
(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 1, No. 4, 2012

1 | P a g e

www.ijacsa.thesai.org

Security Assessment of Software Design using Neural

Network

A. Adebiyi, Johnnes Arreymbi and Chris Imafidon

School of Architecture, Computing and Engineering

University of East London,

London, UK

Abstract— Security flaws in software applications today has been

attributed mostly to design flaws. With limited budget and time

to release software into the market, many developers often

consider security as an afterthought. Previous research shows

that integrating security into software applications at a later

stage of software development lifecycle (SDLC) has been found to

be more costly than when it is integrated during the early stages.

To assist in the integration of security early in the SDLC stages, a

new approach for assessing security during the design phase by

neural network is investigated in this paper. Our findings show

that by training a back propagation neural network to identify

attack patterns, possible attacks can be identified from design

scenarios presented to it. The result of performance of the neural

network is presented in this paper.

Keywords- Neural Networks; Software security; Attack Patterns.

I. INTRODUCTION

The role software applications play in today’s hostile
computer environment is very important. It is not uncommon
to find software applications running our transportation
systems, communication systems, medical equipment, banking
systems, domestic appliances and other technologies that we
depend on. Since many of these software applications are
missions critical, the need to ensure the security of their data
and other resources cannot be overlooked. The increase of
attacks aimed directly at software applications in the past
decades calls for software applications to be able to defend
itself and continue functioning. However, when software
applications are developed without security in mind, attackers
take advantage of the security flaws in them to mount multiple
attacks when they are deployed. To address this problem a new
research field called software security emerged in the last
decade with the aim of building security into software
application during development. This approach views security
as an emergent property of the software and much effort is
dedicated into weaving security into the software all through
SDLC

One of the critical areas in this approach is the area of
software design and security which proactively deals with
attacking security problems at the design phase of SDLC.
Reportedly, 50% of security problems in software products
today have been found to be design flaws [17]. Design-level
vulnerability has been described as the hardest category of
software defect to contend with. Moreover, it requires great
expertise to ascertain whether or not a software application has
design-level flaws which makes it difficult to find and

automate [9]. Many authors also argue that it is much better to
find and fix flaws during the early phase of software
development because it is more costly to fix the problem at a
late stage of development and much more costly when the
software has been deployed [6][29][30]. Therefore, taking
security into consideration at the design phase of SDLC will
help greatly in producing secured software applications.

There are different approaches and tools currently used for
integrating security during the phases of SDLC. However,
software design security tools and technologies for automated
security analysis at the design phase have been slow in coming.
This is still an area where many researches are currently being
undertaken. Neural Networks has been one of the technologies
used during software implementation and testing phase of
SDLC for software defect detection in order to intensify
software reliability and it has also been used in area of
application security and network security in technologies such
as authentication system, cryptography, virus detection system,
misuse detection system and intrusion detection systems (IDS)
[2] [4] [14] [20] [31][32]. This research takes a further step by
using neural networks as a tool for assessing security of
software design at the design phase of SDLC.

II. RELATED WORKS ON SECURITY ASSESSMENT OF

SOFTWARE DESIGN

In order to design software more securely many approaches
have been adopted for assessing the security in software
designs during the design phase of SDLC. Some of these
approaches are discussed below.

Threat modeling is an important activity carried out at the
design phase to describe threats to the software application in
order to provide a more accurate sense of its security [1].
Threat modeling is a technique that can be used to identify
vulnerabilities, threats, attacks and countermeasures which
could influence a software system [18]. This allows for the
anticipation of attacks by understanding how a malicious
attacker chooses targets, locates entry points and conducts
attacks [24]. Threat modeling addresses threats that have the
ability to cause maximum damage to a software application.

Architectural risk analysis is also used to identify
vulnerabilities and threats at the design phase of SDLC which
may be malicious or non-malicious in nature due to a software
system. It examines the preconditions that must be present for
the vulnerabilities to be exploited by various threats and assess
the states the system may enter after a successful attack on the

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 1, No. 4, 2012

2 | P a g e

www.ijacsa.thesai.org

system. One of the advantages of architectural risk analysis is
that it enables developers to analysis software system from its
component level to its environmental level in order to evaluate
the vulnerabilities, threats and impacts at each level [17].

Attack trees is another approach used to characterize system
security by modeling the decision making process of attackers.
In this technique, attack against a system is represented in a
tree structure in which the root of the tree represents the goal of
an attacker. The nodes in the tree represent the different types
of actions the attacker can take to accomplish his goal on the
software system or outside the software system which may be
in the form of bribe or threat [6],[23]. “Attack trees are used for
risk analysis, to answer questions about the system’s security,
to capture security knowledge in a reusable way, and to design,
implement, and test countermeasures to attacks” [24].

Attack nets is a similar approach which include “places”
analogous to the nodes in an attack tree to indicate the state of
an attack. Events required to move from one place to the other
are captured in the transitions and arcs connecting places and
transitions indicate the path an attacker takes. Therefore just as
attack trees, attack nets also show possible attack scenarios to a
software system and they are used for vulnerability assessment
in software designs [6].

Another related approach is the vulnerability tree which is a
hierarchy tree constructed based on how one vulnerability
relates to another and the steps an attacker has to take to reach
the top of the tree [23]. Vulnerability trees also help in the
analysis of different possible attack scenarios that an attacker
can undertake to exploit a vulnerability.

Gegick and Williams [6] also proposed a regular
expression-based attack patterns which helps in indicating the
sequential events that occur during an attack. The attack
patterns are based on the software components involved in an
attack and are used for identifying vulnerabilities in software
designs. It comprises of attack library of abstraction which can
be used by software engineers conducting Security Analysis
For Existing Threats (SAFE-T) to match their system design.
An occurrence of a match indicates that the vulnerability may
exist in the system being analyzed and therefore helps in
integrating effective countermeasures before coding starts.
Another advantage about this approach is that it can be easily
adapted by developers who are novices on security.

Mouratidis and Giorgini [19] also propose a scenario based
approach called Security Attack Testing (SAT) for testing the
security of a software system during design time. To achieve
this, two sets of scenarios (dependency and security attack) are
identified and constructed. Security test cases are then defined
from the scenarios to test the software design against potential
attacks to the software system.

Essentially SAT is used to identify the goals and intention
of possible attackers based on possible attack scenarios to the
system. Software engineers are able to evaluate their software
design when the attack scenarios identified are applied to
investigate how the system developed will behave when under
such attacks. From this, software engineers better understand
how the system can be attacked and also why an attacker may
want to attack the system. Armed with this knowledge,

necessary steps can be taken to secure the software with
capabilities that will help in mitigating such attacks

For most of the approaches discussed above, the need to
involve security experts is required in order to help in
identifying the threats to the software technology, review the
software for any security issues, investigate how easy it is to
compromise the software’s security, analysis the impact on
assets and business goals should the security of the software be
compromised and recommend mitigating measures to either
eliminate the risk identified or reduce it to a minimum. The
need for security experts arises because there is an existing gap
between security professionals and software developers. The
disconnection between this two has led to software
development efforts lacking critical understanding of current
technical security risks [22].

In a different approach, Kim T. et.al [12] introduced the
notion of dynamic software architecture slicing (DSAS)
through which software architecture can be analyzed. “A
dynamic software architecture slice represents the run-time
behavior of those parts of the software architecture that are
selected according to a particular slicing criterion such as a set
of resources and events” [12] DSAS is used to decompose
software architecture based on a slicing criterion. “A slicing
criterion provides the basic information such as the initial
values and conditions for the ADL (Architecture description
language) executable, an event to be observed, and occurrence
counter of the event” [12] While software engineers are able to
examine the behavior of parts of their software architecture
during run time using the DSAS approach, the trade-off is that
it requires the software to be implemented first. The events
examined to compute the architecture slice dynamically are
generated when the Forward Dynamic Slicer executes the ADL
executable. This is a drawback because fixing the vulnerability
after implementation can be more costly [6].

Howe [10] also argues that the industry needs to invest in
solutions that apply formal methods in analyzing software
specification and design in order to reduce the number of
defects before implementation starts. “Formal methods are
mathematically based techniques for the specification
development and verification of software and hardware
systems” [7] Recent advances in formal methods have also
made verification of memory safety of concurrent systems
possible [7].

As a result, formal methods are being used to detect design
errors relating to concurrency [10]. A software development
process incorporating formal methods into the overall process
of early verification and defects removal through all SDLC is
Correct by Construction (CbyC) [24]. CbyC has proved to be
very cost effective in developing software because errors are
eliminated early during SDLC or not introduced in the first
place. This subsequently reduces the amount of rework that
would be needed later during software development. However,
many software development organizations have been reluctant
in using formal methods because they are not used to its
rigorous mathematical approach in resolving security issues in
software design. Model checkers also come with their own
modeling language which makes no provision for automatically
translating informal requirements to this language. Therefore,

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 1, No. 4, 2012

3 | P a g e

www.ijacsa.thesai.org

the translation has to be done manually and it may be difficult
to check whether the model represent the target system [21]

III. THE NUERAL NETWORK APPROACH

Our proposed Neural Network approach in analysing
software design for security flaws is based on the abstract and
match technique through which software flaws in a software
design can be identified when an attack pattern is matched to
the design. Using the regularly expressed attack patterns
proposed by Williams and Gegick [6], the actors and software
components in each attack pattern are identified. To generate
the attack scenarios linking the software components and actors
identified in the attack pattern, online vulnerability databases
were used to identify attack scenarios corresponding to the
attack pattern. Data of attack scenarios from online
vulnerability databases such as CVE Details, Security Tracker,
Secunia, Security Focus and The Open Source Vulnerability
Database were used.

A. The Neural Network Architecture

A three-layered feed-forward back-propagation was chosen
for the architecture of neural network in this research. The
back-propagation neural network is a well-known type of
neural network commonly used in pattern recognition problems
[25]. A back-propagation network has been used because of its
simplicity and reasonable speed.

The architecture of the neural network consists of the input
layer, the hidden layer and the output layer. Each of the hidden
nodes and output nodes apply a tan-sigmoid transfer function
(2/(1+exp(-2*n))-1) to the various connection weights.

 The weights and parameters are computed by calculating
the error between the actual and expected output data of the
neural network when the training data is presented to it. The
error is then used to modify the weights and parameters to
enable the neural network to a have better chance of giving a
correct output when it is next presented with same input

B. Data Collection

From the online vulnerability databases mentioned above, a
total of 715 attack scenarios relating to 51 regularly expressed
attack patterns by Williams and Gegick’s were analysed. This
consisted of 260 attack scenarios which were unique in terms
of their impact, mode of attack, software component and actors
involved in the attack and 455 attack scenarios which are
repetition of the same type of exploit in different applications
they have been reported in the vulnerability databases. The
attacks were analysed to identify the actors, goals and resources
under attack.

Once these were identified the attack attributes below were
used to abstract the data capturing the attack scenario for
training the neural network. The attack attributes includes the
following.

1. The Attacker: This attribute captures the capability of
the attacker. It examines what level of access
possessed when carrying out the attack.

2. Source of attack: This attributes captures the location
of the attack during the attack.

3. Target of the attack: This captures the system
component that is targeted by the attacker

4. Attack vector: This attributes captures the mechanism
(i.e. software component) adopted by the attacker to
carry out the attack

5. Attack type: The security property of the application
being attacked is captured under this attribute. This
could be confidentiality, integrity or availability.

6. Input Validation: This attributes examines whether
any validation is done on the input passed to the
targeted software application before it is processed

7. Dependencies: The interaction of the targeted
software application with the users and other systems
is analysed under this attributes.

8. Output encoding to external applications/services:
Software design scenarios are examined under this
attributes to identify attacks associated with flaws due
to failure of the targeted software application in
properly verifying and encoding its outputs to other
software systems

9. Authentication: This attribute checks for failure of the
targeted software application to properly handle
account credentials safely or when the authentication
is not enforced in the software design scenarios.

10. Access Control: Failure in enforcing access control by
the targeted software application is examined in the
design scenarios with this attribute.

11. HTTP Security: Attack Scenarios are examined for
security flaws related to HTTP requests, headers,
responses, cookies, logging and sessions with this
attribute

12. Error handling and logging: Attack scenarios are
examined under this attributes for failure of the
targeted application in safely handling error and
security flaws in log management.

C. Data Encoding

The training data samples each consist of 12 input units for
the neural network. This corresponds to the values of the
attributes abstracted from the attack scenarios.

The training data was generated from the attack scenarios
using the attributes. For instance training data for the attack on
webmail (CVE 2003-1192) was generated by looking at the
online vulnerability databases to get its details on the attributes
we are interested in.

This attack corresponds to regularly expressed attack
pattern 3. Williams and Gegick [6] describe the attack scenario
in this attack pattern as a user submitting an excessively long
HTTP GET request to a web server, thereby causing a buffer.
This attack pattern is represented as:

 (User)(HTTPServer)(GetMethod)
(GetMethodBufferWrite)(Buffer)

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 1, No. 4, 2012

4 | P a g e

www.ijacsa.thesai.org

TABLE I. SAMPLE OF PRE-PROCESSED TRAINING DATA FROM

ATTACK SCENARIO

S
\N

 Attribute Observed data

1 Attacker No Access

2 Source External

3 Target Buffer

4 Attack Vector Long Get Request

5 Attack Type Availability

6 Input Validation Partial Validation

7 Dependencies Authentication & Input Validation

8 Output Encoding None

9 Authentication None

10 Access Control URL Access

11 HTTP Security Input Validation

12 Error None

In this example, the data generated from the attack scenario
using the attribute list is shown in Table I. Using the
corresponding values for the attributes; the data is then encoded
as shown in the

TABLE II. SAMPLE OF TRAINING DATA AFTER ENCODING

S\
N Attribute

Value

1 Attacker 0

2 Source 1

3 Target 9

4 Attack Vector 39

5 Attack Type 5

6 Input Validation 2

7 Dependencies 6

8 Output Encoding 0

9 Authentication 0

10 Access Control 2

11 HTTP Security 3

12 Error 0

The second stage of the data processing involves converting
the value of the attributes in Table II into ASCII comma
delimited format before it is used in training the neural
network. For the expected output from the neural network, the
data used in training network is derived from the attack pattern
which has been identified in each of the attack scenarios. Each
attack pattern is given a unique ID which the neural network is
expected to produce as an output for each of the input data
samples. The output data sample consists of output units
corresponding to the attack pattern IDs. For instance, the above

sample data on Webmail attack which corresponds to regularly
expressed attack pattern 3, the neural network is trained to
identify the expected attack pattern as 3.

D. The Neural Network Training

To train the neural network the training data set is divided
into two sets. The first set of data is the training data sets (260
samples) that were presented to the neural network during
training.

TABLE III. TRAINING AND TEST DATA SETS

Number of

Samples

Training Data Test Data

Data Set 1 143 26

Data set 2 117 25

Total 260 51

The second set (51 Samples) is the data that were used to
test the performance of the neural network after it had been
trained. At the initial stage of the training, it was discovered
that the neural network had too many categories to classify the
input data into (i.e. 51 categories) because the neural network
was not able to converge. To overcome the problem, the
training data was further divided into two sets. The first set
contained 143 samples and the second set contained 117
samples. These were then used for training two neural
networks. Mat lab Neural Network tool box is used to perform
the training. The training performance is measured by Mean
Squared Error (MSE) and the training stops when the
generalization stops improving or when the 1000th iteration is
reached.

E. Result and Discussion

It took the system about one minute to complete the training
for each the back-propagation neural network. For the first
neural network, the training stopped when the MSE of
0.0016138 was reached at the 26th iteration. The training of the
second neural network stopped when the MSE of 0.00012841
was reached at the 435

th
 iteration.

TABLE IV. COMPARISION OF ACTUAL AND EXPECTED OUTPUT FROM

NEURAL NETWORK

s\n Attack
Pattern
Investigated

Actual
Output

Expected
Output

Results from Neural Network 1

1 Attack Pattern 1 1.0000 1

2 Attack Pattern 2 2.0000 2

3 Attack Pattern 3 2.9761 3

4 Attack Pattern 4 4.0000 4

5 Attack Pattern 5 4.9997 5

6 Attack Pattern 6 5.9998 6

7 Attack Pattern 7 7.0000 7

8 Attack Pattern 8 8.0000 8

9 Attack Pattern 9 9.0000 9

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 1, No. 4, 2012

5 | P a g e

www.ijacsa.thesai.org

10 Attack Pattern 10 7.0000 10

11 Attack Pattern 11 11.0000 11

12 Attack Pattern 12 12.0000 12

13 Attack Pattern 13 12.9974 13

14 Attack Pattern 14 13.772 14

15 Attack Pattern 15 15.0000 15

16 Attack Pattern 16 16.0000 16

17 Attack Pattern 17 16.9999 17

18 Attack Pattern 20 19.9984 20

19 Attack Pattern 21 21.0000 21

20 Attack Pattern 22 22.0000 22

21 Attack Pattern 23 23.0000 23

22 Attack Pattern 24 23.9907 24

23 Attack Pattern 25 25.0000 25

24 Attack Pattern 26 26.0000 26

25 Attack Pattern 27 27.0000 27

26 Attack Pattern 28 28.0000 28

Results from Network 2

27 Attack Pattern 29 28.999 29

28 Attack Pattern 30 29.9983 30

29 Attack Pattern 31 31.0000 31

30 Attack Pattern 32 31.998 32

31 Attack Pattern 33 32.8828 33

32 Attack Pattern 34 33.9984 34

33 Attack Pattern 35 32.8828 35

34 Attack Pattern 36 35.9945 36

35 Attack Pattern 37 36.6393 37

36 Attack Pattern 38 37.9999 38

37 Attack Pattern 39 37.9951 39

38 Attack Pattern 40 39.1652 40

39 Attack Pattern 41 40.9669 41

40 Attack Pattern 42 41.9998 42

41 Attack Pattern 43 42.998 43

42 Attack Pattern 44 43.9979 44

43 Attack Pattern 45 44.9991 45

44 Attack Pattern 46 45.8992 46

45 Attack Pattern 47 46.9956 47

46 Attack Pattern 48 47.9997 48

47 Attack Pattern 49 48.9999 49

48 Attack Pattern 50 49.8649 50

49 Attack Pattern 51 50.9629 51

50 Attack Pattern 52 50.6745 52

51 Attack Pattern 53 52.7173 53

To test the performance of the network, the second data sets
were used to test the neural network. It was observed that the
trained neural network gave an output as close as possible to
the anticipated output. The actual and anticipated outputs are
compared in the Table IV. The test samples in which the
neural network gave a different output from the predicted
output when testing the network includes tests for attack
patterns 10, 35, 39, 40 and 52. While looking into the reason

behind this, it was seen that the data observed for these attack
patterns were not much. With more information on these attack
patterns for training the neural network, it is predicted that the
network will give a better performance. During the study of the
results from the neural networks, it was found that the first
neural network had 96.51% correct results while the second
neural network had 92% accuracy. The accuracy for both
neural networks had an average of 94.1%. Given the accuracy
of the neural networks, it shows that neural networks can be
used to assess the security in software designs.

IV. FUTURE WORK

To further improve the performance of the neural network
system as a tool for assessing security in software designs, we
are currently looking into the possibility of the system
suggesting solutions that can help to prevent the identified
attacks. Current research on solutions to software design
security flaws gives a good insight in this area. Suggested
solutions such as the use security patterns [11] and introduction
of security capabilities into design in the SAT approach [19]
are currently investigated. Furthermore, the performance of the
neural network tool would be compared to current approaches
used in assessing security in software designs in a case study
on the design of an online shopping portal.

The regularly expressed attack pattern used in training the
neural network is a generic classification of attack patterns
Therefore; any unknown attack introduced to the neural
network will be classified to the nearest regularly expressed
attack pattern. Nevertheless the success of the neural network
in analysing software design for security flaws is largely
dependent upon the input capturing the features of the software
design presented to it. As this requires a human endeavour,
further work is required in this area to ensure that correct input
data is retrieved for analysis. In addition, the neural network
needs to be thoroughly tested before it can gain acceptance as a
tool for assessing software design for security flaws.

V. CONCLUSION

Previous research works have shown that the cost of fixing
security flaws in software applications when they are deployed
is 4–8 times more than when they are discovered early in the
SDLC and fixed. For instance, it is cheaper and less disruptive
to discover design-level vulnerabilities in the design, than
during implementation or testing, forcing a pricey redesign of
pieces of the application. Therefore, integrating security into a
software design will help tremendously in saving time and
money during software development

Figure 1. Actual vs. Expected output of Neural Network

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 1, No. 4, 2012

6 | P a g e

www.ijacsa.thesai.org

Therefore, by using the proposed neural networks approach
in this paper to analyse software design for security flaws the
efforts of software designers in identifying areas of security
weakness in their software design will be reinforced.
Subsequently, this will enhance the development of secured
software applications in the software industry especially as
software designers often lack the required security expertise.
Thus, neural networks given the right information for its
training will also contribute in equipping software developers
to develop software more securely especially in the area of
software design.

REFERENCES

[1] Agarwal, A. 2006), “How to integrate security into your SDLC”,
Available at:
http://searchsoftwarequality.techtarget.com/tip/0,289483,sid92_gci1174
897,00.html, (Accessed 24/10/2010)

[2] Ahmad, I., Swati, S.U. and Mohsin, S. (2007) “Intrusion detection
mechanism by resilient bpck Propagation (RPROP)”, European Journal
of Scientific Research, Vol. 17(4), pp523-530

[3] Arkin B, (2006), “Build security into the SDLC and Keep the bad guys
out”, Available at,
http://searchsoftwarequality.techtarget.com/qna/0,289202,sid92_gci1160
406,00.html,(Accessed 24/10/2010)

[4] Liu, G., Hu, F. and Chen, W.(2010), “A neural network emsemble based
method for detecting computer virus”, In proceedings of 2010
International conference on computer, mechatronics, control and
electronic engineering, Vol. 1, pp391-393

[5] Croxford, M. (2005), “The challenge of low defect, secure software- too
difficult and too expensive”, Secure Software Engineering, Available at:
http://journal.thedacs.com/issue/2/33 (Accessed 25/02/2012)

[6] Gegick, M. and Williams, L. (2006), “On the design of more secure
software-intensive systems by use of attack patterns”, Information and
Software Technology, Vol. 49, pp 381-397

[7] Hinchey, M et al, (2008), “Software engineering and formal methods”,
Communications of the ACM, Vol.51(9), pp54-59

[8] Ho, S. L.; Xie, M. and Goh, T. N. (2003), “A Study of the connectionist
model for software reliability prediction”, Computer and Mathematics
with Applications, Vol. 46, pp1037 -1045

[9] Hoglung, G and McGraw G. (2004), “Exploiting software: The Achilles’
heel of cyberDefense”, Citigal, Available at:
http://citigal.com/papers/download/cd-Exploiting_Software.pdf
(Accessed 02/12/2011)

[10] Howe (2005), “Crisis, What Crisis?” IEEE Review, Vol. 51(2), p39

[11] Kienzle, D. M and Elder, M. C. (2002) “Final Technical Report:
Security Patterns for Web Application Development”, Available at
http://www.scrypt.net/~celer/securitypatterns/final%20report.pdf,
(Accessed 26/01/2012)

[12] Kim, T., Song, Y. Chung, L and Huynh, D.T (2007) “Software
architecture analysis: A dynamic slicing approach, ACIS International
Journal of Computer & Information Science, Vol. 1 (2), p91-p103

[13] Lindqvist, U, Cheung, S. and Valdez, R (2003) “Correlated attack
Modelling (CAM)”, Air Force Research Laboratory, New York, AFRL-
IF-RS-TR-2003-249

[14] Lyu, M. R, (2006), “Software reliability engineering: A roadmap”,
Available at: http://csse.usc.edu/classes/cs589_2007/Reliability.pdf
(Accessed 21/09/2011)

[15] Mohan, K. K. Verma, A. K. and Srividya, A. (2009) “Early software
reliability prediction using ANN process oriented development at
prototype level”, In proceedings of 20th International symposium on
software reliablity engineering (ISSRE), India, Available at:
http://www.issre2009.org/papers/issre2009_181.pdf (Accessed
12/05/2012)

[16] McAvinney, A. and Turner, B. (2005), “Building a neural network for
misuse detection”, Proceedings of the Class of 2006 Senior Conference,
pp27-33

[17] McGraw, G. (2006), “Software security: building security in”, Addison-
Wesley, Boston, MA

[18] Meier, J. D., Mackman, A. And Wastell, B. (2005), “Threat modelling
web applications”, Available at: http://msdn.microsoft.com/en-
us/library/ms978516.aspx (Accessed 24/10/2010)

[19] Mouratidis, H. and Giorgini, P (2007), “Security attack testing (SAT)-
testing the security of information systems at design time”, Information
Systems, Vol. 32, p1166- p1183

[20] Pan, Z, Chen, S., Hu, G. and Zhang, D. (2003), “Hybrid neural network
and c4.5 for misuse detection”, In proceedings of 2003 International
conference on machine learning and cybernetics, Vol.4, pp2463-2467

[21] Palshikar, G. K. (2004), “An Introduction to model checking”,
Embbedd.com, Available at
http://www.embedded.com/columns/technicalinsights/17603352?_reque
stid=12219,(Accessed 20/02/2012)

[22] Pemmaraju, K., Lord, E. and McGraw, G.(2000), “Software risk
management. The importance of building quality and reliability into the
full development lifecycle”, Available at:
http://www.cigital.com/whitepapers/dl/wp-qandr.pdf, (Accessed
07/06/2011)

[23] Ralston, P.A.S; Graham, J.H and Hieb, J. L. (2007), “Cyber security risk
assessment for SCADA and DCS networks”, ISA Transaction,
Vol.46(4), pp583-594

[24] Redwine, S. T. Jr and Davis, N.; et al, (2004), “Process to produce
secure software: Towards more secure software”, National Cyber
Security Summit, Vol. 1

[25] Srinivasa, K.D. and Sattipalli, A. R, (2009), “Hand written character
recognition using back propagation network”, Journal of Theoretical and
Applied Information Technology, Vol. 5(3), pp 257-269

[26] Tamura, Y.; Yamada, S. and Kimura, M. (2003), “A software Reliability
assessment method based on neural networks for distributed
development environment”, Electronics & Communications in Japan,
Part 3: Fundamental Electronic Science, Vol. 86(11), pp13-20.

[27] Telang, R. and Wattal, S.(2004), “Impact of software vulnerability
announcement on market value of software vendors- an empirical
investigation”, The Third Workshop, University of Minnesota, 13-14
May, Minnesota.

[28] Threat Risk Modelling (2010) Available at:
http://www.owasp.org/index.php/Threat_Risk_Modeling, (Accessed
24/10/201)

[29] Mockel C and Abdallah, A.E (2011) ‘Threat Modelling Approaches and
Tools for Securing Architectural Designs of E-Banking Application’,
Journal of Information Assurance and Security’, Vol. 6(5), pp 346-356

[30] Spampinato, D. G. (2008), ‘SeaMonster: Providing Tool Support for
Security Modelling’, NISK Conference, Available at:
http://www.shieldsproject.eu/files/docs/seamonster_nisk2008.pdf (Last
Accessed: November 2011)

[31] Joseph, A., Bong, D.B.L. and Mat, D.A.A (2009) ‘Application of Neural
Network in User Authentication for Smart Home Systems’ World
Academy of Science, Engineering and Technology, Vol. 53, pp1293-
1300.

[32] Zhang B.J.Y, and Wang, J.H.S.(2007), ‘Computer Viruses Detection
Based on Ensemble Neural Network’, Computer Engineering and
Applications, Vol. 43(13), pp 26-29.

AUTHORS PROFILE

 Adetunji Adebiyi Doctoral student with the University of East London
UK. His research focuses on integrating security into software design during
SDLC. His research has led him to give talks and presentations in conferences
and seminars he has attended.

 Johnnes Arreymbi is a Senior Lecturer at the School of Computing,
Information Technology and Engineering, University of East London. He has
also taught Computing at London South Bank University, and University of
Greenwich, London. He leads as Executive Director and co-founder of
eGLobalSOFT, USA; an innovative Patented Software (ProTrack™) Company.

 Chris Imafidon is a Senior Lecturer at the School of Computing,
Information Technology and Engineering, University of East London. Chris is
a multi-award winning researcher and scientific pioneer. He is a member of the

http://www.shieldsproject.eu/files/docs/seamonster_nisk2008.pdf

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 1, No. 4, 2012

7 | P a g e

www.ijacsa.thesai.org

Information Age Executive Round-table forum. He is a consultant to the
government and industry leaders worldwide.

