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Abstract— Extended logic programs (ELPs) are a set of logic 

rules with strong negation   allowed in the bodies or head of the 

rules and weak negation ~ allowed in the bodies of the rules. 

ELPs enable for various forms of reasoning that cannot be 

achieved by definite logic programs. Answer Set Programming 

provides a widely acceptable semantics for ELPs. However, ELPs 

do not provide information regarding the temporal intervals that 

derived ELP literals or weakly negated ELP literals are valid. In 

this paper, we associate ELP rules with their validity temporal 

interval, resulting in a temporally annotated logic program. A 

ground temporal literal has the form L:i, where L is a ground 

ELP literal or weakly negated ELP literal and i is a temporal 

interval. We define (simple) entailment and maximal entailment 

of a ground temporal literal L:i from  a temporally annotated 

logic program C. Both kinds of entailment are based on Answer 

Set Programming. Additionally, we provide an algorithm that for 

an ELP literal or a weakly negated ELP literal L returns a list 

with all temporal intervals i such that a temporally annotated 

logic program C maximally entails L:i. Based on this algorithm, 

the answer of various kinds of temporal queries can be provided. 

Keywords- Extended logic programs; validity temporal intervals; 

temporal inference; query answering. 

I. INTRODUCTION 

Extended logic programs (ELPs) are a set of logic rules 
with strong negation allowed in the bodies or head of the 
rules and weak negation ~ allowed in the bodies of the rules 
[1].  ELP rules are assumed to be valid at the time of their 
evaluation but no historical information is derived as it is not 
known if these rules were valid in the past. However, each 
ELP rule is usually valid at a certain interval of time. In this 
paper, we associate ELP rules with their validity temporal 
interval. Thus, derived ELP literals and weakly negated ELP 
literals are associated with the temporal intervals at which they 
are valid.  A temporal interval has the form [t1,t2], where t1,t2 

are time points s.t. t1 ≤  t2 and it includes all time points t s.t. t1 

≤ t ≤  t2 In this paper, time points are  years but they can also 
be dates, date times, etc. In general, we assume that the set of 
time points is a discrete linearly ordered domain that can be 
mapped to the set of integers through a bijective mapping. 

In particular, ELP logic rules, associated with their validity 
temporal interval, form a temporally annotated logic program. 
A ground temporal literal has the form L:i, where L is a 
ground ELP literal or weakly negated ELP literal and i is a 
temporal interval. We define (simple) entailment of a ground 
temporal literal L:i from  a temporally annotated logic 
program C expressing that according to C, L is true during all 
time points within i. We define maximal entailment of a 
ground temporal literal L:i from  a temporally annotated logic 
program C, expressing that according to C, L is true during all 

time points within i but L is not true at the time point before i 
and at the time point after i. Both kinds of entailment are 
based on Answer Set Programming [1]. The complexities of 
simple and maximal entailment of ground temporal literals are 
provided showing that simple temporal entailment is not 
harder than entailment of a ground ELP literal from an ELP 
logic program, based on Answer Set Programming.  

We provide an algorithm  that for an ELP literal or a 
weakly negated ELP literal L returns a list with all temporal 
intervals i such that a temporally annotated logic program C 
maximally entails L:i. Based on this algorithm, the answer of 
various kinds of temporal queries can be provided. For 
example, the user may request the maximal temporal intervals 
that a number of ELP literals or weakly negated ELP literals 
hold concurrently within a temporal interval of interest. 
Additionally, the user may request the maximal temporal 
intervals that a number of ELP literals or weakly negated ELP 
literals hold, provided that these intervals are associated with 
complex relations concerning their duration, start and end 
points. In particular, we define four types of simple temporal 
queries. Additionally, we define a complex temporal query as 
a conjunction of simple temporal queries and a filter condition 
that provides for various kinds of checks regarding the 
duration, start and end points of the temporal intervals 
returned by the query.  The filter condition can express any 
combination of Allen's interval algebra relations [2]. 

To the best of our knowledge, there is no work concerning 
entailment from ELP rules associated with their validity 
temporal intervals. The rest of the paper is organized as 
follows: In Section II, we define temporally annotated logic 
programs and entailment of temporal literals. Additionally, we 
provide an algorithm that for an ELP literal or weakly negated 
ELP literal L returns a list with all temporal intervals i such 
that a temporally annotated logic program C maximally entails 
L:i. In Section III, we define various kinds of temporal queries 
and their answers. In Section IV, we present related work. 
Finally, Section V concludes the paper.  

II. TEMPORALLY ANNOTATED LOGIC PROGRAMS & 

ENTAILMENT  

In this section, we define temporally annotated logic 
programs and entailment of temporal literals. 

We consider a vocabulary V=<Pred,Const>, where Pred is 
a set of predicate symbols and Const is a set of constants. We 
consider a set of variable symbols Var. Variables are preceded 
by the question mark symbol “?”. Additionally, we consider a 
maximal temporal interval [tmin, tmax], within which all 
temporal inferences are made. 
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Definition 1 [temporally annotated logic rule] 

A temporally annotated logic rule over a vocabulary V is 
an ELP rule over V associated with a temporal interval  i, i.e. it 
has the form i:r where r is an ELP rule and i=[t1,t2], where t1 ≤ 
tmin   and t2 ≤  ttmax. 

Definition 2 [temporally annotated logic program] 

A temporally annotated logic program C over a 
vocabulary V is a set of temporally annotated logic rules over 
V.  

Example 1 An example  temporally annotated logic 
program C over V=<Pred, Const>, where Pred are all 
predicates appearing in C and Const are all the  constants 
appearing in C, is the following (we consider tmin=1988 and 
tmax=2012): 

[1990,1994]: has_job(Mary, Hairdresser). 

[1995,2002]: has_job(Mary, Secretary).  

[2006,2009]: has_job(Mary, Hairdresser). 

[2001,2003]: has_job(Peter, Garbage_collector). 

[2005,2008]: has_job(Peter, Builder). 

[1980,1992]: heavy_job(Hairdresser). 

[1980,2000]: heavy_job(Garbage_collector). 

[1999,2012]: heavy_job(Builder). 

[1988, 1991]: vacation_days(?x,29) ← has_job(?x,?y),  

                               heavy_job(?y). 

[1992, 2012]: vacation_days(?x,27) ← has_job(?x,?y), 

                              heavy_job(?y). 

[1988, 1991]: vacation_days(?x,25) ← has_job(?x,?y),  

                             ~ heavy_job(?y). 

[1992, 2012]: vacation_days(?x,22) ← has_job(?x,?y),  

                             ~ heavy_job(?y). 

 
Predicate has_job(x,y) expresses that x has as job y. 

Predicate heavy_job(x) expresses that x is a heavy and 
unhealthy job. Predicate vacation_days(x,y) expresses that x is 
entitled to y vacations days per year.  

Convention: In the sequel, by C, we will denote a  
temporally annotated logic program and, by V=<Pred,Const>, 
we will denote the vocabulary of C. 

Below, we define the temporal projection of C at a certain 
time point t. 

Definition 3 [temporal projection] 

The temporal projection of C at a time point t is the 
extended logic program C(t)={r | i:r C and t i}. 

Example 2 Consider the temporally annotated logic 
program C of Example 1. Then, C(1994) is the following 
extended logic program: 

has_job(Mary, Hairdresser). 

heavy_job(Garbage_collector). 

vacation_days(?x,27) ← has_job(?x,?y),  heavy_job(?y). 

vacation_days(?x,22) ← has_job(?x,?y), ~ heavy_job(?y). 
A temporal literal over V has the form L:i, where L is an 

ELP literal or a weakly negated ELP literal over V and i a 
temporal interval or variable, called temporal variable. 

Let P be an extended logic program of a vocabulary 
V=<Pred,Const> and L be an ELP literal or a weakly negated 
ELP literal over V, we write P |=

ASP
 L if the grounded version 

of P over the constants in Const entails L under Answer Set 
Programming [1]. 

Definition 4  [temporal entailment] 

We say that C (simply) entails a ground temporal literal 
L:i, denoted by C |=  L:i, if for all t  i, C(t)  |=

ASP
 L. We say 

that C maximally entails a temporal literal L:[t1,t2], denoted by 

C |= max L:[t1,t2], if  

1. C |= L:[t1,t2],  

2.  if t1 > tmin then C(t1-1) |≠ 
ASP

 L, and 

3. if t2 < tmax then C(t2+1) |≠ 
ASP

 L. 

 
Example 3 Consider the temporally annotated logic 

program C of Example 1. Then, C |= vacation_days(Mary,22): 
[2006,2008] and C |=max vacation_days(Mary,22):[2006, 
2009]. Additionally, C |= vacation_days(Peter,27):[2006, 
2007] and C |=max vacation_days(Peter,27): [2005,2008].  

Proposition 1 Let L:i be a ground temporal literal over V. 
Deciding if C |= L:i is: 

1. co-NP-complete, in the case that C does not contain 

variables or the number of variables of each rule of C is 

less than a constant. 

2. co-NEXPTIME-complete, in the general case. 

 
Note that entailment of a ground ELP literal from an ELP 

program P, under Answer Set Programming is (i) co-NP-
complete, in the case that P does not contain variables or the 
number of variables of each rule of P is less than a constant 
and (ii) co-NEXPTIME-complete, in the general case [3]. 
Therefore, entailment of a ground temporal literal from a 
temporally annotated logic program does not increase the 
computational complexity over Answer Set Programming. 

Now, we provide a few definitions. Let i=[t1, t2] be a 
temporal interval. We define start(i)=t1 and end(i)=t2. Let L be 
an ELP literal or a weakly negated ELP literal, we denote by 
pred(L),  the predicate appearing in L. Let r be an ELP rule. 
We denote by Head(r), the head of r. 

Below, we present the algorithm FindMaximalIntervals(C, 
L) that, for an ELP literal or a weakly negated ELP literal L, 
returns a list with all temporal intervals i such that C |=max L:i. 
This algorithm calls the algorithm GetIntervals(C,p) which 
returns a list of the maximal temporal intervals i that define 
predicate p, i.e.  for all t i, p appears in the head of a rule of 
C(t). The list of returned temporal intervals i is sorted by 
start(i).   

Algorithm 1 GetIntervals(C,p), where p   Pred, first gets 
all intervals i s.t. there exist rule i:r   C with pred(Head(r)) 
=p. Then, it orders these intervals i based on start(i) and puts 
them in a list IL.  

Afterwards, it fetches intervals from IL in the stored order 
and combines the intervals that overlap or are consecutive, 
creating maximal intervals that puts them in a new list IL’. 
Finally, it returns IL’. 
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Algorithm 1 GetIntervals(C,p) 

Input: a temporally annotated logic program C and a 
predicate pPred 

Output: a sorted list of the maximal temporal intervals i 
that define p 

    Let S={i | i:r C and p=pred(Head(r))}. 

    If S={} then return(empty list). 

    Order intervals i S by start(i) and put them in list IL. 

    Let IL' be the empty list. 

    Get first interval i from IL. 

current_start=start(i). 

current_end=end(i). 

For each interval i taken in sequence from the list IL do 

If start(i) ≤ current_end+1 and end(i)>current_end then 

current_end=end(i). 

If start(i) > current_end+1 or i is the last interval in 

IL then 

Add at the end of IL’ the temporal interval 

[current_start, current_end]. 

current_start=start(i). 

current_end=end(i). 

If start(i) > current_end+1 and i is the last interval in IL 

then 

Add at the end of IL’ the temporal interval 

[start(i), end(i)]. 

EndFor 

return(IL’). 

 
Example 4 Consider the temporally annotated logic 

program C of Example 1. Then, GetIntervals(C, has_job) 
returns the list [[1990,2003], [2005,2009]].  

Algorithm 2 FindMaximalIntervals(C,L), where L is an 
ELP literal or a weakly negated ELP literal over V, first calls 
algorithm GetIntervals(C, pred(L)) which returns a list IL of 
maximal intervals i that define pred(L), ordered by start(i) 
(line 2). Assume that IL is the empty list (lines 3-7). If L is a 
weakly negated literal then the algorithm returns the list 
containing [tmin, tmax]. This is because in this case C |=max 
L:[tmin, tmax]. Otherwise, the algorithm returns the empty list. 
This is because in this case, there is no interval i s.t C |=max L:i. 
If IL is not the empty list then the algorithm fetches the first 
interval i of IL and if L is a weakly negated ELP literal and 
start(i) ≠ tmin then it puts  the interval [tmin, start(i)-1] in a new 
list IL’ (line 11). This is because for all time points t   [tmin, 
start(i)-1], it holds that C(t) |=

ASP
 L. Then, it fetches each 

interval [ts, te] from IL in the stored order.  

Afterwards, it examines each time point t [ts, te] and 
creates maximal temporal intervals i within [ts, te] such that for 
each t'   i, it holds that C(t) |=

ASP
 L (lines 13-21). These 

intervals are stored in order in IL’ with the difference that if 
the first of these intervals is consecutive with the previous 
interval in IL’ then it combines these. Note that if [ts, te] is the 
last temporal interval in IL, L is a weakly negated literal, and te 
< tmax then, for each t   [te+1, tmax], it holds that C(t) |=

ASP
 L. 

Thus, if C(te) |=
ASP

 L then it combines interval [te+1,tmax] with 
the last interval in IL’ (line 25), otherwise it adds interval 
[te+1, tmax] to the end of IL’ (line 27). If [ts, te] is not the last 

temporal interval in IL and L is a weakly negated literal then 
(i)  if C(te) |=

ASP
 L and [t's, te] is the last interval in IL’ then it 

replaces it by the interval [t's,t''s-1] (line 31) and (ii) if C(te) 
|≠

ASP
 L then it adds [te+1, t''s-1] to IL' (line 33), where [t''s, t''e] 

is the next to [ts, te] interval in IL. This, is because for all t   
[te+1, t''s-1], it holds that C(t) |=

ASP
 L. Then, this process 

continues until all intervals [ts, te] from IL are fetched. In the 
latter case, the temporal interval list IL' is returned. 

Algorithm 2 FindMaximalIntervals(C,L) 

Input: a temporally annotated logic program C and an  

ELP literal or a weakly ELP literal  L over V 

Output: a sorted list of maximal temporal intervals i s.t.   

for each t i, C(t) |=
ASP

 L 

( 1)  flag=TRUE. 

( 2)  IL= GetIntervals(C, pred(L)). 

( 3)  If IL is the empty list then 

( 4)  If L is a weakly negated ELP literal then 

( 5)  return(a list containing [tmin,tmax]). 

( 6)  else 

( 7)  return(empty list). 

( 8)  Let IL’ be the empty list. 

( 9)  Let i be the first item in IL. 

(10)  If L is a weakly negated ELP literal and  

         start(i) ≠tmin then 

(11)  Add [tmin, start(i)-1] to the end of IL’. 

(12)  For each interval [ts,te] taken in sequence from the  

         list IL do 

(13)  For each time point t=ts, ..., te do 

(14)   If C(t) |=
ASP

 L then 

(15)   If IL’ is not empty and flag=TRUE then 

(16)   Take the last item [t's, t'e] from IL’ and 

          replace it by [t's,t]. 

(17)   else 

(18)   Add interval [t,t] to the end of IL’. 

(19)   else /* C(t) |≠
ASP

 L */ 

(20)    flag=FALSE. 

(21)    EndFor 

(22)    If [ts,te] is the last interval  in IL then 

(23)    If L is a weakly negated ELP literal and  

           te ≠ tmax then 

(24)    If IL’ is not empty and flag=TRUE then 

(25)    Take the last item [t's, te] from IL’ and  

            replace it by [t's,tmax]. 

(26)     else 

(27)     Add interval [te+1,tmax] to the end of IL’. 

(28)     else /*  [ts,te] is not the last interval  in IL */  

(29)     If L is a weakly negated ELP literal then 

    (30)     If IL’ is not empty and flag=TRUE then 

(31)     Take the last interval [t's, te] from IL’ 

             and replace it by [t's, t''s-1], where [t''s,t''e]  

             is the next interval to [ts,te] in IL. 

(32)      else   

(33)     Add [te+1,t''s-1] to the end of IL' where 

           [t''s,t''e] is the next interval to [ts,te] in IL. 

 (34)    flag=TRUE. 
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 (35)    else /* L is not a weakly negated ELP literal */  

 (36)    flag=FALSE. 

 (37)   EndFor 

 (38)   return(IL’). 

 
Example 5 Consider the temporally annotated logic 

program C of Example 1. Then, FindMaximalIntervals(C 
has_job( Mary, Hairdresser)) returns the list [[1990,1994], 
[2006, 2009]] and FindMaximalIntervals(C, ~has_job(Mary, 
Hairdresser)) returns the list [[1988, 1989], [1995,2005], 
[2010,2012]].  

Based on Algorithm 2, the following complexity results 
are derived. 

Proposition 2 Let L:i be a ground temporal literal over V. 
Deciding if C |=

 max
 L:i is: 

1. in P
NP

,  in the case that C does not contain variables or 

the number of variables of each rule of C is less than a 

constant, and  

2. in P
NEXPTIME

, in the general case. 

 
We would like to note that we have investigated the case to 

define, for a temporally annotated logic program C, 
interpretations I containing temporal literals L:i s.t. if L:i,  L:i’

I then temporal intervals i,i’ have no common time points 
and they are not consecutive. We can decide if I is an answer 
set of C, using techniques similar to Answer Set 
Programming, but now we work on temporal intervals and not 
on time points. Then, C |= L:[t1,t2], if for all answer sets M of 
C it holds that M |= L:[t1,t2]. Additionally, C |=max L:[t1,t2], if 
(i) for all answer sets M of C, it holds that M |= L:[t1,t2], (ii) 
there is an answer set M of C such that M |≠ L:[t1-1,t1-1], and 
(iii) there is an answer set M of C such that M |≠ L:[t2+1,t2+1]. 
However, this technique has higher complexity and does not 
provides answer sets in the case that it exists a time point t 
such that C(t) has no (consistent) answer set. 

III. QUERY ANSWERING  

Below, we define the queries that can be imposed to a 
temporally annotated logic program C over a vocabulary 
V=<Pred, Const> and their answers. 

First, we define the intersection of a set of temporal 
intervals. The intersection of the temporal intervals [t1, 
t'1],...,[tn, t'n] is the interval [max({t1,...,tn}), min({t'1,..., t'n})], if 
max({t1,...,tn}) ≤ min({t'1,...,t'n}). Otherwise, it is undefined. 

A simple temporal query of type 1 has the form SQ=L:i, 
where L:i is a temporal literal with i being a temporal interval. 
The answers of SQ w.r.t. C, denoted by AnsC(SQ), is the set of 
mappings v from the variables of L to Const s.t.     C |= v(L:i). 

A simple temporal query of type 2 has the form SQ=L:?i, 
where L:?i is a temporal literal with ?i being a temporal 
variable. The answers of SQ w.r.t. C, denoted by AnsC(SQ), is 
the set of mappings v from the variables of L  to Const and 
from ?i to the set of temporal intervals s.t C |=max v(L:?i). 

The answer to this type of queries can be provided using 
Algorithm 2.  

A simple temporal query of type 3 has the form SQ=L1:?i 

 ... Ln:?i, where Li:?i is a temporal literal with ?i being a 
temporal variable. The answers of SQ w.r.t. C, denoted by 
AnsC(SQ), is the set of mappings v s.t. if vi   AnsC(Li:?i), for 
i=1,...,n, s.t. v1,...,vn coincide on the common variables of 
L1,...,Ln then v coincides with vi on the variables of Li, for 
i=1,...,n, and maps ?i to the intersection of the temporal 
intervals v1(?i),...,vn(?i), if such intersection exists. 

A simple temporal query of type 4 has the form SQ=L1:?i 
 ... Ln:?i   included(?i, [t1,t2]), where L1:?i  ...  Ln:?i 
is a simple temporal query of type 3 and t1,t2 are time points. 
The answers of SQ w.r.t. C, denoted by AnsC(SQ), is the set of 
mappings v s.t. if u  AnsC(L1:?i  ...  Ln:?i) then v 
coincides with u on the variables of Li, for i=1,...,n, and maps 
?i to the intersection of the temporal intervals u(?i) and [t1,t2], 
if such intersection exists. 

Example 6 Consider the temporally annotated logic 
program C of Example 1. Consider the simple temporal query 
of type 1 SQ=vacation_days(Mary,?x):[1994,2001], requesting 
the vacations days that Mary is entitled to continuously during 
the temporal interval [1994,2001]. Then, AnsC(SQ) is the 
mapping v s.t. v(?x)=22.  

Consider the simple temporal query of type 2 SQ= 
vacation_days(Mary,?x):?i, requesting the vacations days that 
Mary is entitled to and their maximal temporal intervals. Then, 
AnsC(SQ) is the set of mappings (i) v1 s.t. v1(?x)=29 and 
v1(?x)=[1990,1991], (ii) v2 s.t. v2(?x)=27 and v2(?i)= [1992, 
1992], (iii) v3 s.t. v3(?x)=22 and v3(?i)= [1993, 2002], and (iv) 
v4 s.t. v4(?x)=22 and v4(?x)=[2006, 2009]. 

Consider the simple temporal query of type 3 
SQ=has_job(Mary,?x):?i  has_job(Peter,?y):?i, requesting 
the jobs of Mary and Peter and their common validity 
temporal intervals.  Then, AnsC(SQ) is the set of mappings (i) 
v1 s.t. v1(?x)=Secretary,  v1(?y)=Garbage_collector, and 
v1(?i)=[2001,2002] and (ii) v2 s.t. v2(?x)=Hairdresser, v2(?y)= 
Builder, and v2(?i)=[2006,2008]. 

Consider the simple temporal query of type 4 
SQ=vacation_days(Mary,?x):?i  included(?i,[1991, 2001]), 
requesting the vacations days that Mary is entitled to and their 
maximal temporal intervals, within the temporal interval of 
interest [1991, 2001]. Then, AnsC(SQ) is the set of mappings 
(i) v1 s.t. v1(?x)=29 and v1(?x)=[1991,1991], (ii) v2 s.t. 
v2(?x)=27 and v2(?i)=[1992,1992], and (iii) v3 s.t. v3(?x)=22 
and v3(?i)=[1993,2001].  

A complex pt-query has the form CQ=SQ1
…  SQn 

filter, where SQi are simple temporal queries, each having a 
different temporal variable, and filter is an expression of the 
following EBNF grammar: 

term:=duration(?i) | start(?i) | end(?i) | c,  

       where ?i is a temporal variable and c is  a decimal. 

complex_term:= term | complex_term (+ | - | * | /)  

                         complex_term 
comparison:= complex_term (< |  > | = | ≤ | ≥ | ≠)   

                         complex_term 
  filter:= comparison  |  filter ( | ) filter, 
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such that each temporal variable appearing in filter appears 
in SQ1

… SQn . The answers of CQ w.r.t. C, denoted by 
AnsP(CQ), is the set of mappings v s.t. (i) if ui

AnsP(SQi), for 
i=1,…,n, s.t. u1,…,un coincide on the common variables of 
SQ1,…, SQn then v coincides with ui on the variables of SQi, 
for i=1,…,n, and (ii) v(filter) holds. 

Note that all Allen's interval algebra relations and their 
combinations can be expressed by a filter expression. For 
example, the Allen's algebra relation overlaps(?i,?j) can be 
expressed by the filter (start(?i) < start(?j))   (start(?j) < 
end(?i)). 

Example 7 Consider the temporally annotated logic 
program C of Example 1. Consider the complex query CQ= 
has_job(Mary,?x):?i   has_job(Peter,?y):?i'    (start(?i) ≤ 
end(?i'))   (end(?i) ≥ start(?i')), requesting the job of Mary 
and its validity temporal interval and  the job of Peter and its 
validity temporal interval, provided that these intervals have 
common time points.   Then, AnsC(SQ) is the set of mappings 
(i) v1 s.t. v1(?x)=Secretary, v1(?i)=[1995,2002], v1(?y)= 
Garbage_collector,  and v1(?i')=[2001, 2003] and (ii) v2 s.t. 
v2(?x)=Hairdresser, v2(?i)=[2006,2009], v2(?y)=Builder, and 
v2(?i')=[2005,2008].   

  Consider the complex query 

 iyPeterjobhasixMaryjobhasCQ ?:)?,(_?:)?,(_=  

 2)>)(?)(?())(?<)(?())(?>)(?(( istartiendiendiendistartistart

  2)>)(?)(?())(?)(?())(?)(?( istartiendiendiendistartistart  

 2)>)(?)(?())(?)(?())(?)(?( iendistartiendistartistartistart

2))>)(?)(?())()(?())(?)(?( iendistartiendistartistartistart   
 

requesting the job of Mary and its validity temporal 
interval and  the job of Peter and its validity temporal interval, 
provided that these intervals have more than 2 common time 
points.   Then, AnsC(SQ) is the mapping v s.t. v(?x)= 
Hairdresser,  v(?i)=[2006,2009], v(?y)=Builder, and v(?i')= 
[2005,2008]. 

IV. RELATED WORK 

Below, we review related work. 

In [4], the authors present a framework to incorporate 
temporal reasoning into RDFS [5][6]. The author associate 
RDF triples with their validity temporal interval and apply the 
RDFS inference rules (which are always valid). Like our 
work, their semantics is based on time points and not on 
temporal intervals. Yet, [4] does not consider strong and weak 
negation and validity intervals on logic rules. Additionally, it 
does not support simple queries of type 3 and type 4 and the 
filter condition is limited. 

Note that our approach can also be applied to RDFS, as 
RDFS inference rules can be expressed through definite rules 
[7]. 

In [8], the authors present a general framework for 
representing, reasoning, and querying with annotated data on 
the Semantic Web. They show that their formalism can be 
instantiated on the temporal, fuzzy, and provenance domain. 
The authors associate RDF triples with their validity temporal 
intervals and apply the RDFS inference rules (which are 

always valid). Unlike our work, their semantics is based on 
temporal intervals. Yet, [8] does not consider strong and weak 
negation and validity intervals on logic rules. Additionally, it 
does not support simple queries of type 4. Moreover, our 
query answering is more efficient, since during query 
answering, we directly work on maximal temporal intervals. In 
[8], all temporal intervals returned by the query are considered 
and then the maximal ones are returned. Further, our 
semantics are different than [8].  For example, consider the 
temporal RDF triples p(a,b) : [1990, 2000] and q(c,d): [1995, 
2010]. Then, according to [8],  the answer to  query p(a,b):?i 
q(c,d):?i'  end(?i) < start(?i') will provide the mapping v 
s.t. v(?i)=[1990, 1994] and v(?i')=[1995, 2010]. In our case, 
we will provide no answers, since 2000 > 1995. 

In [9], the authors extend RDF graphs with temporal 
information, by associating RDF triples with their validity 
interval. They consider any entailment regime that can be 
expressed through definite rules A0 ←A1,..., An, where Ai is an 
RDF triple. Each such rule is replaced by the temporal rule 
A0:[max(t1,...,tn),min(t'1,...,t'n)] ←A1:[t1,t'1] ,..., An:[tn, t'n]. 
These rules are applied recursively, until a fixpoint is reach. 
Then, maximal validity temporal intervals for each derived 
RDF triple are produced. Yet, [9] does not consider strong and 
weak negation and validity intervals on logic rules. 
Additionally, it does not support simple temporal queries of 
type 4 and the filter condition is left unspecified. 

Work in [10] provides a framework to support spatial and 
temporal analysis over semantic web data. With respect to the 
temporal component [10] is similar to [9], as it also computes 
the maximal validity temporal intervals of derived RDF 
triples, using the RDFS entailment rules. Yet, [10] does not 
consider strong and weak negation and validity intervals on 
logic rules.  

In [11], [12], the authors extend the RDFS and ter-Horst 
entailment rules [13] (which extend RDFS with terms from the 
OWL [14] vocabulary) with temporal information. In 
particular, they support inference rules having the general 
form of these, supported by [9]. However, they dot consider a 
query language. Additionally, they do not consider strong and 
weak negation and validity intervals on logic rules. 

In [15], we presented semantics for provenance and 
temporally annotated definite logic programs. However, [15] 
does not consider strong and weak negation, and reasons based 
on temporal intervals and not time points. The query language 
presented here is a restriction of the query language presented 
in [15] on the temporal component, with the difference that 
negated atoms in the queries are supported in the present 
work. 

In [16], the authors present a temporal algebra, where the 
validity temporal interval of two joined relational tuples with 
associated temporal intervals i1 and i2 is the intersection of i1 
and i2. This temporal algebra operation is also adopted by 
TSQL2 [17]. In general, TSQL2 is an extension of SQL that 
supports temporal and non-temporal tables. It also provides a 
temporal relational algebra that can undertake temporal 
selection of data and temporal joins based on temporal 
intersection. 
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V. CONCLUSION 

In this paper, we considered extended logic programming 
rules, associated with their validity temporal intervals, forming 
a temporally annotated logic program.  

We defined (simple) entailment and maximal entailment of 
a ground temporal literal L:i from  a temporally annotated 
logic program C. Both kinds of entailment are based on 
Answer Set Programming. The complexities of simple and 
maximal entailment of ground temporal literals are provided. 
Additionally, we provided an algorithm that for an ELP literal 
or a weakly negated ELP literal L returns a list with all 
temporal intervals i such that a temporally annotated logic 
program C maximally entails L:i.   Based on this algorithm, 
the answer of various kinds of temporal queries can be 
provided.  

Note that we do not support operations, such as next, until, 
since, sometimes, and always, supported by temporal logic (for 
an overview, see [18]). Additionally, we do not support 
inferences such that ``if something is true in one temporal 
interval then something else is true in another temporal 
interval", as supported by [19]. Yet, these works do not 
support the inferences made by our own model. 

As future work, we plan to consider logic programs 
annotated over multiple domains and not just the temporal 
domain. 

. Appendix: Proof of Propositions 

Proof of Proposition 1 

Hardness: Let P be an extended logic program over a 
vocabulary V=<Pred,Const>. Consider the temporally 
annotated logic program C over V that is derived from P by 
associating all rules with the validity temporal interval [t,t]. 
Let L be an ELP literal over V. Then, P |=

ASP
 L iff C |= L:[t,t]. 

In [3], it is shown that deciding if P |=
ASP

 L is  (i) co-NP-
complete, in the case that P does not contain variables or the 
number of variables of each rule of P is less than a constant 
and (ii) co-NEXPTIME-complete, in the general case.  
Therefore, deciding if a temporally annotated logic program C 
|= L:i, for a temporal literal L:i, is (i) co-NP-hard, in the case 
that C does not contain variables or the number of variables of 
each rule of C is less than a constant and (ii) co-NEXPTIME-
hard, in the general case.  

Membership: Guess a time point t within the temporal 
interval i and an interpretation I of C(t) over constants in 
Const. Deciding if I is an answer set of C(t) and I |≠ L is in (i) 
P, in the case that C(t) does not contain variables or the 
number of variables of each rule of C(t) is less than a constant 
and (ii) EXPTIME, in the general case [3]. Thus, deciding if C 
|≠ L:i is in (i) NP, in the case that C does not contain variables 
or the number of variables of each rule of C is less than a 
constant and (ii) NEXPTIME, in the general case. Therefore, 
deciding if  C |= L:i is in (i) co-NP, in the case that C does not 
contain variables or the number of variables of each rule of C 
are less than a constant and (ii) co-NEXPTIME, in the general 
case. 

Proof of Proposition 2  

In [3], it is shown that entailment of an ELP literal or a 
weakly negated ELP literal L from an extended logic program 
P, under Answer Set Programming, is (i) co-NP-complete, in 
the case that P does not contain variables or the number of 
variables of each rule of P is less than a constant and (ii) co-
NEXPTIME-complete, in the general case. Note that 
Algorithm 2 runs in polynomial time by calling oracles 
deciding if C(t) |=

ASP
 L. Therefore, the complexity of 

Algorithm 2 is in (i) P
NP

, in the case that C does not contain 
variables or the number of variables of each rule of C is less 
than a constant and (ii) P

NEXPTIME
, in the general case.  
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