of 
software design at the design phase of SDLC. 

II. RELATED WORKS ON SECURITY ASSESSMENT OF 

SOFTWARE DESIGN 

In order to design software more securely many approaches 
have been adopted for assessing the security in software 
designs during the design phase of SDLC. Some of these 
approaches are discussed below. 

Threat modeling is an important activity carried out at the 
design phase to describe threats to the software application in 
order to provide a more accurate sense of its security [1]. 
Threat modeling is a technique that can be used to identify 
vulnerabilities, threats, attacks and countermeasures which 
could influence a software system [18]. This allows for the 
anticipation of attacks by understanding how a malicious 
attacker chooses targets, locates entry points and conducts 
attacks [24]. Threat modeling addresses threats that have the 
ability to cause maximum damage to a software application. 

Architectural risk analysis is also used to identify 
vulnerabilities and threats at the design phase of SDLC which 
may be malicious or non-malicious in nature due to a software 
system. It examines the preconditions that must be present for 
the vulnerabilities to be exploited by various threats and assess 
the states the system may enter after a successful attack on the 
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system. One of the advantages of architectural risk analysis is 
that it enables developers to analysis software system from its 
component level to its environmental level in order to evaluate 
the vulnerabilities, threats and impacts at each level [17].  

Attack trees is another approach used to characterize system 
security by modeling the decision making process of attackers. 
In this technique, attack against a system is represented in a 
tree structure in which the root of the tree represents the goal of 
an attacker. The nodes in the tree represent the different types 
of actions the attacker can take to accomplish his goal on the 
software system or outside the software system which may be 
in the form of bribe or threat [6],[23]. “Attack trees are used for 
risk analysis, to answer questions about the system’s security, 
to capture security knowledge in a reusable way, and to design, 
implement, and test countermeasures to attacks” [24]. 

Attack nets is a similar approach which include “places” 
analogous to the nodes in an attack tree to indicate the state of 
an attack. Events required to move from one place to the other 
are captured in the transitions and arcs connecting places and 
transitions indicate the path an attacker takes. Therefore just as 
attack trees, attack nets also show possible attack scenarios to a 
software system and they are used for vulnerability assessment 
in software designs [6].  

Another related approach is the vulnerability tree which is a 
hierarchy tree constructed based on how one vulnerability 
relates to another and the steps an attacker has to take to reach 
the top of the tree [23]. Vulnerability trees also help in the 
analysis of different possible attack scenarios that an attacker 
can undertake to exploit a vulnerability. 

Gegick and Williams [6] also proposed a regular 
expression-based attack patterns which helps in indicating the 
sequential events that occur during an attack. The attack 
patterns are based on the software components involved in an 
attack and are used for identifying vulnerabilities in software 
designs. It comprises of attack library of abstraction which can 
be used by software engineers conducting Security Analysis 
For Existing Threats (SAFE-T) to match their system design. 
An occurrence of a match indicates that the vulnerability may 
exist in the system being analyzed and therefore helps in 
integrating effective countermeasures before coding starts. 
Another advantage about this approach is that it can be easily 
adapted by developers who are novices on security. 

Mouratidis and Giorgini [19] also propose a scenario based 
approach called Security Attack Testing (SAT) for testing the 
security of a software system during design time. To achieve 
this, two sets of scenarios (dependency and security attack) are 
identified and constructed. Security test cases are then defined 
from the scenarios to test the software design against potential 
attacks to the software system.  

Essentially SAT is used to identify the goals and intention 
of possible attackers based on possible attack scenarios to the 
system. Software engineers are able to evaluate their software 
design when the attack scenarios identified are applied to 
investigate how the system developed will behave when under 
such attacks. From this, software engineers better understand 
how the system can be attacked and also why an attacker may 
want to attack the system. Armed with this knowledge, 

necessary steps can be taken to secure the software with 
capabilities that will help in mitigating such attacks 

For most of the approaches discussed above, the need to 
involve security experts is required in order to help in 
identifying the threats to the software technology, review the 
software for any security issues, investigate how easy it is to 
compromise the software’s security, analysis the impact on 
assets and business goals should the security of the software be 
compromised and recommend mitigating measures to either 
eliminate the risk identified or reduce it to a minimum. The 
need for security experts arises because there is an existing gap 
between security professionals and software developers. The 
disconnection between this two has led to software 
development efforts lacking critical understanding of current 
technical security risks [22]. 

In a different approach, Kim T. et.al [12] introduced the 
notion of dynamic software architecture slicing (DSAS) 
through which software architecture can be analyzed. “A 
dynamic software architecture slice represents the run-time 
behavior of those parts of the software architecture that are 
selected according to a particular slicing criterion such as a set 
of resources and events” [12] DSAS is used to decompose 
software architecture based on a slicing criterion. “A slicing 
criterion provides the basic information such as the initial 
values and conditions for the ADL (Architecture description 
language) executable, an event to be observed, and occurrence 
counter of the event” [12] While software engineers are able to 
examine the behavior of parts of their software architecture 
during run time using the DSAS approach, the trade-off is that 
it requires the software to be implemented first. The events 
examined to compute the architecture slice dynamically are 
generated when the Forward Dynamic Slicer executes the ADL 
executable. This is a drawback because fixing the vulnerability 
after implementation can be more costly [6]. 

Howe [10] also argues that the industry needs to invest in 
solutions that apply formal methods in analyzing software 
specification and design in order to reduce the number of 
defects before implementation starts.  “Formal methods are 
mathematically based techniques for the specification 
development and verification of software and hardware 
systems” [7] Recent advances in formal methods have also 
made verification of memory safety of concurrent systems 
possible [7].  

As a result, formal methods are being used to detect design 
errors relating to concurrency [10]. A software development 
process incorporating formal methods into the overall process 
of early verification and defects removal through all SDLC is 
Correct by Construction (CbyC) [24]. CbyC has proved to be 
very cost effective in developing software because errors are 
eliminated early during SDLC or not introduced in the first 
place. This subsequently reduces the amount of rework that 
would be needed later during software development. However, 
many software development organizations have been reluctant 
in using formal methods because they are not used to its 
rigorous mathematical approach in resolving security issues in 
software design. Model checkers also come with their own 
modeling language which makes no provision for automatically 
translating informal requirements to this language. Therefore, 
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the translation has to be done manually and it may be difficult 
to check whether the model represent the target system [21] 

III. THE NUERAL NETWORK APPROACH 

Our proposed Neural Network approach in analysing 
software design for security flaws is based on the abstract and 
match technique through which software flaws in a software 
design can be identified when an attack pattern is matched to 
the design.  Using the regularly expressed attack patterns 
proposed by Williams and Gegick [6], the actors and software 
components in each attack pattern are identified. To generate 
the attack scenarios linking the software components and actors 
identified in the attack pattern, online vulnerability databases 
were used to identify attack scenarios corresponding to the 
attack pattern. Data of attack scenarios from online 
vulnerability databases such as CVE Details, Security Tracker, 
Secunia, Security Focus and The Open Source Vulnerability 
Database were used. 

A. The Neural Network Architecture 

A three-layered feed-forward back-propagation was chosen 
for the architecture of neural network in this research. The 
back-propagation neural network is a well-known type of 
neural network commonly used in pattern recognition problems 
[25]. A back-propagation network has been used because of its 
simplicity and reasonable speed.  

The architecture of the neural network consists of the input 
layer, the hidden layer and the output layer. Each of the hidden 
nodes and output nodes apply a tan-sigmoid transfer function 
(2/(1+exp(-2*n))-1) to the various connection weights. 

  The weights and parameters are computed by calculating 
the error between the actual and expected output data of the 
neural network when the training data is presented to it. The 
error is then used to modify the weights and parameters to 
enable the neural network to a have better chance of giving a 
correct output when it is next presented with same input 

B. Data Collection 

From the online vulnerability databases mentioned above, a 
total of 715 attack scenarios relating to 51 regularly expressed 
attack patterns by Williams and Gegick’s were analysed.  This 
consisted of 260 attack scenarios which were unique in terms 
of their impact, mode of attack, software component and actors 
involved in the attack and 455 attack scenarios which are 
repetition of the same type of exploit in different applications 
they have been reported in the vulnerability databases. The 
attacks were analysed to identify the actors, goals and resources 
under attack.  

Once these were identified the attack attributes below were 
used to abstract the data capturing the attack scenario for 
training the neural network. The attack attributes includes the 
following. 

1. The Attacker: This attribute captures the capability of 
the attacker. It examines what level of access 
possessed when carrying out the attack. 

2. Source of attack: This attributes captures the location 
of the attack during the attack. 

3. Target of the attack: This captures the system 
component that is targeted by the attacker 

4. Attack vector: This attributes captures the mechanism 
(i.e. software component) adopted by the attacker to 
carry out the attack 

5. Attack type: The security property of the application 
being attacked is captured under this attribute. This 
could be confidentiality, integrity or availability. 

6. Input Validation: This attributes examines whether 
any validation is done on the input passed to the 
targeted software application before it is processed 

7. Dependencies: The interaction of the targeted 
software application with the users and other systems 
is analysed under this attributes. 

8. Output encoding to external applications/services: 
Software design scenarios are examined under this 
attributes to identify attacks  associated with flaws due 
to failure of the targeted software application in 
properly verifying and encoding its outputs to other 
software systems 

9. Authentication: This attribute checks for failure of the 
targeted software application to properly handle 
account credentials safely or when the authentication 
is not enforced in the software design scenarios. 

10. Access Control: Failure in enforcing access control by 
the targeted software application is examined in the 
design scenarios with this attribute. 

11. HTTP Security: Attack Scenarios are examined for 
security flaws related to HTTP requests, headers, 
responses, cookies, logging and sessions with this 
attribute 

12. Error handling and logging: Attack scenarios are 
examined under this attributes for failure of the 
targeted application in safely handling error and 
security flaws in log management. 

C. Data Encoding 

The training data samples each consist of 12 input units for 
the neural network. This corresponds to the values of the 
attributes abstracted from the attack scenarios.  

The training data was generated from the attack scenarios 
using the attributes. For instance training data for the attack on 
webmail (CVE 2003-1192) was generated by looking at the 
online vulnerability databases to get its details on the attributes 
we are interested in.  

This attack corresponds to regularly expressed attack 
pattern 3. Williams and Gegick [6] describe the attack scenario 
in this attack pattern as a user submitting an excessively long 
HTTP GET request to a web server, thereby causing a buffer. 
This attack pattern is represented as: 

 (User)(HTTPServer)(GetMethod) 
(GetMethodBufferWrite)(Buffer) 
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TABLE I.  SAMPLE OF PRE-PROCESSED TRAINING DATA FROM 

ATTACK SCENARIO 

S
\N 

 Attribute Observed data 

1 Attacker No Access 

2 Source External 

3 Target Buffer 

4 Attack Vector Long Get Request 

5 Attack Type Availability 

6 Input Validation Partial Validation 

7 Dependencies Authentication & Input Validation 

8 Output Encoding None 

9 Authentication None 

10 Access Control URL Access 

11 HTTP Security Input Validation 

12 Error None 

In this example, the data generated from the attack scenario 
using the attribute list is shown in Table I. Using the 
corresponding values for the attributes; the data is then encoded 
as shown in the  

TABLE II.  SAMPLE OF TRAINING DATA AFTER ENCODING 

S\
N  Attribute 

Value 

1 Attacker 0 

2 Source 1 

3 Target 9 

4 Attack Vector 39 

5 Attack Type 5 

6 Input Validation 2 

7 Dependencies 6 

8 Output Encoding 0 

9 Authentication 0 

10 Access Control 2 

11 HTTP Security 3 

12 Error 0 

The second stage of the data processing involves converting 
the value of the attributes in Table II into ASCII comma 
delimited format before it is used in training the neural 
network. For the expected output from the neural network, the 
data used in training network is derived from the attack pattern 
which has been identified in each of the attack scenarios. Each 
attack pattern is given a unique ID which the neural network is 
expected to produce as an output for each of the input data 
samples. The output data sample consists of output units 
corresponding to the attack pattern IDs. For instance, the above 

sample data on Webmail attack which corresponds to regularly 
expressed attack pattern 3, the neural network is trained to 
identify the expected attack pattern as 3.  

D. The Neural Network Training 

To train the neural network the training data set is divided 
into two sets. The first set of data is the training data sets (260 
samples) that were presented to the neural network during 
training. 

TABLE III.  TRAINING AND TEST DATA SETS 

Number of 

Samples 

Training Data Test Data 

Data Set 1 143 26 

Data set 2 117 25 

Total 260 51 

The second set (51 Samples) is the data that were used to 
test the performance of the neural network after it had been 
trained. At the initial stage of the training, it was discovered 
that the neural network had too many categories to classify the 
input data into (i.e. 51 categories) because the neural network 
was not able to converge. To overcome the problem, the 
training data was further divided into two sets. The first set 
contained 143 samples and the second set contained 117 
samples. These were then used for training two neural 
networks. Mat lab Neural Network tool box is used to perform 
the training. The training performance is measured by Mean 
Squared Error (MSE) and the training stops when the 
generalization stops improving or when the 1000th iteration is 
reached. 

E.  Result and Discussion 

It took the system about one minute to complete the training 
for each the back-propagation neural network. For the first 
neural network, the training stopped when the MSE of 
0.0016138 was reached at the 26th iteration. The training of the 
second neural network stopped when the MSE of 0.00012841 
was reached at the 435

th
 iteration.  

TABLE IV.  COMPARISION OF ACTUAL AND EXPECTED OUTPUT FROM 

NEURAL NETWORK 

s\n Attack 
Pattern 
Investigated 

Actual 
Output 

Expected 
Output 

Results from Neural Network 1 

1 Attack Pattern 1 1.0000 1 

2 Attack Pattern 2 2.0000 2 

3 Attack Pattern 3 2.9761 3 

4 Attack Pattern 4 4.0000 4 

5 Attack Pattern 5 4.9997 5 

6 Attack Pattern 6 5.9998 6 

7 Attack Pattern 7 7.0000 7 

8 Attack Pattern 8 8.0000 8 

9 Attack Pattern 9 9.0000 9 
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10 Attack Pattern 10 7.0000 10 

11 Attack Pattern 11 11.0000 11 

12 Attack Pattern 12 12.0000 12 

13 Attack Pattern 13 12.9974 13 

14 Attack Pattern 14 13.772 14 

15 Attack Pattern 15 15.0000 15 

16 Attack Pattern 16 16.0000 16 

17 Attack Pattern 17 16.9999 17 

18 Attack Pattern 20 19.9984 20 

19 Attack Pattern 21 21.0000 21 

20 Attack Pattern 22 22.0000 22 

21 Attack Pattern 23 23.0000 23 

22 Attack Pattern 24 23.9907 24 

23 Attack Pattern 25 25.0000 25 

24 Attack Pattern 26 26.0000 26 

25 Attack Pattern 27 27.0000 27 

26 Attack Pattern 28 28.0000 28 

Results from Network 2 

27 Attack Pattern 29 28.999 29 

28 Attack Pattern 30 29.9983 30 

29 Attack Pattern 31 31.0000 31 

30 Attack Pattern 32 31.998 32 

31 Attack Pattern 33 32.8828 33 

32 Attack Pattern 34 33.9984 34 

33 Attack Pattern 35 32.8828 35 

34 Attack Pattern 36 35.9945 36 

35 Attack Pattern 37 36.6393 37 

36 Attack Pattern 38 37.9999 38 

37 Attack Pattern 39 37.9951 39 

38 Attack Pattern 40 39.1652 40 

39 Attack Pattern 41 40.9669 41 

40 Attack Pattern 42 41.9998 42 

41 Attack Pattern 43 42.998 43 

42 Attack Pattern 44 43.9979 44 

43 Attack Pattern 45 44.9991 45 

44 Attack Pattern 46 45.8992 46 

45 Attack Pattern 47 46.9956 47 

46 Attack Pattern 48 47.9997 48 

47 Attack Pattern 49 48.9999 49 

48 Attack Pattern 50 49.8649 50 

49 Attack Pattern 51 50.9629 51 

50 Attack Pattern 52 50.6745 52 

51 Attack Pattern 53 52.7173 53 

To test the performance of the network, the second data sets 
were used to test the neural network. It was observed that the 
trained neural network gave an output as close as possible to 
the anticipated output. The actual and anticipated outputs are 
compared in the Table IV. The  test samples in which the 
neural network gave a different output from the predicted 
output when testing the network includes tests for attack 
patterns 10, 35, 39, 40 and 52. While looking into the reason 

behind this, it was seen that the data observed for these attack 
patterns were not much. With more information on these attack 
patterns for training the neural network, it is predicted that the 
network will give a better performance. During the study of the 
results from the neural networks, it was found that the first 
neural network had 96.51% correct results while the second 
neural network had 92% accuracy. The accuracy for both 
neural networks had an average of 94.1%.  Given the accuracy 
of the neural networks, it shows that neural networks can be 
used to assess the security in software designs.  

 

 

 

 

 

 

 

 

 

 

 

IV. FUTURE WORK 

To further improve the performance of the neural network 
system as a tool for assessing security in software designs, we 
are currently looking into the possibility of the system 
suggesting solutions that can help to prevent the identified 
attacks.  Current research on solutions to software design 
security flaws gives a good insight in this area.  Suggested 
solutions such as the use security patterns [11] and introduction 
of security capabilities into design in the SAT approach [19] 
are currently investigated.  Furthermore, the performance of the 
neural network tool would be compared to current approaches 
used in assessing security in software designs in a case study 
on the design of an online shopping portal. 

The regularly expressed attack pattern used in training the 
neural network is a generic classification of attack patterns 
Therefore; any unknown attack introduced to the neural 
network will be classified to the nearest regularly expressed 
attack pattern. Nevertheless the success of the neural network 
in analysing software design for security flaws is largely 
dependent upon the input capturing the features of the software 
design presented to it. As this requires a human endeavour, 
further work is required in this area to ensure that correct input 
data is retrieved for analysis. In addition, the neural network 
needs to be thoroughly tested before it can gain acceptance as a 
tool for assessing software design for security flaws.  

V. CONCLUSION 

Previous research works have shown that the cost of fixing 
security flaws in software applications when they are deployed 
is 4–8 times more than when they are discovered early in the 
SDLC and fixed.  For instance, it is cheaper and less disruptive 
to discover design-level vulnerabilities in the design, than 
during implementation or testing, forcing a pricey redesign of 
pieces of the application. Therefore, integrating security into a 
software design will help tremendously in saving time and 
money during software development  

 
Figure 1. Actual vs. Expected output of Neural Network 
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Therefore, by using the proposed neural networks approach 
in this paper to analyse software design for security flaws the 
efforts of software designers in identifying areas of security 
weakness in their software design will be reinforced. 
Subsequently, this will enhance the development of secured 
software applications in the software industry especially as 
software designers often lack the required security expertise. 
Thus, neural networks given the right information for its 
training will also contribute in equipping software developers 
to develop software more securely especially in the area of 
software design. 
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