
(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 1, No. 7, 2012

20 | P a g e

www.ijacsa.thesai.org

Temporally Annotated Extended Logic Programs

Anastasia Analyti

Institute of Computer Science, FORTH-ICS,

Heraklion, Greece

Ioannis Pachoulakis

Dept. of Applied Informatics & Multimedia, TEI of Crete,

Heraklion, Greece

Abstract— Extended logic programs (ELPs) are a set of logic

rules with strong negation  allowed in the bodies or head of the

rules and weak negation ~ allowed in the bodies of the rules.

ELPs enable for various forms of reasoning that cannot be

achieved by definite logic programs. Answer Set Programming

provides a widely acceptable semantics for ELPs. However, ELPs

do not provide information regarding the temporal intervals that

derived ELP literals or weakly negated ELP literals are valid. In

this paper, we associate ELP rules with their validity temporal

interval, resulting in a temporally annotated logic program. A

ground temporal literal has the form L:i, where L is a ground

ELP literal or weakly negated ELP literal and i is a temporal

interval. We define (simple) entailment and maximal entailment

of a ground temporal literal L:i from a temporally annotated

logic program C. Both kinds of entailment are based on Answer

Set Programming. Additionally, we provide an algorithm that for

an ELP literal or a weakly negated ELP literal L returns a list

with all temporal intervals i such that a temporally annotated

logic program C maximally entails L:i. Based on this algorithm,

the answer of various kinds of temporal queries can be provided.

Keywords- Extended logic programs; validity temporal intervals;

temporal inference; query answering.

I. INTRODUCTION

Extended logic programs (ELPs) are a set of logic rules
with strong negation allowed in the bodies or head of the
rules and weak negation ~ allowed in the bodies of the rules
[1]. ELP rules are assumed to be valid at the time of their
evaluation but no historical information is derived as it is not
known if these rules were valid in the past. However, each
ELP rule is usually valid at a certain interval of time. In this
paper, we associate ELP rules with their validity temporal
interval. Thus, derived ELP literals and weakly negated ELP
literals are associated with the temporal intervals at which they
are valid. A temporal interval has the form [t1,t2], where t1,t2

are time points s.t. t1 ≤ t2 and it includes all time points t s.t. t1

≤ t ≤ t2 In this paper, time points are years but they can also
be dates, date times, etc. In general, we assume that the set of
time points is a discrete linearly ordered domain that can be
mapped to the set of integers through a bijective mapping.

In particular, ELP logic rules, associated with their validity
temporal interval, form a temporally annotated logic program.
A ground temporal literal has the form L:i, where L is a
ground ELP literal or weakly negated ELP literal and i is a
temporal interval. We define (simple) entailment of a ground
temporal literal L:i from a temporally annotated logic
program C expressing that according to C, L is true during all
time points within i. We define maximal entailment of a
ground temporal literal L:i from a temporally annotated logic
program C, expressing that according to C, L is true during all

time points within i but L is not true at the time point before i
and at the time point after i. Both kinds of entailment are
based on Answer Set Programming [1]. The complexities of
simple and maximal entailment of ground temporal literals are
provided showing that simple temporal entailment is not
harder than entailment of a ground ELP literal from an ELP
logic program, based on Answer Set Programming.

We provide an algorithm that for an ELP literal or a
weakly negated ELP literal L returns a list with all temporal
intervals i such that a temporally annotated logic program C
maximally entails L:i. Based on this algorithm, the answer of
various kinds of temporal queries can be provided. For
example, the user may request the maximal temporal intervals
that a number of ELP literals or weakly negated ELP literals
hold concurrently within a temporal interval of interest.
Additionally, the user may request the maximal temporal
intervals that a number of ELP literals or weakly negated ELP
literals hold, provided that these intervals are associated with
complex relations concerning their duration, start and end
points. In particular, we define four types of simple temporal
queries. Additionally, we define a complex temporal query as
a conjunction of simple temporal queries and a filter condition
that provides for various kinds of checks regarding the
duration, start and end points of the temporal intervals
returned by the query. The filter condition can express any
combination of Allen's interval algebra relations [2].

To the best of our knowledge, there is no work concerning
entailment from ELP rules associated with their validity
temporal intervals. The rest of the paper is organized as
follows: In Section II, we define temporally annotated logic
programs and entailment of temporal literals. Additionally, we
provide an algorithm that for an ELP literal or weakly negated
ELP literal L returns a list with all temporal intervals i such
that a temporally annotated logic program C maximally entails
L:i. In Section III, we define various kinds of temporal queries
and their answers. In Section IV, we present related work.
Finally, Section V concludes the paper.

II. TEMPORALLY ANNOTATED LOGIC PROGRAMS &

ENTAILMENT

In this section, we define temporally annotated logic
programs and entailment of temporal literals.

We consider a vocabulary V=<Pred,Const>, where Pred is
a set of predicate symbols and Const is a set of constants. We
consider a set of variable symbols Var. Variables are preceded
by the question mark symbol “?”. Additionally, we consider a
maximal temporal interval [tmin, tmax], within which all
temporal inferences are made.

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 1, No. 7, 2012

21 | P a g e

www.ijacsa.thesai.org

Definition 1 [temporally annotated logic rule]

A temporally annotated logic rule over a vocabulary V is
an ELP rule over V associated with a temporal interval i, i.e. it
has the form i:r where r is an ELP rule and i=[t1,t2], where t1 ≤
tmin and t2 ≤ ttmax.

Definition 2 [temporally annotated logic program]

A temporally annotated logic program C over a
vocabulary V is a set of temporally annotated logic rules over
V.

Example 1 An example temporally annotated logic
program C over V=<Pred, Const>, where Pred are all
predicates appearing in C and Const are all the constants
appearing in C, is the following (we consider tmin=1988 and
tmax=2012):

[1990,1994]: has_job(Mary, Hairdresser).

[1995,2002]: has_job(Mary, Secretary).

[2006,2009]: has_job(Mary, Hairdresser).

[2001,2003]: has_job(Peter, Garbage_collector).

[2005,2008]: has_job(Peter, Builder).

[1980,1992]: heavy_job(Hairdresser).

[1980,2000]: heavy_job(Garbage_collector).

[1999,2012]: heavy_job(Builder).

[1988, 1991]: vacation_days(?x,29) ← has_job(?x,?y),

 heavy_job(?y).

[1992, 2012]: vacation_days(?x,27) ← has_job(?x,?y),

 heavy_job(?y).

[1988, 1991]: vacation_days(?x,25) ← has_job(?x,?y),

 ~ heavy_job(?y).

[1992, 2012]: vacation_days(?x,22) ← has_job(?x,?y),

 ~ heavy_job(?y).

Predicate has_job(x,y) expresses that x has as job y.

Predicate heavy_job(x) expresses that x is a heavy and
unhealthy job. Predicate vacation_days(x,y) expresses that x is
entitled to y vacations days per year.

Convention: In the sequel, by C, we will denote a
temporally annotated logic program and, by V=<Pred,Const>,
we will denote the vocabulary of C.

Below, we define the temporal projection of C at a certain
time point t.

Definition 3 [temporal projection]

The temporal projection of C at a time point t is the
extended logic program C(t)={r | i:r C and t i}.

Example 2 Consider the temporally annotated logic
program C of Example 1. Then, C(1994) is the following
extended logic program:

has_job(Mary, Hairdresser).

heavy_job(Garbage_collector).

vacation_days(?x,27) ← has_job(?x,?y), heavy_job(?y).

vacation_days(?x,22) ← has_job(?x,?y), ~ heavy_job(?y).
A temporal literal over V has the form L:i, where L is an

ELP literal or a weakly negated ELP literal over V and i a
temporal interval or variable, called temporal variable.

Let P be an extended logic program of a vocabulary
V=<Pred,Const> and L be an ELP literal or a weakly negated
ELP literal over V, we write P |=

ASP
 L if the grounded version

of P over the constants in Const entails L under Answer Set
Programming [1].

Definition 4 [temporal entailment]

We say that C (simply) entails a ground temporal literal
L:i, denoted by C |= L:i, if for all t  i, C(t) |=

ASP
 L. We say

that C maximally entails a temporal literal L:[t1,t2], denoted by

C |= max L:[t1,t2], if

1. C |= L:[t1,t2],

2. if t1 > tmin then C(t1-1) |≠
ASP

 L, and

3. if t2 < tmax then C(t2+1) |≠
ASP

 L.

Example 3 Consider the temporally annotated logic

program C of Example 1. Then, C |= vacation_days(Mary,22):
[2006,2008] and C |=max vacation_days(Mary,22):[2006,
2009]. Additionally, C |= vacation_days(Peter,27):[2006,
2007] and C |=max vacation_days(Peter,27): [2005,2008].

Proposition 1 Let L:i be a ground temporal literal over V.
Deciding if C |= L:i is:

1. co-NP-complete, in the case that C does not contain

variables or the number of variables of each rule of C is

less than a constant.

2. co-NEXPTIME-complete, in the general case.

Note that entailment of a ground ELP literal from an ELP

program P, under Answer Set Programming is (i) co-NP-
complete, in the case that P does not contain variables or the
number of variables of each rule of P is less than a constant
and (ii) co-NEXPTIME-complete, in the general case [3].
Therefore, entailment of a ground temporal literal from a
temporally annotated logic program does not increase the
computational complexity over Answer Set Programming.

Now, we provide a few definitions. Let i=[t1, t2] be a
temporal interval. We define start(i)=t1 and end(i)=t2. Let L be
an ELP literal or a weakly negated ELP literal, we denote by
pred(L), the predicate appearing in L. Let r be an ELP rule.
We denote by Head(r), the head of r.

Below, we present the algorithm FindMaximalIntervals(C,
L) that, for an ELP literal or a weakly negated ELP literal L,
returns a list with all temporal intervals i such that C |=max L:i.
This algorithm calls the algorithm GetIntervals(C,p) which
returns a list of the maximal temporal intervals i that define
predicate p, i.e. for all t i, p appears in the head of a rule of
C(t). The list of returned temporal intervals i is sorted by
start(i).

Algorithm 1 GetIntervals(C,p), where p  Pred, first gets
all intervals i s.t. there exist rule i:r  C with pred(Head(r))
=p. Then, it orders these intervals i based on start(i) and puts
them in a list IL.

Afterwards, it fetches intervals from IL in the stored order
and combines the intervals that overlap or are consecutive,
creating maximal intervals that puts them in a new list IL’.
Finally, it returns IL’.

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 1, No. 7, 2012

22 | P a g e

www.ijacsa.thesai.org

Algorithm 1 GetIntervals(C,p)

Input: a temporally annotated logic program C and a
predicate pPred

Output: a sorted list of the maximal temporal intervals i
that define p

 Let S={i | i:r C and p=pred(Head(r))}.

 If S={} then return(empty list).

 Order intervals i S by start(i) and put them in list IL.

 Let IL' be the empty list.

 Get first interval i from IL.

current_start=start(i).

current_end=end(i).

For each interval i taken in sequence from the list IL do

If start(i) ≤ current_end+1 and end(i)>current_end then

current_end=end(i).

If start(i) > current_end+1 or i is the last interval in

IL then

Add at the end of IL’ the temporal interval

[current_start, current_end].

current_start=start(i).

current_end=end(i).

If start(i) > current_end+1 and i is the last interval in IL

then

Add at the end of IL’ the temporal interval

[start(i), end(i)].

EndFor

return(IL’).

Example 4 Consider the temporally annotated logic

program C of Example 1. Then, GetIntervals(C, has_job)
returns the list [[1990,2003], [2005,2009]].

Algorithm 2 FindMaximalIntervals(C,L), where L is an
ELP literal or a weakly negated ELP literal over V, first calls
algorithm GetIntervals(C, pred(L)) which returns a list IL of
maximal intervals i that define pred(L), ordered by start(i)
(line 2). Assume that IL is the empty list (lines 3-7). If L is a
weakly negated literal then the algorithm returns the list
containing [tmin, tmax]. This is because in this case C |=max
L:[tmin, tmax]. Otherwise, the algorithm returns the empty list.
This is because in this case, there is no interval i s.t C |=max L:i.
If IL is not the empty list then the algorithm fetches the first
interval i of IL and if L is a weakly negated ELP literal and
start(i) ≠ tmin then it puts the interval [tmin, start(i)-1] in a new
list IL’ (line 11). This is because for all time points t  [tmin,
start(i)-1], it holds that C(t) |=

ASP
 L. Then, it fetches each

interval [ts, te] from IL in the stored order.

Afterwards, it examines each time point t [ts, te] and
creates maximal temporal intervals i within [ts, te] such that for
each t'  i, it holds that C(t) |=

ASP
 L (lines 13-21). These

intervals are stored in order in IL’ with the difference that if
the first of these intervals is consecutive with the previous
interval in IL’ then it combines these. Note that if [ts, te] is the
last temporal interval in IL, L is a weakly negated literal, and te
< tmax then, for each t  [te+1, tmax], it holds that C(t) |=

ASP
 L.

Thus, if C(te) |=
ASP

 L then it combines interval [te+1,tmax] with
the last interval in IL’ (line 25), otherwise it adds interval
[te+1, tmax] to the end of IL’ (line 27). If [ts, te] is not the last

temporal interval in IL and L is a weakly negated literal then
(i) if C(te) |=

ASP
 L and [t's, te] is the last interval in IL’ then it

replaces it by the interval [t's,t''s-1] (line 31) and (ii) if C(te)
|≠

ASP
 L then it adds [te+1, t''s-1] to IL' (line 33), where [t''s, t''e]

is the next to [ts, te] interval in IL. This, is because for all t 
[te+1, t''s-1], it holds that C(t) |=

ASP
 L. Then, this process

continues until all intervals [ts, te] from IL are fetched. In the
latter case, the temporal interval list IL' is returned.

Algorithm 2 FindMaximalIntervals(C,L)

Input: a temporally annotated logic program C and an

ELP literal or a weakly ELP literal L over V

Output: a sorted list of maximal temporal intervals i s.t.

for each t i, C(t) |=
ASP

 L

(1) flag=TRUE.

(2) IL= GetIntervals(C, pred(L)).

(3) If IL is the empty list then

(4) If L is a weakly negated ELP literal then

(5) return(a list containing [tmin,tmax]).

(6) else

(7) return(empty list).

(8) Let IL’ be the empty list.

(9) Let i be the first item in IL.

(10) If L is a weakly negated ELP literal and

 start(i) ≠tmin then

(11) Add [tmin, start(i)-1] to the end of IL’.

(12) For each interval [ts,te] taken in sequence from the

 list IL do

(13) For each time point t=ts, ..., te do

(14) If C(t) |=
ASP

 L then

(15) If IL’ is not empty and flag=TRUE then

(16) Take the last item [t's, t'e] from IL’ and

 replace it by [t's,t].

(17) else

(18) Add interval [t,t] to the end of IL’.

(19) else /* C(t) |≠
ASP

 L */

(20) flag=FALSE.

(21) EndFor

(22) If [ts,te] is the last interval in IL then

(23) If L is a weakly negated ELP literal and

 te ≠ tmax then

(24) If IL’ is not empty and flag=TRUE then

(25) Take the last item [t's, te] from IL’ and

 replace it by [t's,tmax].

(26) else

(27) Add interval [te+1,tmax] to the end of IL’.

(28) else /* [ts,te] is not the last interval in IL */

(29) If L is a weakly negated ELP literal then

 (30) If IL’ is not empty and flag=TRUE then

(31) Take the last interval [t's, te] from IL’

 and replace it by [t's, t''s-1], where [t''s,t''e]

 is the next interval to [ts,te] in IL.

(32) else

(33) Add [te+1,t''s-1] to the end of IL' where

 [t''s,t''e] is the next interval to [ts,te] in IL.

 (34) flag=TRUE.

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 1, No. 7, 2012

23 | P a g e

www.ijacsa.thesai.org

 (35) else /* L is not a weakly negated ELP literal */

 (36) flag=FALSE.

 (37) EndFor

 (38) return(IL’).

Example 5 Consider the temporally annotated logic

program C of Example 1. Then, FindMaximalIntervals(C
has_job(Mary, Hairdresser)) returns the list [[1990,1994],
[2006, 2009]] and FindMaximalIntervals(C, ~has_job(Mary,
Hairdresser)) returns the list [[1988, 1989], [1995,2005],
[2010,2012]].

Based on Algorithm 2, the following complexity results
are derived.

Proposition 2 Let L:i be a ground temporal literal over V.
Deciding if C |=

 max
 L:i is:

1. in P
NP

, in the case that C does not contain variables or

the number of variables of each rule of C is less than a

constant, and

2. in P
NEXPTIME

, in the general case.

We would like to note that we have investigated the case to

define, for a temporally annotated logic program C,
interpretations I containing temporal literals L:i s.t. if L:i, L:i’

I then temporal intervals i,i’ have no common time points
and they are not consecutive. We can decide if I is an answer
set of C, using techniques similar to Answer Set
Programming, but now we work on temporal intervals and not
on time points. Then, C |= L:[t1,t2], if for all answer sets M of
C it holds that M |= L:[t1,t2]. Additionally, C |=max L:[t1,t2], if
(i) for all answer sets M of C, it holds that M |= L:[t1,t2], (ii)
there is an answer set M of C such that M |≠ L:[t1-1,t1-1], and
(iii) there is an answer set M of C such that M |≠ L:[t2+1,t2+1].
However, this technique has higher complexity and does not
provides answer sets in the case that it exists a time point t
such that C(t) has no (consistent) answer set.

III. QUERY ANSWERING

Below, we define the queries that can be imposed to a
temporally annotated logic program C over a vocabulary
V=<Pred, Const> and their answers.

First, we define the intersection of a set of temporal
intervals. The intersection of the temporal intervals [t1,
t'1],...,[tn, t'n] is the interval [max({t1,...,tn}), min({t'1,..., t'n})], if
max({t1,...,tn}) ≤ min({t'1,...,t'n}). Otherwise, it is undefined.

A simple temporal query of type 1 has the form SQ=L:i,
where L:i is a temporal literal with i being a temporal interval.
The answers of SQ w.r.t. C, denoted by AnsC(SQ), is the set of
mappings v from the variables of L to Const s.t. C |= v(L:i).

A simple temporal query of type 2 has the form SQ=L:?i,
where L:?i is a temporal literal with ?i being a temporal
variable. The answers of SQ w.r.t. C, denoted by AnsC(SQ), is
the set of mappings v from the variables of L to Const and
from ?i to the set of temporal intervals s.t C |=max v(L:?i).

The answer to this type of queries can be provided using
Algorithm 2.

A simple temporal query of type 3 has the form SQ=L1:?i

 ... Ln:?i, where Li:?i is a temporal literal with ?i being a
temporal variable. The answers of SQ w.r.t. C, denoted by
AnsC(SQ), is the set of mappings v s.t. if vi  AnsC(Li:?i), for
i=1,...,n, s.t. v1,...,vn coincide on the common variables of
L1,...,Ln then v coincides with vi on the variables of Li, for
i=1,...,n, and maps ?i to the intersection of the temporal
intervals v1(?i),...,vn(?i), if such intersection exists.

A simple temporal query of type 4 has the form SQ=L1:?i
 ... Ln:?i  included(?i, [t1,t2]), where L1:?i  ...  Ln:?i
is a simple temporal query of type 3 and t1,t2 are time points.
The answers of SQ w.r.t. C, denoted by AnsC(SQ), is the set of
mappings v s.t. if u  AnsC(L1:?i  ...  Ln:?i) then v
coincides with u on the variables of Li, for i=1,...,n, and maps
?i to the intersection of the temporal intervals u(?i) and [t1,t2],
if such intersection exists.

Example 6 Consider the temporally annotated logic
program C of Example 1. Consider the simple temporal query
of type 1 SQ=vacation_days(Mary,?x):[1994,2001], requesting
the vacations days that Mary is entitled to continuously during
the temporal interval [1994,2001]. Then, AnsC(SQ) is the
mapping v s.t. v(?x)=22.

Consider the simple temporal query of type 2 SQ=
vacation_days(Mary,?x):?i, requesting the vacations days that
Mary is entitled to and their maximal temporal intervals. Then,
AnsC(SQ) is the set of mappings (i) v1 s.t. v1(?x)=29 and
v1(?x)=[1990,1991], (ii) v2 s.t. v2(?x)=27 and v2(?i)= [1992,
1992], (iii) v3 s.t. v3(?x)=22 and v3(?i)= [1993, 2002], and (iv)
v4 s.t. v4(?x)=22 and v4(?x)=[2006, 2009].

Consider the simple temporal query of type 3
SQ=has_job(Mary,?x):?i  has_job(Peter,?y):?i, requesting
the jobs of Mary and Peter and their common validity
temporal intervals. Then, AnsC(SQ) is the set of mappings (i)
v1 s.t. v1(?x)=Secretary, v1(?y)=Garbage_collector, and
v1(?i)=[2001,2002] and (ii) v2 s.t. v2(?x)=Hairdresser, v2(?y)=
Builder, and v2(?i)=[2006,2008].

Consider the simple temporal query of type 4
SQ=vacation_days(Mary,?x):?i  included(?i,[1991, 2001]),
requesting the vacations days that Mary is entitled to and their
maximal temporal intervals, within the temporal interval of
interest [1991, 2001]. Then, AnsC(SQ) is the set of mappings
(i) v1 s.t. v1(?x)=29 and v1(?x)=[1991,1991], (ii) v2 s.t.
v2(?x)=27 and v2(?i)=[1992,1992], and (iii) v3 s.t. v3(?x)=22
and v3(?i)=[1993,2001].

A complex pt-query has the form CQ=SQ1
…  SQn 

filter, where SQi are simple temporal queries, each having a
different temporal variable, and filter is an expression of the
following EBNF grammar:

term:=duration(?i) | start(?i) | end(?i) | c,

 where ?i is a temporal variable and c is a decimal.

complex_term:= term | complex_term (+ | - | * | /)

 complex_term
comparison:= complex_term (< | > | = | ≤ | ≥ | ≠)

 complex_term
 filter:= comparison | filter ( |) filter,

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 1, No. 7, 2012

24 | P a g e

www.ijacsa.thesai.org

such that each temporal variable appearing in filter appears
in SQ1

… SQn . The answers of CQ w.r.t. C, denoted by
AnsP(CQ), is the set of mappings v s.t. (i) if ui

AnsP(SQi), for
i=1,…,n, s.t. u1,…,un coincide on the common variables of
SQ1,…, SQn then v coincides with ui on the variables of SQi,
for i=1,…,n, and (ii) v(filter) holds.

Note that all Allen's interval algebra relations and their
combinations can be expressed by a filter expression. For
example, the Allen's algebra relation overlaps(?i,?j) can be
expressed by the filter (start(?i) < start(?j))  (start(?j) <
end(?i)).

Example 7 Consider the temporally annotated logic
program C of Example 1. Consider the complex query CQ=
has_job(Mary,?x):?i  has_job(Peter,?y):?i'  (start(?i) ≤
end(?i'))  (end(?i) ≥ start(?i')), requesting the job of Mary
and its validity temporal interval and the job of Peter and its
validity temporal interval, provided that these intervals have
common time points. Then, AnsC(SQ) is the set of mappings
(i) v1 s.t. v1(?x)=Secretary, v1(?i)=[1995,2002], v1(?y)=
Garbage_collector, and v1(?i')=[2001, 2003] and (ii) v2 s.t.
v2(?x)=Hairdresser, v2(?i)=[2006,2009], v2(?y)=Builder, and
v2(?i')=[2005,2008].

 Consider the complex query

 iyPeterjobhasixMaryjobhasCQ ?:)?,(_?:)?,(_=

 2)>)(?)(?())(?<)(?())(?>)(?((istartiendiendiendistartistart

  2)>)(?)(?())(?)(?())(?)(?(istartiendiendiendistartistart

 2)>)(?)(?())(?)(?())(?)(?(iendistartiendistartistartistart

2))>)(?)(?())()(?())(?)(?(iendistartiendistartistartistart 

requesting the job of Mary and its validity temporal
interval and the job of Peter and its validity temporal interval,
provided that these intervals have more than 2 common time
points. Then, AnsC(SQ) is the mapping v s.t. v(?x)=
Hairdresser, v(?i)=[2006,2009], v(?y)=Builder, and v(?i')=
[2005,2008].

IV. RELATED WORK

Below, we review related work.

In [4], the authors present a framework to incorporate
temporal reasoning into RDFS [5][6]. The author associate
RDF triples with their validity temporal interval and apply the
RDFS inference rules (which are always valid). Like our
work, their semantics is based on time points and not on
temporal intervals. Yet, [4] does not consider strong and weak
negation and validity intervals on logic rules. Additionally, it
does not support simple queries of type 3 and type 4 and the
filter condition is limited.

Note that our approach can also be applied to RDFS, as
RDFS inference rules can be expressed through definite rules
[7].

In [8], the authors present a general framework for
representing, reasoning, and querying with annotated data on
the Semantic Web. They show that their formalism can be
instantiated on the temporal, fuzzy, and provenance domain.
The authors associate RDF triples with their validity temporal
intervals and apply the RDFS inference rules (which are

always valid). Unlike our work, their semantics is based on
temporal intervals. Yet, [8] does not consider strong and weak
negation and validity intervals on logic rules. Additionally, it
does not support simple queries of type 4. Moreover, our
query answering is more efficient, since during query
answering, we directly work on maximal temporal intervals. In
[8], all temporal intervals returned by the query are considered
and then the maximal ones are returned. Further, our
semantics are different than [8]. For example, consider the
temporal RDF triples p(a,b) : [1990, 2000] and q(c,d): [1995,
2010]. Then, according to [8], the answer to query p(a,b):?i
q(c,d):?i'  end(?i) < start(?i') will provide the mapping v
s.t. v(?i)=[1990, 1994] and v(?i')=[1995, 2010]. In our case,
we will provide no answers, since 2000 > 1995.

In [9], the authors extend RDF graphs with temporal
information, by associating RDF triples with their validity
interval. They consider any entailment regime that can be
expressed through definite rules A0 ←A1,..., An, where Ai is an
RDF triple. Each such rule is replaced by the temporal rule
A0:[max(t1,...,tn),min(t'1,...,t'n)] ←A1:[t1,t'1] ,..., An:[tn, t'n].
These rules are applied recursively, until a fixpoint is reach.
Then, maximal validity temporal intervals for each derived
RDF triple are produced. Yet, [9] does not consider strong and
weak negation and validity intervals on logic rules.
Additionally, it does not support simple temporal queries of
type 4 and the filter condition is left unspecified.

Work in [10] provides a framework to support spatial and
temporal analysis over semantic web data. With respect to the
temporal component [10] is similar to [9], as it also computes
the maximal validity temporal intervals of derived RDF
triples, using the RDFS entailment rules. Yet, [10] does not
consider strong and weak negation and validity intervals on
logic rules.

In [11], [12], the authors extend the RDFS and ter-Horst
entailment rules [13] (which extend RDFS with terms from the
OWL [14] vocabulary) with temporal information. In
particular, they support inference rules having the general
form of these, supported by [9]. However, they dot consider a
query language. Additionally, they do not consider strong and
weak negation and validity intervals on logic rules.

In [15], we presented semantics for provenance and
temporally annotated definite logic programs. However, [15]
does not consider strong and weak negation, and reasons based
on temporal intervals and not time points. The query language
presented here is a restriction of the query language presented
in [15] on the temporal component, with the difference that
negated atoms in the queries are supported in the present
work.

In [16], the authors present a temporal algebra, where the
validity temporal interval of two joined relational tuples with
associated temporal intervals i1 and i2 is the intersection of i1
and i2. This temporal algebra operation is also adopted by
TSQL2 [17]. In general, TSQL2 is an extension of SQL that
supports temporal and non-temporal tables. It also provides a
temporal relational algebra that can undertake temporal
selection of data and temporal joins based on temporal
intersection.

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 1, No. 7, 2012

25 | P a g e

www.ijacsa.thesai.org

V. CONCLUSION

In this paper, we considered extended logic programming
rules, associated with their validity temporal intervals, forming
a temporally annotated logic program.

We defined (simple) entailment and maximal entailment of
a ground temporal literal L:i from a temporally annotated
logic program C. Both kinds of entailment are based on
Answer Set Programming. The complexities of simple and
maximal entailment of ground temporal literals are provided.
Additionally, we provided an algorithm that for an ELP literal
or a weakly negated ELP literal L returns a list with all
temporal intervals i such that a temporally annotated logic
program C maximally entails L:i. Based on this algorithm,
the answer of various kinds of temporal queries can be
provided.

Note that we do not support operations, such as next, until,
since, sometimes, and always, supported by temporal logic (for
an overview, see [18]). Additionally, we do not support
inferences such that ``if something is true in one temporal
interval then something else is true in another temporal
interval", as supported by [19]. Yet, these works do not
support the inferences made by our own model.

As future work, we plan to consider logic programs
annotated over multiple domains and not just the temporal
domain.

. Appendix: Proof of Propositions

Proof of Proposition 1

Hardness: Let P be an extended logic program over a
vocabulary V=<Pred,Const>. Consider the temporally
annotated logic program C over V that is derived from P by
associating all rules with the validity temporal interval [t,t].
Let L be an ELP literal over V. Then, P |=

ASP
 L iff C |= L:[t,t].

In [3], it is shown that deciding if P |=
ASP

 L is (i) co-NP-
complete, in the case that P does not contain variables or the
number of variables of each rule of P is less than a constant
and (ii) co-NEXPTIME-complete, in the general case.
Therefore, deciding if a temporally annotated logic program C
|= L:i, for a temporal literal L:i, is (i) co-NP-hard, in the case
that C does not contain variables or the number of variables of
each rule of C is less than a constant and (ii) co-NEXPTIME-
hard, in the general case.

Membership: Guess a time point t within the temporal
interval i and an interpretation I of C(t) over constants in
Const. Deciding if I is an answer set of C(t) and I |≠ L is in (i)
P, in the case that C(t) does not contain variables or the
number of variables of each rule of C(t) is less than a constant
and (ii) EXPTIME, in the general case [3]. Thus, deciding if C
|≠ L:i is in (i) NP, in the case that C does not contain variables
or the number of variables of each rule of C is less than a
constant and (ii) NEXPTIME, in the general case. Therefore,
deciding if C |= L:i is in (i) co-NP, in the case that C does not
contain variables or the number of variables of each rule of C
are less than a constant and (ii) co-NEXPTIME, in the general
case.

Proof of Proposition 2

In [3], it is shown that entailment of an ELP literal or a
weakly negated ELP literal L from an extended logic program
P, under Answer Set Programming, is (i) co-NP-complete, in
the case that P does not contain variables or the number of
variables of each rule of P is less than a constant and (ii) co-
NEXPTIME-complete, in the general case. Note that
Algorithm 2 runs in polynomial time by calling oracles
deciding if C(t) |=

ASP
 L. Therefore, the complexity of

Algorithm 2 is in (i) P
NP

, in the case that C does not contain
variables or the number of variables of each rule of C is less
than a constant and (ii) P

NEXPTIME
, in the general case.

REFERENCES

[1] M. Gelfond and V. Lifschitz, "Classical Negation in Logic programs and
Disjunctive Databases", New Generation Computing, 9, 1991, pp. 365-
385.

[2] J. F. Allen, “Maintaining Knowledge about Temporal Intervals",
Communications of the ACM, 1983, pp. 832–843.

[3] Evgeny Dantsin, T. Eiter, G. Gottlob, and A. Voronkov: “Complexity
and expressive power of logic programming”. ACM Comput. Surv.
33(3),2001,pp. 374-425.

[4] C. Gutierrez, C. A. Hurtado, and A. A. Vaisman, "Introducing Time into
RDF", IEEE Transactions on Knowledge and Data Engineering, 19(2),
2007, 207-218.

[5] G. Klyne and J. J. Carroll, "Resource Description Framework (RDF):
Concepts and Abstract Syntax”, W3C Recommendation, 10 February
2004, available at http://www.w3.org/TR/2004/REC-rdf-concepts-
20040210/.

[6] Patrick Hayes, "RDF Semantics", W3C Recommendation, 10 February
2004, available at http://www.w3.org/TR/2004/REC-rdf-mt-20040210/.

[7] G. Ianni, A. Martello, C. Panetta, and G. Terracina, "Efficiently
Querying RDF(S) Ontologies with Answer Set Programming", Journal
of Logic and Computation, 19(4), 2009, pp. 671-695.

[8] A. Zimmermann, N. Lopes, A. Polleres, and U. Straccia, "A General
Framework for Representing, Reasoning and Querying with Annotated
Semantic Web Data", Journal of Web Semantics , 11, 2012, pp. 72–95.

[9] B. Motik, "Representing and Querying Validity Time in RDF and OWL:
A Logic-Based Approach", 9th International Semantic Web Conference
(ISWC-2010), 2010, pp. 550-565.

[10] M. Perry, A. P. Sheth, F. Hakimpour, and P. Jain, "Supporting Complex
Thematic, Spatial and Temporal Queries over Semantic Web Data", 2nd
International Conference on GeoSpatial Semantics (GeoS-2007), 2007,
pp. 228-246.

[11] H.Krieger, “A Temporal Extension of the Hayes and ter Horst
Entailment Rules for RDFS and OWL”, AAAI Spring Symposium:
Logical Formalizations of Commonsense Reasoning, 2011.

[12] H.Krieger, “A Temporal Extension of the Hayes/ter Horst Entailment
Rules and a Detailed Comparison with W3C’s N-ary Relations”,
Deutsches Forschungszentrum fur Kunstliche Intelligenz GmbH
Technical Report, RR-11-02, 2011.

[13] H. J. ter Horst, “Completeness, decidability and complexity of
entailment for RDF Schema and a semantic extension involving the
OWL vocabulary, Journal of Web Semantics, 3(2-3), 2005, pp. 79-115.

[14] G. Antoniou and F. van Harmelen, A semantic web primer, MIT Press,
2004.

[15] A. Analyti and I. Pachoulakis, “Provenance and Temporally Annotated
Logic Programming”, accepted to the International Journal of Advanced
Research in Artificial Intelligence (IJARAI), 2012.

[16] D. Dey, T. M. Barron, and V. C. Storey, "A Complete Temporal
Relational Algebra", VLDB Journal, 5(3), 1996, pp. 167-180.

[17] R.T. Snodgrass , The TSQL2 Temporal Query Language, Springer,
1995.

[18] M. A. Orgun and W. Ma, "An Overview of Temporal and Modal Logic
Programming", First International Conference on Temporal Logic
(ICTL-1994), 1994, pp. 445-479.

[19] T.W. Fruhwirth, "Temporal Annotated Constraint Logic Programming",
Journal of Symbolic Computation, 22(5/6), 1996, pp.555-583.

http://www.w3.org/TR/2004/REC-rdf-mt-20040210/

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 1, No. 7, 2012

26 | P a g e

www.ijacsa.thesai.org

AUTHORS PROFILE

Anastasia Analyti earned a B.Sc. degree in Mathematics from University of

Athens, Greece and a M.Sc. and Ph.D. degree in Computer Science from
Michigan State University, USA. She worked as a visiting professor at the

Department of Computer Science, University of Crete, and at the Department

of Electronic and Computer Engineering, Technical University of Crete. Since
1995, she is a principal researcher at the Information Systems Laboratory of

the Institute of Computer Science, Foundation for Research and Technology -

Hellas (FORTH-ICS). Her current interests include reasoning on the Semantic
Web, modular web rule bases, non-monotonic-reasoning, faceted metadata

and semantics, conceptual modelling, contextual organization of information,

information integration and retrieval systems for the web, interoperability of

heterogeneous and distributed information bases, and biomedical information

systems. She has participated in several research projects and has published

over 55 papers in refereed scientific journals and conferences.

Ioannis Pachoulakis received a B.Sc. in Physics (1988) at the University of
Crete, Greece, and a Ph.D. in Astrophysics (1996) and an M.Sc. in

Engineering (1998), both from the University of Pennsylvania in the U.S.A.

Since 2001, he serves as an Assistant Professor at the Department of Applied
Informatics and Multimedia at TEI of Crete with mainstream interests in

realistic multimedia applications, virtual reality and multimedia applications
for science.

