
(IJARAI) International Journal of Advanced Research in Artificial Intelligence,  

Vol. 1, No. 7, 2012 

 

14 | P a g e  

www.ijacsa.thesai.org 

Provenance and Temporally Annotated Logic 

Programming  

Anastasia Analyti
 

Institute of Computer Science, FORTH-ICS,  

Heraklion, Greece 

 

Ioannis Pachoulakis 

Dept. of Applied Informatics & Multimedia, TEI of Crete, 

Heraklion, Greece 

 

 
Abstract— In this paper, we consider provenance and temporally 

annotated logic rules (pt-logic rules, for short), which are definite 

logic programming rules associated with the name of the source 

that they originate and the temporal interval during which they 

are valid. A collection of pt-logic rules form a provenance and 

temporally annotated logic program P, called pt-logic program, 

for short. We develop a model theory for P and define its 

maximally temporal entailments of the form A:<S, ti>, indicating 

that atom A is derived from a set of sources S and holds at a 

maximal temporal interval ti, according to S. We define a 

consequence operator that derives exactly the maximally 

temporal entailments of P for a set of sources. We show that the 

complexity of the considered entailment is EXPTIME-complete. 

Keywords- Annotated logic programming; provenance and 

temporal information; model theory; consequence operator. 

I. INTRODUCTION 

Definite logic programming rules traditionally are not 
associated with the name of the source (provenance 
information) from which they originate and the temporal 
interval during which are valid. However, logic programming 
rules are usually derived from different sources that interact. 
Additionally logic programming rules may not always be 
valid, but be valid only for a specific temporal interval. 

A temporal interval has the form [t,t’], where t,t’ are time 
points and t ≤ t’. In this paper, time points are years. However, 
this assumption can be generalized and we may assume any 
set of time points that can be mapped one-to-one to the set 
natural numbers. We consider definite logic programming 
rules associated with a source name and a validity temporal 
interval, called provenance and temporally annotated logic 
rules, or pt-logic rules for short.  

We assume that pt-logic rules are applied similarly to 
definite logic programming rules but at each application new 
provenance and temporal information is derived for the 
derived atom A. In particular, derived atoms (pt-atoms) have 
the form A:<S, ti>, where ti is the temporal interval at which A 
is valid, as derived from a set of sources S.  

 Obviously, if A:<S, ti> is true then A:<S’, ti> is true, 
where S S’ and S’ is a subset of a set of considered source 
names. Additionally, if A:<S, ti> and A:<S’, ti’> are true, 
where temporal intervals ti, ti’ are overlapping or consecutive 
then  A:<S ∪ S’, ti”> is true, where ti” is the combination of ti 
and ti’. 

A collection of pt-logic rules form a provenance and 
temporally annotated logic program, called pt-logic program, 
for short. The models of pt-logic programs P are defined, as 
well as, the simple entailments and temporally maximal 
entailments of P. We show that P has a minimal model 
containing exactly the temporally maximal entailments of P. 

A set of three operators are defined which are applied on 
pt-atoms such that the closure of their composition derives the 
minimal model of P. We define a query language that consists 
of simple and composite queries, querying provenance and 
temporal information of derived pt-atoms based on certain 
conditions. 

We show that the complexity of simple entailment of a pt-
atom or temporally maximal entailment of a pt-atom from P is 
EXPTIME-complete. 

The rest of the paper is organized as follows: In Section II, 
we define pt-logic rules, pt-logic programs, pt-atoms, and the 
instantiation of a pt-logic program. In Section III, we provide a 
model theory for pt-logic programs P and the minimal model 
of P is defined.  

In Section IV, we define a consequence operator deriving 
the minimal model of P. In Section V, a query language for pt-
logic programs is defined. Section VI contains related work. 
Finally, Section VII contains directions for future work. 

II. PROVENANCE AND TEMPORALLY ANNOTATED LOGIC 

PROGRAMS 

In this Section, we define provenance and temporally 
annotated logic programs P. Additionally, we define the rules 
based on which the models of P are defined. We consider a set 
of variables Var, all preceded by the question mark symbol 
“?”.  

Definition 1. A provenance and temporally annotated 
logic rule, called pt-logic rule  for short, is a definite logic 
programming rule r without function symbols, associated with 
a source name nam and a temporal interval ti. In particular, it 
has the form <nam, ti>:  r.  

Definition 2. A provenance and temporally annotated logic 
program P, called pt-logic program for short, is a set of pt-
logic rules. 

Example 1. The following is a pt-logic program P.  

  



(IJARAI) International Journal of Advanced Research in Artificial Intelligence,  

Vol. 1, No. 7, 2012 

 

15 | P a g e  

www.ijacsa.thesai.org 

<Person, [1990,1994]>: has_job(Mary,Hairdresser). 

<Person, [1995,2002]>: has_job(Mary,Secretaty). 

<Person, [2006,2009]>: has_job(Mary,Hairdresser). 

<Person,[1999,2002]> :  extra_vacation(Mary). 

<Person, [2001,2003]>: has_job(Peter, Garbage_collector). 

<Person, [2005,2008]>: has_job(Peter,Bulider). 

<Job, [1980,1992]>: heavy_job(Hairdresser). 

<Job, [1980, 2001]>: heavy_job(Garbage_collector). 

<Job, [2006, 2012]>: heavy_job(Builder). 

<Vacation, [1988,2012]: extra_vacation(?x) ← 

 has_job(?x,?y), heavy_job(?y). 

 
Predicate has_job indicates the job of a person. Predicate 

heavy_job indicates that a job is heavy and unhealthy. Finally, 
predicate extra_vacation indicates that a person gets for some 
reason extra vacation days. 

 Convention: In the following by P, we will denote a pt-
logic program. 

We define NamesP to be the set of source names appearing 
in P. Additionally, we define definite(P) to be the definite 
logic program derived from P after ignoring the provenance 
and temporal annotations of P. Further, we denote by min

Pt  the 

minimum temporal point appearing in P and by max

Pt  the 

maximum temporal point appearing in P.    

Definition 3. A pt-atom of P is an atom A built using 
predicates and constants appearing in definite(P) and 
associated with (i) a set of source names that is a subset of 
NamesP  or a provenance variable S and (ii)  a temporal 
interval within ],[ maxmin

PP tt  or a temporal variable ti. In 

particular, it has the form A: <S, ti>. 

Below, we define the set of rules [P], built from ground pt-
atoms of P, based on which the models of P are defined. 

Definition 4. Let rP be a pt-rule <nam, ti>: A0 ← A1, …, 
An. We define [r]P to be the rule  B0:<S0, ti0> ← B1:<S1, ti1>, 
…, Bn :<Sn, tin>, where (i) B0 is derived from Ai by replacing 
all the variables in Ai by constants in definite(P), (ii)  Si



NamesP  s.t. S0 is the union of the sets S1, … , Sn  and  {nam}, 
and (iii) tii is a temporal interval within ],[ maxmin

PP tt   s.t. i0 is the 

intersection of the temporal intervals ti1, … , tin and ti. We 
define the instantiation of P, as follows: 

 Pr PrP


 ][][ . 

III. MODEL THEORY OF PT-LOGIC PROGRAMS 

In this Section, we present the model theory of pt-logic 
programs and entailment of pt-atoms. 

First, we present three auxiliary definitions. We say that 
two temporal intervals ti and ti’ are overlapping if they have at 
least one common time point. We say that two temporal 
intervals [t1,t2] and [t3,t4]  are consecutive if t3=t2+1. We say 
that a temporal interval [t1,t2] is included in a temporal interval 
[t3,t4]   if  t3 ≤ t1 and t2 ≤ t4. 

Definition 4.  An interpretation I of P is a set of ground 
pt-atoms of P s.t. (i) if A:<S, ti>, A:<S, ti’>  I then the 

temporal intervals ti, ti’ are neither overlapping nor 
consecutive and (ii)  if A:<S ,ti>I then, for all S’ s.t. S   S’ 

 NamesP, there exists A:<S’, ti’> I s.t. ti is included in ti’.  

Below, we define entailment of a pt-atom for an 
interpretation I of P. 

Definition 5. Let I be an interpretation of P and let A:<S, 
ti> be a ground pt-atom of P. We say that I (simply) entails 
A:<S, ti>, denoted by I |= A:<S, ti>, if there exists an A:<S, 
ti’>I s.t. ti is included in ti’. 

Additionally, we define an ordering on the interpretations 
of P. Let I, I’ be interpretations of P. We say that I ≤ I’ iff for 
each  A:<S, ti>  I  there exists an A:<S, ti’>  I  s.t. ti is 
included in ti’. It is easy to see that if I ≤ I’ and I‘≤ I then I= 
I’. 

Below, we define the models if a pt-logic program P, 

Definition 6. Let M be an interpretation of P. We say that 
M is a model of P if for each r= A0:<S0, ti0> ← A1:<S1, ti1>, 
…, An:<Sn, tin>[P], it holds that: if M |= Ai:<Si, tii>, for all 
i=1,...,n, then M |= A0:<S0, ti0>. We denote the set of models 

of P by M
P
. 

Let ti = [t,t’] be a temporal interval. We define start(ti)=t 
and end(ti)=t’. 

Below, we define simple entailment of a ground pt-atom 
from a pt-logic program P, as well as maximally temporal 
entailment. 

Definition 7.  We say that P (simply) entails a ground pt-
atom A:<S, ti>, denoted by P |= A:<S, ti>, iff for each M 

MP, M |= A:<S, ti>. We say that P maximally temporally 

entails a ground pt-atom A:<S, ti>, denoted by P |=
max

 A:<S, 

ti> iff (i) P |= A:<S, ti>, (ii) there exists M MP  s.t. M  does 

not entail  A:<S, [end(ti)+1, end(ti)+1]>, and (iii) there exists 

M MP s.t. M  does not entail  A:<S, [start(ti)-1, start(ti)-1]>. 

Below, we define the minimal model of a pt-logic program 
P w.r.t. ≤.. 

Definition 8. Let M1,..,Mn be all the models of P, we 
define the interpretation Mmin={ A:<S, ti> | there exist A:<S, 
tii> Mi, for all i=1,…,n, and ti is the intersection of ti1,…, 
tin}. 

Below, we show that Mmin is an interpretation of P. 

Proposition 1.  Mmin is an interpretation of P. 

Proof: Obviously, Mmin is a set of pt-atoms of P. Let 
M1,..,Mn be all the models of P. If A:<S, ti>  Mmin then there 
exists A:<S, tii>  Mi, for all i=1,…,n, and ti is the 
intersection of ti1, …, tin. Since M1,..,Mn interpretations of P, it 

holds that if A:<S ,ti>  Mmin then,  for all S’ s.t. S   S’ 

NamesP, there exists A:<S’, ti’>   Mmin s.t. ti is included in ti’. 
Additionally, since M1,..,Mn interpretations of P, there are no  
A:<S, ti>, A:<S, ti’>   Mmin  s.t. temporal intervals ti, ti’ are 
overlapping or consecutive.  

 Obviously, Mmin ≤ M, for all M MP. 

Below, we show that Mmin is a minimal model of P. 



(IJARAI) International Journal of Advanced Research in Artificial Intelligence,  

Vol. 1, No. 7, 2012 

 

16 | P a g e  

www.ijacsa.thesai.org 

Proposition 2. Mmin is a minimal model of P.  

Proof: Let M1,..,Mk be all the models of P and let r= 
A0:<S0, ti0> ← A1:<S1, ti1>, …, An:<Sn, tin>[P]. Assume that 
Mmin |= Ai:<Si, tii>, for all i=1,..n. Then, Mj |= Ai:<Si, tii>, for 
all j=1,..,k and i=1,…,n. Thus, Mj |= Ao:<S0, ti0>, for all 
j=1,…,k. Therefore, Mmin |= Ao:<S0, ti0>. 

In Proposition 3, below, we show that P and Mmin have the 
same simple entailments. 

 Proposition 3.  Let A:<S, ti> be a ground pt-atom. It holds 
that: P |= A:<S, ti> iff  Mmin |= A:<S, ti>. 

Proof:  

=>) Let P |= A:<S, ti>. Then, for each M MP, M |= 

A:<S, ti>. This means that for each M MP, there exists 

A:<S, ti’>M s.t. ti is included in ti’. Thus, by the definition 
of Mmin, there exists A:<S, ti”>  Mmin s.t. ti is included in ti”. 
Thus, Mmin |= A:<S, ti>. 

<=) Assume that Mmin |= A:<S, ti>. Then, there exists A:<S, 
ti’>  Mmin s.t. ti is included in ti’. Thus, by the definition of 

Mmin, for all M MP, there is A:<S, ti”>M s.t. ti is included 

in ti”. Therefore, P |= A:<S, ti>. 

In Proposition 4, below, we show that Mmin contains 
exactly the maximally temporal entailments of P. 

Proposition 4.  Let A:<S, ti> be a ground pt-atom. It holds 
that: P |=

max
 A:<S, ti> iff  A:<S, ti>Mmin. 

Proof:  
=>) Let P |=

max
 A:<S, ti>. This means that for each M 

MP, there exists A:<S, ti’> M s.t. ti is included in ti’. 

Additionally, there exists M  MP, that does not contain 

A:<S, ti’>M s.t. time point end(ti)+1 is contained in ti’ and 

there exists M MP, that does not contain A:<S, ti’>M s.t. 

time point start(ti)-1 is contained in ti’. Therefore, A:<S, ti>

Mmin. 

<=) Assume that A:<S, ti>Mmin. This means that for each 

M MP, there exists A:<S, ti’>M s.t. ti is included in ti’. 

Additionally, there exists M  MP, that does not contain 

A:<S, ti’>M s.t. time point end(ti)+1 is contained in ti’ and 
there exists M MP, that does not contain A:<S, ti’>M s.t. 
time point start(ti)-1 is contained in ti’. Therefore, P |=

max
 

A:<S, ti>. 

IV. COMPUTING THE MINIMAL MODEL OF A PT-PROGRAM 

In Section, we provide three operators s.t. the closure of 
their composition provides the minimal model of a pt-logic 
program P. 

We denote by QP the ground pt-atoms of P. We define the 
operator WP from the powerset of QP to the powerset QP, as 
follows: 

WP(Q)={ A:<S, ti>  | it exists A:<S, ti> ← A1:<S1, ti1>, …,   

An:<Sn, tin>[P] s.t.  

<Si, tii>Q, for all i=1,…,n} 

 
We now define the operator ZP from the powerset of QP to 

the powerset of QP, as follows: 

ZP(Q)={ A:<S, ti>  | it exists A:<S’, ti>Q and  

S’ SNamesP} 
Before, we define the third operator, we provide a few 

definitions. Let Q  QP. We define intervals(Q,S,A)={ti | it 

exists A:<S, ti> Q}. Let TI be a set of temporal intervals. 
The maximal subset of TI w.r.t. a temporal interval tiTI is a 
set B that (i) contains ti and (ii) if ti’B and there exists a ti” 
TI s.t. ti’ and ti” are overlapping or consecutive then ti”B. 
The maximal interval of TI w.r.t. a temporal interval tiTI, 
denoted by max_interval(TI,ti), is the temporal interval [t,t’] 
formed by the minimum time point t and maximum time point 
t’ appearing  in a maximal subset of TI w.r.t. ti.  

We are now ready to define the operator RP from the 
powerset of QP to the powerset of QP as follows: 

RP(Q)={ A:<S, ti>  | it exists A:<S, ti’>Q and ti= 

max_interval(intervals(Q,S,A),ti’) } 
Finally, we define the consequence operator TP from the 

powerset of QP to the powerset of QP as the composition of 
WP, ZP, and RP. In particular, TP(Q)= RP(ZP(WP(Q))), for Q  
QP. 

It can be easily seen that the consequence operator TP is 
monotonic with respect to ≤. That is, if Q,Q’  QP s.t. Q  Q’ 
then TP(Q) ≤ TP(Q’). We will show that the closure of operator 
TP coincides with Mmin. 

Proposition 4.  Let M be an interpretation of P. It holds 
that M is a model of P iff TP(M) ≤M. 

Proof: 

=>) Let M be a model of P. Consider the rules A:<S, ti> ← 
A1:<S1, ti1>, …, An:<Sn, tin>[P] s.t. Ai:<Si, tii>M, for all 
i=1,…,n. Then, M |= A:<S, ti>. Since M is an interpretation of 
P, M satisfies each pt-atom in TP(M). Thus, TP(M) ≤M. 

<=) Assume that TP(M) ≤M. We need to show that if 
A:<S, ti> ← A1:<S1, ti1>, …, An:<Sn, tin>[P] s.t. M |=Ai:<Si, 
tii>, for all i=1,…,n, then M |=A:<S, ti>. Note that there exists  
A:<S, ti’> ← A1:<S1, ti’1>, …, An:<Sn, ti’n>[P] s.t. Ai:<Si, 
ti’i>M, for all i=1,…,n.. Note that TP(M) is an interpretation 
of P and that TP(M) |= A:<S, ti’>. Since TP(M) ≤M,  it follows 
that M |= A:<S, ti’>. Now, since ti is included in ti’, it follows 
that M |= A:<S, ti>. Thus, M is a model of P. 

Below, we show that Mmin can be computed as the closure 
of the TP operator. 

Proposition 5.  Mmin=TP
↑ω

({}). 

Proof: From Proposition 4, it follows that Mmin= 
minimal≤({M | M is an interpretation of P and TP(M)≤M}). 
Since Mmin is a model of P, it follows from Proposition 4 that 
TP(Mmin)≤Mmin. Further note that since the operator TP is 
monotonic, it follows that TP(TP(Mmin)) ≤ TP(Mmin.). 
Additionally, TP(Mmin) is an interpretation of P. Thus, Mmin≤ 
TP(Mmin). Therefore, TP(Mmin)=Mmin. Thus, Mmin=TP

↑ω
({}). 

Note that TP
↑ω

 QP. 

Proposition 6.  Simple and maximally temporal entailment 
of a ground pt-atom from a pt-logic program P is EXPTIME-
complete w.r.t. the size of P. 



(IJARAI) International Journal of Advanced Research in Artificial Intelligence,  

Vol. 1, No. 7, 2012 

 

17 | P a g e  

www.ijacsa.thesai.org 

Proof: Membership) Note that the computation of 
Mmin=TP

↑ω
({}), involves the application of at most an 

exponential number of rules applied at most exponential 
number of times. Obviously, the computation of 
max_interval(intervals(Q,S,A),ti’) is polynomial w.r.t. the size 
of Q. Therefore, the computation of Mmin is in EXPTIME. 

Hardness) It follows directly by the fact that datalog is 
program-complete for EXPTIME [1]. 

V. A QUERY LANGUAGE FOR PT-LOGIC PROGRAMS 

Below, we define the queries that can be applied to a pt-
logic program P. 

A simple pt-query of type 1 has the form SQ=A:<?S, ti>, 
where A:<?S, ti> is a pt-atom of P, ti is a temporal interval, 
and ?S is a provenance variable. The answers of SQ w.r.t. P, 
denoted by AnsP(SQ), is the set of mappings v from the 
variables of A to the constants of definite(P) and from ?S to a 
subset of NamesP s.t. P |= v(A:<?S, ti>). 

A simple pt-query of type 2 has the form SQ=A:<?S, ?ti>, 
where A:<?S, ?ti > is a pt-atom of P (note that ?S is a 
provenance variable and ?ti is a temporal variable). The 
answers of SQ w.r.t. P, denoted by AnsP(SQ), is the set of 
mappings v from the variables of A to the constants of 
definite(P), from ?S to a subset of NamesP, and from ?ti to a 
temporal interval s.t. P |=

max 
v(A:<?S, ?ti>). 

A simple pt-query of type 3 has the form SQ=A1:<?S1, ?ti> 

… An:<?Sn, ?ti> where each Ai:<?Si, ?ti > is a pt-atom of 
P. The answers of SQ w.r.t. P, denoted by AnsP(SQ), is the set 
of mappings v s.t. if ui

 AnsP(Ai:<?Si, ?ti>) s.t.  u1,…,un 
coincide on the common variables of Ai and ?Si then v 
coincides with ui on the variables of Ai and ?Si and v(?ti) is the 
intersection of  u1(?ti),…, un(?ti), if such intersection exists. 

A simple pt-query of type 4 has the form SQ=A1<?S1, ?ti> 

 …  An:<?Sn, ?ti>  included(?ti, [t,t’]), where each 
Ai:<?Si, ?ti > is a pt-atom of P and [t,t’] is a temporal interval. 
The answers of SQ w.r.t. P, denoted by AnsP(SQ), is the set of 
mappings v s.t. if ui

AnsP(Ai:<?Si, ?ti>) s.t.  u1,…,un coincide 
on the common variables of Ai and ?Si then v coincides with ui 
on the variables of Ai and ?Si and v(?ti) is the intersection of  
u1(?ti),…, un(?ti) and [t,t’], if such intersection exists. 

A complex pt-query has the form CQ=SQ1… SQn 
filter, where SQi are simple pt-queries, each having a different 
temporal variable, and filter is an expression of the following 
EBNF grammar: 

term:=duration(?ti) | start(?ti) | end(?ti) | c, where ?ti is a 
temporal variable and c is  a decimal. 

complex_term:= term | complex_term (+ | - | * | /) complex_term 

temp_comparison:= complex_term (< | > | = | ≤ | ≥ | ≠)  

complex_term 

prov_comparison:= (?S ( | |  |  | =) ?S’) | (?S ( | | 

 |  | =) S”) , where ?S, ?S’ are 

provenance variables and S” NamesP. 

  filter:= temp_comparison  | prov_comparison |  filter ( |

 ) filter, 

such that each provenance and temporal variable appearing 
in filter appears in SQ1… SQn .   

The answers of CQ w.r.t. P, denoted by AnsP(CQ), is the 
set of mappings v s.t. (i) if ui

AnsP(SQi) s.t. u1,…,un coincide 
on the common variables of SQi then v coincides with ui on the 
variables of SQi and (ii) v(filter) holds. 

Consider a simple or complex query CQ. Let v,u 

AnsP(CQ). We say that answer v is more informative than 
answer u, denoted by v ≤ u, if (i) v, u coincide on their no 
provenance variable mappings, and (ii) for each provenance 
variable ?S  domain(v), it holds that v(?S)   u(?S). We 

define AnswerP(CQ)=minimal≤(AnsP(CQ)) and we consider 
that these are the desired answers. This is because if P |= 
A:<S, ti> then P |=A:<S’, ti>, for each S  S’NamesP . 

Example 2. Consider the simple query SQ = 
extra_vacation( Peter): <?S, ?ti>. Then, the answers to this 
query is (i) the mapping v, where v(?S)={Person, Job, 
Vacation} and v(?ti)= [2001,2001], and (ii) the mapping u, 
where u(?S)={Person, Job, Vacation} and u(?ti)=[2006,2008]. 

Consider now the simple query SQ = extra_vacation( 
Mary):<?S, ?ti>. Then, the answers to this query is (i) the 
mapping v, where v(?S)={Person} and v(?ti)= [1999,2002], 
and (ii) the mapping u, where u(?S)={Person, Job, Vacation} 
and u(?ti)=[1900,1992]. 

Consider now the simple query SQ = extra_vacation( 
Mary):<?S, ?ti>  extra_vacation(Peter):<?S’,?ti>, requesting 
the common temporal intervals that Mary and Peter get extra 
vacation days, independently of the set of sources that this 
information is derived. Then, the answer to this query is the 
mapping v, where v(?ti)=[2001,2001], v(?S)={Person} and 
v(?S’)={Person, Job, Vacation}. 

Consider now the simple query SQ = extra_vacation( 
Mary):<?S, ?ti>   extra_vacation(Peter):<?S, ?ti>, 
requesting the common temporal intervals that Mary and Peter 
get extra vacation days, as derived from the same set of 
sources. Then, the answer to this query is the mapping v, 
where v(?ti)=[2001,2001] and v(?S)={Person, Job, Vacation}. 

Consider now the complex query CQ= has_job(Mary, 
?x):<?S, ?ti>  included(?ti, [1993,2008])  ?S={Person} , 
requesting the temporal intervals that Mary has a job from 
1993 to 2008, as derived from the source Person. The answers 
to this query is (i) the mapping v, where v(?ti)=[1993, 2002] 
and v(?S)={Person} and (ii) the mapping u, where 
u(?ti)=[2006,2008] and u(?S)={Person}. 

Consider now the complex query CQ = extra_vacation( 
Mary): <?S, ?ti>   extra_vacation(Peter):<?S, ?ti’> 

start(?ti) ≤ end(?ti’)  start(?ti’) ≤ end(?ti’) , requesting the 
temporal intervals that Mary and Peter get extra vacation days, 
as long as these overlap, and as derived from the same set of 
sources.  

Then, the answer to this query is the mapping v, where 
v(?ti)=[2001,2001], v(?ti’)=[1999,2002], and v(?S)={Person, 
Job, Vacation}. 

 



(IJARAI) International Journal of Advanced Research in Artificial Intelligence,  

Vol. 1, No. 7, 2012 

 

18 | P a g e  

www.ijacsa.thesai.org 

VI. RELATED WORK 

             In this Section, we discuss related work. 

Flouris et al. [2] add provenance information to RDF 
theory [3], [4]. In particular, they extend RDF triples to RDF 
quadruples, where the fourth element is the set of graph names 
that participated in the derivation of the RDF triple through a 
limited subset of the RDFS entailment rules. They also discuss 
atomic update operations (i.e. inserts and deletes) of the RDF 
quadruples. Comparing to this paper, [2] does not present a 
model theory and does not consider the temporal domain. Note 
that our approach can also be applied to RDFS, as RDFS 
inference rules can be expressed through definite logic 
programming rules [5].  

In [6], we extend extended logic programming rules [6] 
with their validity temporal intervals. We consider derivations 
based on temporal time points and Answer Set Programming 
[7], and provide an algorithm that returns the maximal 
temporal intervals that a literal is true.  Present work has a 
different model theory and implementation than [6], as we 
consider only definite logic programming rules and on the 
other hand we also consider the provenance domain. Yet, the 
query language presented here is an extension of the query 
language presented in [6]. 

In [8], the authors present a general framework for 
representing, reasoning, and querying with RDFS annotated 
data on the Semantic Web. They show that their formalism 
can be instantiated on the temporal, fuzzy, and provenance 
domain. The authors can associate RDF triples with their 
validity temporal intervals and supportive sources and apply 
the RDFS inference rules (which are always valid). Yet, [8] 
does not support simple queries of type 4. Moreover, our 
query answering is more efficient, since during query 
answering, we directly work on maximal temporal intervals. In 
[8], all entailed temporal intervals returned by the query are 
considered and then the maximal ones are returned. Further, 
our semantics is different than [8]. For example, consider the 
annotated RDF triples p(a,b) :<n,  [1990, 2000]> and q(c,d): 
<n, [1995, 2010]>. Then, according to [8], the answer to  
query p(a,b):<?S, ?ti>    q(c,d): <?S, ?ti’>    end(?ti) < 
start(?ti’)   will provide the mapping v s.t. v(?ti)=[1990,1994] 
and v(?ti')=[1995, 2010]. In our case, we will provide no 
answers, since 2000 > 1995. 

In [9], the authors present a framework to incorporate 
temporal reasoning into RDFS. The authors associate RDF 
triples with their validity temporal interval and apply the 
RDFS inference rules (which are always valid). Unlike our 
work, their semantics is based on time points and not on 
temporal intervals. Additionally, [9] does not consider the 
provenance domain. Further, it does not support simple 
queries of type 3 and type 4 and the filter condition is limited. 

In [10], the authors extend RDF graphs with temporal 
information, by associating RDF triples with their validity 
interval. They consider any entailment regime that can be 
expressed through definite rules A0 ← A1, …, An, where Ai is 
an RDF triple. Each such rule is replaced by the temporal rule 
A0:[max(t1,..., tn), min(t’1,..., t’n)] ← A1:[ t1, t’1],..., An:[ tn, t’n]. 
These rules are applied recursively, until a fixpoint is reach. 

Then, maximal validity temporal intervals for each derived 
RDF triple are produced. Yet, this work does not present a 
model theory based on temporal intervals and does not 
consider the provenance domain. Additionally, it does not 
support simple temporal queries of type 4 and the filter 
condition is left unspecified. 

Work in [11] provides a framework to support spatial and 
temporal analysis over RDFS data. With respect to the 
temporal component, [11]  is similar to [10], as it also 
computes the maximal validity temporal intervals of derived 
RDF triples, using the RDFS entailment rules. Yet, [11] does 
not consider the provenance domain.  

Finally, we would like to note that our theory cannot be 
considered as a special case of annotated logic programming 
[12], as the model theory and the operational semantics are 
different there. 

VII. CONCLUSION 

In this paper, we have presented a model theory and the 
operational semantics of a pt-logic program P, that is a set of 
definite logic programming rules, annotated with the source 
that have been derived and their validity temporal interval. We 
have defined the simple and maximally temporal entailments 
of P, showing that there exists a minimal model Mmin that 
contains exactly these maximal entailments. Additionally, we 
defined a consequence operator whose closure coincides with 
Mmin. Further, we showed that simple and maximally temporal 
entailment from a pt-logic program P is EXPTIME-complete 
w.r.t. the size of P. A query language for our framework is 
proposed. 

As future work, we plan to extend our theory to extended 
logic programs.  Further, we plan to add additional parameters 
to definite logic programming rules such that space and trust. 

REFERENCES 

[1] Evgeny Dantsin, T. Eiter, G. Gottlob, and A. Voronkov: “Complexity 
and expressive power of logic programming”. ACM Comput. Surv. 
33(3),2001,pp. 374-425. 

[2] G. Flouris, I. Fundulaki, P. Pediaditis, Y. Theoharis , and V. 
Christophides}, "Coloring RDF Triples to Capture Provenance", 8th 
International Semantic Web Conference (ISWC-2009), 2009, pp. 196-
212. 

[3] G. Klyne and J. J. Carroll, "Resource Description Framework (RDF): 
Concepts and Abstract Syntax”, W3C Recommendation, 10 February 
2004, available at http://www.w3.org/TR/2004/REC-rdf-concepts-
20040210/. 

[4] Patrick Hayes, "RDF Semantics", W3C Recommendation, 10 February 
2004, available at http://www.w3.org/TR/2004/REC-rdf-mt-20040210/. 

[5] G. Ianni, A. Martello, C. Panetta, and G. Terracina, "Efficiently 
Querying RDF(S) Ontologies with Answer Set Programming", Journal 
of Logic and Computation, 19(4), 2009, pp. 671-695. 

[6] A. Analyti and I. Pachoulakis, “Temporally Annotated Extended Logic 
Programs”, accepted to International Journal of Advanced Research in 
Artificial Intelligence (IJARAI), 2012. 

[7] M. Gelfond and V. Lifschitz, "Classical Negation in Logic programs and 
Disjunctive Databases", New Generation Computing, 9, 1991, pp. 365-
385. 

[8] A. Zimmermann, N. Lopes, A. Polleres, and U. Straccia, "A General 
Framework for Representing, Reasoning and Querying with Annotated 
Semantic Web Data", Journal of Web Semantics , 11, 2012, pp. 72–95. 



(IJARAI) International Journal of Advanced Research in Artificial Intelligence,  

Vol. 1, No. 7, 2012 

 

19 | P a g e  

www.ijacsa.thesai.org 

[9] C. Gutierrez, C. A. Hurtado, and A. A. Vaisman, "Introducing Time into 
RDF", IEEE Transactions on Knowledge and  Data Engineering, 19(2), 
2007, 207-218. 

[10]  B. Motik, "Representing and Querying Validity Time in RDF and 
OWL:  A Logic-Based Approach", 9th International Semantic Web 
Conference (ISWC-2010), 2010, pp. 550-565. 

[11] M. Perry, A. P. Sheth, F. Hakimpour, and P. Jain, "Supporting Complex 
Thematic, Spatial and Temporal Queries over Semantic Web Data", 2nd  
International Conference on GeoSpatial Semantics (GeoS-2007), 2007, 
pp. 228-246. 

[12]  Michael Kifer and V. S. Subrahmanian, “Theory of Generalized 
Annotated Logic Programming and its Applications”, Journal of Logic 
Programming, 12(3&4), 1992, pp. 335-367. 

AUTHORS PROFILE 

Anastasia Analyti earned a B.Sc. degree in Mathematics from University of 

Athens, Greece and a M.Sc. and Ph.D. degree in Computer Science from 
Michigan State University, USA. She worked as a visiting professor at the 

Department of Computer Science, University of Crete, and at the Department 

of Electronic and Computer Engineering, Technical University of Crete. Since 
1995, she is a principal researcher at the Information Systems Laboratory of 

the Institute of Computer Science, Foundation for Research and Technology - 

Hellas (FORTH-ICS). Her current interests include reasoning on the Semantic 
Web, modular web rule bases, non-monotonic-reasoning, faceted metadata 

and semantics, conceptual modelling, contextual organization of information, 

information integration and retrieval systems for the web, interoperability of 
heterogeneous and distributed information bases, and biomedical information 

systems. She has participated in several research projects and has published 
over 55 papers in refereed scientific journals and conferences. 

Ioannis Pachoulakis received a B.Sc. in Physics (1988) at the University of 

Crete, Greece, and a Ph.D. in Astrophysics (1996) and an M.Sc. in 
Engineering (1998), both from the University of Pennsylvania in the U.S.A. 

Since 2001, he serves as an Assistant Professor at the Department of Applied 

Informatics and Multimedia at TEI of Crete with mainstream interests in 
realistic multimedia applications, virtual reality and multimedia applications 

for science. 

 


