
         (IJARAI) International Journal of Advanced Research in Artificial Intelligence, 

          Vol. 1, No. 5, 2012 

 

    30 | P a g e  

www.ijacsa.thesai.org 

Introduction of the weight edition errors in the 

Levenshtein distance  

Gueddah Hicham 

Telecom and Embedded Systems 

Team, SIME Lab ENSIAS, 

University of Mohammed V  

Souissi 

Rabat, Morocco 

Yousfi Abdallah 

Faculty of juridical, Economic and 

Social Sciences 

University Mohammed V Souissi 

Rabat, Morocco 

 

Belkasmi Mostapha  

Telecom and Embedded Systems 

Team, SIME Lab ENSIAS, 

University of Mohammed V 

Souissi 

Rabat, Morocco

 

Abstract— In this paper, we present a new approach dedicated to 

correcting the spelling errors of the Arabic language. This 

approach corrects typographical errors like inserting, deleting, 

and permutation. Our method is inspired from the Levenshtein 

algorithm, and allows a finer and better scheduling than 

Levenshtein. The results obtained are very satisfactory and 

encouraging, which shows the interest of our new approach. 

Keywords- component;spelling errors; correction; Levenshtein 

distance; weight edition error. 

I. INTRODUCTION 

Automatic correction of spelling errors is one of the most 
important areas of natural language processing. Research in 
this area started in the 60s [1]. Spell checking is to find the 
word closest to the erroneous word and words in the lexicon. 
This approach is based on the similarity and the distance 
between words. 

In the areas we are interested in the treatment of 
misspelling out of context; several studies have been 
achieved to present methods of automatic corrections. Among 
these works, we cite: 

 The first studies have been devoted to determining the 

different type of elementary spelling error, called editing 

operations [2] which are: 

 Insertion: add a character. 

 Deletion: omission of a character. 

 Permutation: change of position between characters. 

 Replacement: replace a character with another. 

 Based on the work of Damerau, Levenshtein [3] considered 

only three editing operations (insertion, deletion, 

permutation) and defined his method as edit distance. This 

distance compares two words by calculating the number of 

editing operations that transforms the wrong word to the 

correct word. This distance is called Damerau-Levenshtein 

distance. 

 Oflazer [4] proposed a new approach called “Error tolerant 

Recognition”, based on the use of a dictionary represented 

as finite state automata. According to this approach, the 

correction of an erroneous word is to browse an automata-

dictionary for each transition by calculating a distance 

called cut-off edit distance, and stack all the transitions not 

exceeding a maximum threshold of errors. Savary [5] 

proposed a variant of this method by excluding the use of 

cut-off edit distance. 

 Pollock and Zamora [6] have defined another way to 

represent a spelling error by calculating the so called alpha-

code (skeleton Key), hence the need for two dictionaries: a 

dictionary of words and other for alpha-codes. Therefore, to 

correct an erroneous word, we extract its alpha-code and 

comparing it to the alpha codes closest. This method is 

effective in the case of permutation errors. Ndiaye and 

Faltin [7] proposed an alternative method of alpha code, 

who defined a system of suitable spelling correction 

for learning the French language, based on the method of 

alpha code modified by combining other techniques such as 

phonetic reinterpretation, in case where the first method 

does not find solutions. 

   A critical analysis of existing systems for spell checker,    

  realized by Souque [8] and Mitton [9], confirms that these    

    systems have limitations in the proposed solutions to some  

     type of erroneous word. 

 
In the work presented in this paper, we propose a new 

metric approach inspired from the Levenshtein algorithm. This 
approach associates for each comparison between two words a 
weight, which is a decimal number and not an integer. This 
weight allows the better and perfect scheduling solutions 
proposed by the correcting system of the spelling errors. 

II. LEVENSHTEIN ALGORITHM 

The metric method developed by Levenshtein [3], measures 
the minimal number of elementary editing operations to 
transform one word to another. The minimum term was defined 
by Wagner and Fischer [1] thus proposing the 
programming dynamic technique to solve the edit distance. 
Elementary editing operations considered by Levenshtein are: 

 Insertion: Add a character '(مدرسشة) 'ش 

 Deletion: omission of the character '(مدسة) 'ر 

 Permutation: replacement of the character 'ر' with a 

 (مدسرة) 'س'
The calculation procedure of the Levenshtein distance 

between two strings   1 2… m of length   and 



         (IJARAI) International Journal of Advanced Research in Artificial Intelligence, 

          Vol. 1, No. 5, 2012 

 

    31 | P a g e  

www.ijacsa.thesai.org 

   1 2… n of length , consists in calculating recursively 
the edit distance between different substrings of and . 

The edit distance between the substrings X1
i 

= x1x2…xi 
andY1

j
=y1 y2...yj is given by the following recursive 

relationship: 

D(i,j)= D(X1
i
, Y1

j
) 

D(i,j)= min   (     )     (     ) 
               (       )         

 

With      {
                    

                                
 

 
and the following initializations: D(i,∅)=i and D(∅,j)=j, 

where ∅ represents the empty string. 

Example: 

TABLE I.  CALCULATION OF EDIT DISTANCE 

 

 

 

 

 

 

 

 

 

 

 

 

 
The matrix shows the recursive calculation of the 

Levenshtein distance between the erroneous word "مدسرة" and 
the dictionary word "مدرسة", the distance is 2. 

The limitation of such a spelling correction 
system using the edit distance is not to allow a correct order of 
suggested solutions to a set of candidates having the same edit 
distance.  

For example, we have the dictionary word "السيف" and the 
erroneous word "السيق", the Levenshtein method returns the 
same edit distance for the following set of words. 

 

 

 

 

 

 

 
In order to remedy to this limitation, we propose an 

adaptation of the Levenshtein distance. This adaptation gives a 
better scheduling of the solutions having the same edit distance. 

III. LEVENSHTEIN METHOD ADJUSTED 

To remedy to the scheduling problem, we introduced the 
frequency of the three type errors of the editing operations. 

We carried a test with four experienced users: they have 
typed a set of Arabic documents in order to calculate the 
frequency error of the editing operations. For this, we define 
the following three matrices: 

 Matrix frequency of insertion error. 

 Matrix frequency of deletion error. 

 Matrix frequency of permutation error. 

In this context, we modified the Levenshtein distance 
between two words by taking into account these three matrices. 

More formally, for two strings    1 2 3.. m of length   
and    1  2  3.. n of length , the calculation procedure of the 
measurement between X and Y is done in the same manner as 
that of Levenshtein algorithm, but introducing the matrices 
frequency of the editing errors. This measure ℳ(i,j) is given by 
the recursive relationship : 

ℳ(i,j)= min{ℳ(i-1,j)+1-ℱaj(xi-1) , ℳ(i,j-1)+ 

1-ℱsup(yj-1) ,ℳ(i-1,j-1)+cost} 

 

With      {
              

  ℱ      (         )     
 

And 

 ℱaj (xi) = the error frequency of adding the character 'xi' 

in a word. 

 ℱsup (yj) = the error frequency of deleting the 

character 'yj' in a word. 

 ℱpermut (xi / yj) = the error frequency of the permutation 

'xi' with the character 'yj'. 

For the algorithm, we take the following initializations: 

 ℳ (0,0)=0 

 ℳ (i,0)=ℳ (i-1,0)+ℱaj(xi-1) 

 ℳ (0,j)= ℳ (0,j-1)+ℱsup(yj-1) 

Example: 
The measure between two words "السيق" and "السيف" 

is calculated in the following matrix: 

 

 

 

 

 

 

 

 

 

 

 

 

 ة س ر د م    

  0 1 2 3 4 5 

 4 3 2 1 0 1 م

 3 2 1 0 1 2 د

 2 1 1 1 2 3 س

 2 2 1 2 3 4 ر

 2 2 2 3 4 5 ة

Erroneous word Dictionary words Edit distance 

 السيق

 1 الساق

 1 السوق

 1 السبق

 1 السيف

 1 السين

 1 الشيق

 ف ي س ل ا    

  0 0,1785 0,2525 0,2525 0,3771 0,3771 

 1,2660 1,2525 1,1414 0,9259 0 0,1111 ا

 2,1114 1,8754 1,0000 0 0,8454 0,2657 ل

 1,8754 0,8754 0 0,9855 1,1017 0,2802 س

 1,0000 0 0,8744 1,8599 1,2273 0,4058 ي

 0,9911 1,0000 1,8744 2,1533 1,2273 0,4058 ق



         (IJARAI) International Journal of Advanced Research in Artificial Intelligence, 

          Vol. 1, No. 5, 2012 

 

    32 | P a g e  

www.ijacsa.thesai.org 

The measure ℳ (السيف ,السيق) = 0,9911. 

IV. TESTS AND RESULTS 

The statistical study that we have done is to determine the 
frequency of errors editing operations (insertion, deletion, 
permutation). For this, we launched a typing test of Arabic 
documents for a set of users. 

Our training corpus is a set of Arabic documents typed by 
four expert users. From this corpus, we calculated the three 
matrices of error previously defined. 

TABLE II.  STATISTIC ON EDITING ERROR 

 
 

 

 

 

 

To test our method, we have performed a comparison 
between our approach and that of Levenshtein for scheduling 
of the solutions. The implementation of our approach was 
performed by a developed program in Java language. 

To compare our approach with that Levenshtein, we 
processed only 190 errors. The results obtained are summarized 
such as: 

 Of 190 erroneous words, our method correctly classified 

119 words in the first position, while the Levenshtein 

distance has only 19 classified in the first position. The rest 

of 119 was distributed on the 2nd, 3rd, 4th, 5th... 10th 

position. Statistically our method has proposed 62.63% of 

correct words in the first position against 10% for the 

Levenshtein. 

 Of 71 erroneous words, our method has ranked in second 

position 40 solutions, while for these 40 erroneous words 

Levenshtein distance was only 15 classified in 2nd position 

and the remaining 25 were distributed on the 3rd, 4th, 5th, 

..., 10th position with a rate of 21.05% against 7.89% for 

the Levenshtein. 

 Of 30 erroneous words, our method proposed 21 

corrections in the third position, while on these 21 words 

Levenshtein method proposed that 5 in 3rd position and the 

rest distributed over the posterior positions, giving a rate of 

11.05% for our method and 2.63% for the Levenshtein 

distance. 

 For the remaining 10 erroneous words, our method has 

positioned in the fourth positions whereas the edit distance 

has proposed the following: 3 in 4th, 3 in 5th, 2 in 8th and 2 

in 10th with a rate of 5.26% for our method and 1.57% for 

the Levenshtein. The table below summarizes the results 

obtained. 

TABLE III.  PERCCENTAGE OF SCHEDULING SOLUTIONS 

 

First 

position 

Second 

position 

Third 

position 

Fourth 

position 

Lev. Meth. 

Adjusted 
62,63% 21,05% 11,05% 5,26% 

Levenshtein 10% 8% 2,63% 1,57% 

V. CONCLUSION 

In conclusion, we note the interest of our method in 
scheduling of correct words for the first and second positions 
while for the third and fourth positions can justify this by the 
unavailability of frequencies (zero frequency) for some Arabic 
alphabetic character during execution of our test. 

REFERENCES 

[1] K.  Kukich, " Techniques for Automatically Correcting Words in Text ", 
ACM Computing Surveys,Vol.24,No.4,pp, 377-439,December 1992. 

[2] F.  J. Damerau, " A technique for computer detection and correction of 
spelling errors ". 1964, Communications of the Association for 
Computing Machinery. 

[3] V.Levenshtein, "Binary codes capable of correcting deletions, insertions 
and reversals",1966 SOL Phys Dokl, pp, 707-710. 

[4] K. Oflazer, "Error-tolerant Finite-state Recognition with Applications to 
Morphological Analysis and Spelling Correction",Computational 
Linguistics archive Volume 22 Issue 1,pp,73-89, March 1996 

[5] A. Savary, " Recensement et description des mots composés – méthodes 
et applications", 2000, version 1 - 24 Sep 2011, pp, 149-158. 

[6] J. J. Pollock and A. Zamora, "Automatic Spelling Correction in 
Scientific and Scholarly Text", Communications of the ACM, 27(4),pp, 
358-368,1984. 

[7] M. Ndiaye and A. V. Faltin, " Correcteur Orthographique Adapté à 
Apprentissage du Français ", 2004, Revue Bulag n°29, pp,117-134. 

[8] A. SOUQUE, “Approche critique des produits IdL:analyse comparative 
des correcteurs orthographiques de Word 2000 et OpenOffice 2.”, 
Master 1 Industries de la Langue, Université Stendhal-Grenoble 3,2006. 

[9] R. Mitton, " Ordering the suggestions of a spellchecker without using 
context ", Natural Language Engineering 15 (2),pp,173-192,2009. 

 

 

Editing operation Number of errors Total 

Insertion 202 

1420 Deletion 295 

Permutation 923 


