
(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 1, No. 9, 2012

6 | P a g e

www.ijarai.thesai.org

A Cumulative Multi-Niching Genetic Algorithm for

Multimodal Function Optimization

Matthew Hall

Department of Mechanical Engineering

University of Victoria

Victoria, Canada

Abstract—This paper presents a cumulative multi-niching genetic
algorithm (CMN GA), designed to expedite optimization
problems that have computationally-expensive multimodal
objective functions. By never discarding individuals from the
population, the CMN GA makes use of the information from
every objective function evaluation as it explores the design
space. A fitness-related population density control over the
design space reduces unnecessary objective function evaluations.
The algorithm’s novel arrangement of genetic operations
provides fast and robust convergence to multiple local optima.
Benchmark tests alongside three other multi-niching algorithms
show that the CMN GA has greater convergence ability and
provides an order-of-magnitude reduction in the number of
objective function evaluations required to achieve a given level of
convergence.

Keywords- genetic algorithm; cumulative; memory; multi-niching;

multi-modal; optimization; metaheuristic.

I. INTRODUCTION

Genetic algorithms provide a powerful conceptual
framework for creating customized optimization tools able to
navigate complex discontinuous design spaces that could
confound other optimization techniques. In this paper, I
present a new genetic algorithm that uniquely combines two
key capabilities: high efficiency in the number of objective
function evaluations needed to achieve convergence, and
robustness in optimizing over multi-modal objective functions.
I created the algorithm with these capabilities to meet the needs
of a very specific optimization problem: the design of floating
platforms for offshore wind turbines. However, the algorithm’s
features make it potentially valuable for any application that
features a computationally-expensive objective function and
multiple local optima in a discontinuous design space.

Many design optimization problems have computationally-
expensive objective functions. While genetic algorithms (GAs)
may be ideal optimizers in many ways, a conventional GA’s
disposal of previously-evaluated individuals from past
generations constitutes an unnecessary loss of information.
Rather than being discarded, these individuals could instead be
retained and used to both inform the algorithm about good and
bad regions of the design space and prevent the redundant
evaluation of nearly-identical individuals. This could
accelerate the optimization process by significantly reducing
the number of objective function evaluations required for
convergence to an optimal solution.

Examples in the literature of GA approaches that store
previously-evaluated individuals in memory to reduce

unnecessary or redundant objective function evaluations are
sparse. Xiong and Schneider [1] developed what they refer to
as a Cumulative GA, which retains all individuals with a high
fitness value to use along with the current generation in
reproduction. This approach is useful in retaining information
about the best regions of the design space, but it does nothing
to avoid redundant objective function evaluations. A GA
developed by Gantovnik et al. [2], however, does. Their GA
stores information about all previous individuals and uses it to
construct a Shepard’s method response surface approximation
of surrounding fitness values, which can be used instead of
evaluating the objective function for nearby individuals.

Retaining past individuals to both provide information
about the design space and avoid redundant objective function
evaluations was my first goal in developing a new GA. My
second goal was for the algorithm to be able to identify and
converge around multiple local optima in an equitable way.

Identifying multiple local optima is necessary for many
practical optimization problems that have multimodal objective
functions. Even though an objective function may have only
one global optimum, another local optimum may in fact be the
preferred choice once additional factors are considered –
factors that may be too complex, qualitative, or subjective to be
included in the objective function. In the optimization of
floating offshore wind turbine platforms, for example, a
number of distinct locally-optimal designs exist, ranging from
wide barges to deep slender spar-buoys. Though a spar-buoy
may have the greatest stability (a common objective function
choice), a barge design may be the better choice once ease of
installation is considered.

Furthermore, global optimizations often use significant
modelling approximations in the objective function for the sake
of speed in exploring large design spaces. It is possible for
such approximations to skew the design space such that the
wrong local optimum is the global optimum in the
approximated objective function. In those cases, local
gradient-based optimizations with higher-fidelity models in the
objective function are advisable as a second optimization stage
to verify the locations of the local optima and determine which
one of them is in fact the global optimum.

A conventional GA will only converge stably to one local
optimum but a number of approaches have been developed for
enabling convergence to multiple local optima, a capability
referred to as “multi-niching”. The Sharing approach,
proposed by Holland [3] and expanded by Goldberg and

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 1, No. 9, 2012

7 | P a g e

www.ijarai.thesai.org

Richardson [4], reduces the fitness of each individual based on
the number of neighbouring individuals. The fitness reduction
is determined by a sharing function, which includes a threshold
distance that determines what level of similarity constitutes a
neighbouring individual. A weakness of this approach is that
choosing a good sharing function requires a-priori knowledge
of the objective function characteristics. As well, the approach
has difficulty in forming stable sub-populations, though
improvements have been made in this area [5].

An alternative is the Crowding approach of De Jong [6],
which features a replacement step that determines which
individuals will make up the next generation: for each
offspring, a random subset of the existing population is selected
and from it the individual most similar to the offspring is
replaced by it. Mahfoud’s improvement, called Deterministic
Crowding [7], removes the selection pressure in reproduction
by using random rather than fitness-proportionate selection,
and modifies the replacement step such that each crossover
offspring competes against the more similar of its parents to
decide which of the two enters the next generation.

The Multi-Niche Crowding approach of Cedeño [8] differs
from the previous crowding approaches by implementing the
crowding concept in the selection stage. For each crossover
pair, one parent is selected randomly or sequentially and the
other parent is selected as the most similar individual out of a
group of randomly selected individuals.

This promotes mating between nearby individuals,
providing stability for multi-niching. The replacement
operation is described as “worst among most similar”; a
number of groups are created randomly from the population,
the individual from each group most similar to the offspring in
question is selected, and the least fit of these "most similar"
individuals is replaced by the offspring.

Though the Multi-Niche Crowding approach is quite
effective at finding multiple local optima, it and the other
approaches described above still provide preferential treatment
to optima with greater fitness values. Lee, Cho, and Jung
provide another approach, called Restricted Competition
Selection [9], that outperforms the previously-mentioned
techniques in finding and retaining even weak local optima. In
their otherwise-conventional approach, each pair of individuals
that are within a “niche radius” of each other are compared and
the less fit individual’s fitness is set to zero. This in effect
leaves only the locally-optimal individuals to reproduce. A set
of the fittest of these individuals is retained in the next
generation as elites.

Some more recent GAs add the use of directional
information to provide greater control of the design space
exploration. Hu et al. go so far as to numerically calculate the
gradient of the objective function at each individual in order to
use a steepest descent method to choose offspring [10].

This approach is powerful, but its large number of function
evaluations makes it impractical for computationally-expensive
objective functions. Liang and Leung [11] use a more
restrained approach in which two potential offspring are
created along a line connecting two existing individuals and the
four resulting fitness values are compared in order to predict

the locations of nearby peaks. By using this information to
inform specially-constructed crossover and mutation operators,
this algorithm uses significantly fewer function evaluations
than other comparable GAs [11].

An approach shown to use even fewer function evaluations
is an evolutionary algorithm (EA) by Cuevas and Gonźalez that
mimics collective animal behaviour [12]. This algorithm
models the way animals are attracted to or repelled from
dominant individuals, and retains in memory a set of the fittest
individuals. Competition between individuals that are within a
threshold distance is also included. Notwithstanding the lack
of a crossover function, this algorithm is quite similar in
operation to many of the abovementioned GAs and is therefore
easily compared with them. It is noteworthy because of its
demonstrated efficiency in terms of number of objective
function evaluations.

None of the abovementioned multi-niching algorithms
retains information about all the previously-evaluated
individuals; a GA that combines this sort of memory with
multi-niching is a novel creation. In developing such an
algorithm, which I refer to as the Cumulative Multi-Niching
(CMN) GA, I drew ideas and inspiration from many of the
abovementioned approaches. In some cases, I replicated
specific techniques, but in different stages of the GA process.
The combination of genetic operations to make up a
functioning GA is entirely unique.

II. ALGORITHM DESCRIPTION

The most distinctive feature of the CMN GA is that it is
cumulative. Each successive generation adds to the overall
population. With the goal of minimizing function evaluations,
evaluated individuals are never discarded; even unfit
individuals are valuable in telling the algorithm where not to
go. The key to making the cumulative approach work is the
use of an adaptive proximity constraint that prevents offspring
that are overly similar to existing individuals from being added
to the population. By using a distance threshold that is
inversely proportional to the fitness of nearby individuals, the
CMN GA encourages convergence around promising regions
of the design space and allows only a sparse population density
in less-fit regions of the design space.

This fundamental difference from other GAs enables a
number of unique features in the genetic operations of the
algorithm that together combine (as summarized in Fig. 2) to
make the cumulative multi-niching approach work. The
selection and crossover operations are designed to support
stable sub-populations around local optima and drive the
algorithm’s convergence. The mutation operation is designed
to encourage diversity and exploration of the design space.
The “addition” operation, which takes the place of the
replacement operation of a conventional GA, is designed to
make use of the accumulated population of individuals in order
to avoid redundant or unnecessary fitness function evaluation
and guide the GA to produce offspring in the most promising
regions of the design space. The fitness scaling operation
makes the GA treat local optima equally despite potential
differences in fitness. The details of these operations are as
follows.

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 1, No. 9, 2012

8 | P a g e

www.ijarai.thesai.org

A. Selection and Crossover

The selection and pairing process for crossover combines
fitness-proportionate selection with a crowding-inspired pairing
scheme that is biased toward nearby individuals. Whereas
Cedeño’s Multi-Niche Crowding approach selects the first
parent randomly and selects its mate as the nearest of a
randomly-selected group, the CMN GA combines factors of
both fitness and proximity in its selection operation.

The first parent, P1, of each pair is selected from the
population using standard fitness-proportionate selection (FPS)
– with the probability of selection proportional to fitness.
Then, for each P1, a crowd of Ncrowd candidate mates is selected
using what could be called proximity-proportionate selection
(PPS) - with the probability of selection determined by a
proximity function describing how close each potential
candidate mate, P2, is to P1 in the design space. The most
basic proximity function is the inverse of the Euclidean
distance:

√∑ (

)

 (1)

where X is an individual’s decision variable vector, with
length n. The fittest of the crowd of candidate mates is then
selected to pair with P1. This process is repeated for each
individual selected to be a P1 parent for crossover.

By having an individual mate with the fittest of a crowd of
individuals that are mostly neighbours, mating between
members of the same niche is encouraged, though the
probability-based selection of the crowd allows occasional
mating with distant individuals, providing the important
possibility of crossover between niches. This approach
contributes to the CMN GA’s multi-niching stability and is the
basis for crossover-driven convergence of the population to
local optima.

In the crossover operation, an offspring’s decision variable
values are selected at uniform random from the hypercube
bounded by the decision variable values of the two parents.

B. Mutation

The mutation operation occurs in parallel with the
crossover operation. Mutation selection is done at random, and
the mutation of the decision variables of each individual is
based on a normal distribution about the original values with a
tuneable standard deviation. This gives the algorithm the
capability to widely explore the design space. Though
individual fitness is not explicitly used in the mutation
operation, the addition operation that follows makes it more
likely that mutations will happen in fitter regions of the design
space.

C. Addition

The cumulative nature of the CMN GA precludes the use of
a replacement operation. Instead, an addition operation adds
offspring to the ever-expanding population. A proximity
constraint ensures that the algorithm converges toward fitter
individuals and away from less fit individuals. This filtering,
which takes place before the offspring’s fitnesses are evaluated,
is crucial to the success of the cumulative population approach.

By rejecting offspring that are overly similar to existing
members of the population, redundant objective function
evaluations are avoided.

The proximity constraint’s distance threshold, Rmin, is
inversely related to the fitness of the nearest existing
individual, Fnearest, as determined by a distance threshold
function. A simple example is:

 – (2)

This function results in a distance threshold of 0.001 around
the most fit individual and 0.101 around the least fit individual,
where distance is normalized by the bounds of the design space
and fitness is scaled to the range [0 1].

This approach for the addition function allows new
offspring to be quite close to existing fit individuals but
enforces a larger minimum distance around less fit individuals.
As such, the population density is kept high in good regions
and low in poor regions of the design space, as determined by
the accumulated objective function evaluations over the course
of the GA run. A population density map is essentially
prescribed over the design space as the algorithm progresses.
If the design space was known a priori, the use of a grid-type
exploration of the design space could be more efficient, but
without that knowledge, this more adaptive approach is more
practical.

To adjust for the changing objectives of the algorithm as
the optimization progresses – initially to explore the design
space and later to narrow in on local optima - the distance
threshold function can be made to change with the number of
individuals or generation number, G. This can help prevent
premature convergence, ensuring all local optima are
identified. The distance threshold function that I used to
generate the results in this paper is:

 [–] (3)

D. Fitness Scaling

The algorithm described thus far could potentially converge
to only the fittest local optimum and not adequately explore
other local optima. The final component, developed to resolve
this problem and provide equitable treatment of all significant
local optima, is a proximity-weighted fitness scaling operation.
In most GAs, a scaling function is applied to the population’s
fitness values to scale them to within normalized bounds and
also sometimes to adjust the fitness distribution. A basic
approach is to linearly scale the fitness values, F, to the range
[0, 1] so that the least fit individual gets a scaled fitness of F’=0
and the fittest individual gets a scaled fitness of F’=1:

 (4)

A scaling function can also be used to adjust the
distribution of fitness across the range of fitness values in order
to, for example, provide more or less emphasis on moderately-
fit individuals. This scaling can be adaptive to the
characteristics of the population. For the results presented
here, I used a second, exponential scaling function to adjust the
scaled fitness values so that the median value is 0.5:

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 1, No. 9, 2012

9 | P a g e

www.ijarai.thesai.org

[

 (median())
]

 (5)

Proximity-weighted fitness scaling, a key component of the
CMN GA, adds an additional scaling operation. This operation
relies on the detection of locally-optimal individuals in the
population. The criterion I used, for simplicity, is that an
individual is considered to represent a local optimum if it is
fitter than all of its nearest Nmin neighbours. In the proximity-
weighted fitness scaling operation, scaling functions (4) and (5)
are applied multiple times to the population, each time
normalizing the results to the fitness of a different local
optimum. So if m local optima have been identified, each
individual in the population will have m scaled fitness values.
These scaled fitness values F’’ are then combined for each
individual i according to the individual’s proximity to each
respective local optimum j to obtain the population’s final
scaled fitness values:

∑

∑

 (6)

Proximity, Pi,j, can be calculated as in (1). This process
gives each local optimum an equal scaled fitness value, as is
illustrated for a one-dimensional objective function in Fig. 1.

Figure 1. Proximity-weighted fitness scaling.

E. CMN GA Summary

Fig. 2 describes the overall structure of the CMN GA,
outlining how the algorithm’s operations are ordered and how
the addition operation filters out uninformative offspring. The
next section demonstrates the algorithm’s effectiveness at
multi-niche convergence with a minimal number of objective
function evaluations.

III. PERFORMANCE RESULTS

To benchmark the CMN GA’s performance, I tested it
alongside three other multi-niching algorithms on four generic
multimodal objective functions. These four multimodal
functions have been used by many of the original developers of
multi-niching GAs [8].

Step 0: (Initialization)

Randomly generate Npop individuals

Evaluate the individuals’ fitnesses F

Step 1: (Fitness Scaling)

Calculate distances between individuals

Identify locally-optimal individuals

For each individual i:

For each locally-optimal individual j:

Calculate scaled fitness F″i,j

Calculate proximity-weighted fitness F‴i

Step 2: (Crossover)

Select a P1 from the population using FPS

Select a crowd of size Ncrowd using PPS

Select the fittest in the crowd to be P2

Cross P1 and P2 to produce an offspring

If offspring satisfies distance threshold:

Add to population and calculate fitness F

Repeat Ntry times or until Ncrossover offspring

have been added to the population

Step 3: (Mutation)

Randomly select a mutation individual

Mutate individual to produce an offspring

If offspring satisfies distance threshold:

Add to population and calculate fitness F

Repeat Ntry times or until Nmutate offspring

have been added to the population

Step 4: (New Generation)

Repeat from Step 1 until stopping criterion

is met

Figure 2. CMN GA outline.

The first, F1, is a one-dimensional function featuring five
equal peaks, shown in Fig. 3.

 (7)

The second, F2, modifies F1 to have peaks of different
heights, shown in Fig. 4.

 (

) (8)

The third, F3, is a two-dimensional Shekel Foxholes
function with 25 peaks of unequal height, spaced 16 units apart
in a grid, as shown in Fig. 5.

 ∑

 (9)

The fourth, F4, is an irregular function with five peaks of
different heights and widths, as listed in Table 1 and shown in
Fig. 6.

 ∑

 (10)

In F3 (9) and F4 (10), Ai and Bi are the x and y coordinates
of each peak. In F4 (10), Hi and Wi are the height and width
parameters for each peak. These four functions test the
algorithms’ multi-niching capabilities in different ways.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

x

F

F

F

optima

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 1, No. 9, 2012

10 | P a g e

www.ijarai.thesai.org

Figure 3. F1 objective function.

Figure 4. F2 objective function.

Figure 5. F3 objective function.

Figure 6. F4 objective function.

TABLE I. F4 OBJECTIVE FUNCTION PEAKS

I Ai Bi Hi Wi

1 -20 -20 0.4 0.02

2 -5 -25 0.2 0.5

3 0 30 0.7 0.01

4 30 0 1.0 2.0

5 30 -30 0.05 0.1

The two other multi-niching GA approaches I compare the
CMN GA against are Multi-Niche Crowding (MNC) [8] and
Restricted Competition Selection (RCS) [9]. I chose these two
because they are very well-performing examples of two
different approaches to GA multi-niching. I implemented these
techniques into a GA framework that is otherwise the same as
the CMN GA in terms of how it performs the crossover and
mutation operations.

Crossover offspring decision variable values are chosen at
uniform random from the intervals between the decision
variables of the two parents. Mutation offspring decision
variable are chosen at random using normal distributions about
the unmutated values with standard deviations of 40% of the
design space dimensions.

For further comparison, I also implemented the Collective
Animal Behaviour (CAB) evolutionary algorithm [12]. It is a
good comparator because it has many common features with
multi-niching GAs, but has been shown to give better
performance than many of them, particularly in terms of
objective function evaluation requirements.

The values of the key tunable parameters used in each
algorithm are given in Tables 2 to 5. Npop describes the
population size, or the initial population size in the case of the
CMN GA. For the RCS GA, Nelites is the number of individuals
that are preserved in the next generation. I tuned the parameter
values heuristically for best performance on the objective
functions. For the MNC, RCS, and CAB algorithms, I began
by using the values from [8], [9], and [12], respectively, but
found that modification of some parameters gave better results.
The meanings of the variables in Table 4 can be found in [12].

To account for the randomness inherent in the operation of
a genetic or evolutionary algorithm, I ran each algorithm ten
times on each objective function to obtain a reliable
characterization of performance. The metric I use to measure
the convergence of the algorithms to the local optima is the
sum of the distances from each local optimum X*j to the
nearest individual.

By indicating how close the algorithm is to identifying all
of the true local optima, this aggregated metric represents what
is of greatest interest in multimodal optimization applications.
The assumption is that in real applications it will be trivial to
determine which evaluated individuals represent local optima
without a-priori knowledge of the objective function.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

x

F

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

x

F

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 1, No. 9, 2012

11 | P a g e

www.ijarai.thesai.org

TABLE II. PARAMETERS FOR THE MNC GA TECHNIQUE

Function F1 & F2 F3 & F4

Npop 50 200

Ncrossover 45 180

Nmutation 5 20

CS 15 75

CF 3 4

S 15 75

TABLE III. PARAMETERS FOR THE RCS GA TECHNIQUE

Function F1 & F2 F3 & F4

Npop 10 80

Nelites 5 30

Ncrossover 8 50

Nmutation 2 30

Rniche 0.1 12

TABLE IV. PARAMETERS FOR THE CAB EA TECHNIQUE

Function F1 & F2 F3 & F4

Npop 20 200

B 10 100

H 0.6 0.6

P 0.8 0.8

v 0.01 0.001

ρ 0.1 4

TABLE V. PARAMETERS FOR THE CMN GA TECHNIQUE

Function F1 & F2 F3 & F4

Npop (initial) 10 100

Ncrossover 3 20

Nmutation 2 12

Nmin 3 6

Ncrowd 10 20

Ntry 100 100

Figures 7 to 10 show plots of the convergence metric versus
the number of objective function evaluations for each
optimization run. Using these axes gives an indication of
algorithm performance in terms of my two objectives for the
CMN GA, convergence to multiple local optima and minimal
objective function evaluations. Figures 7, 8, 9, and 10 compare
the performance of each algorithm for objective functions F1,
F2, F3, and F4, respectively.

In the results for objective function F4, the MNC and CAB
algorithms consistently failed to identify the shallowest peak.
Accordingly, I excluded this peak from the convergence metric
calculations for these algorithms in the data of Fig. 10 in order
to provide a more reasonable view of these algorithms’
performance. The CMN GA also missed this peak in one of
the runs, as can by the one anomalous curve in Fig. 10, wherein
the convergence metric stagnates at a value of 2. As is the case
with other multi-niching algorithms, missing subtle local
optima is a weakness of the CMN GA, but it can be mitigated

Figure 7. GA performance for F1 objective function runs.

Figure 8. GA performance for F2 objective function runs.

Figure 9. GA performance for F3 objective function runs.

0 200 400 600 800 1000 1200 1400 1600 1800 2000

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

number of objective function evaluations

c
o
n
v
e
rg

e
n
c
e
 m

e
tr

ic

MNC GA

RCS GA

CAB EA

CMN GA

0 200 400 600 800 1000 1200 1400 1600 1800 2000

10
-4

10
-3

10
-2

10
-1

number of objective function evaluations

c
o
n
v
e
rg

e
n
c
e
 m

e
tr

ic

MNC GA

RCS GA

CAB EA

CMN GA

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

10
0

10
1

10
2

number of objective function evaluations

c
o
n
v
e
rg

e
n
c
e
 m

e
tr

ic

MNC GA

RCS GA

CAB EA

CMN GA

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 1, No. 9, 2012

12 | P a g e

www.ijarai.thesai.org

Figure 10. GA performance for F4 objective function runs.

by careful choice of algorithm parameters and verifying results
through multiple optimization runs.

Fig. 11 is a snapshot of a population generated by the CMN
GA on the F4 objective function. The distribution of the 1000
individuals in the figure illustrates how the algorithm clearly
identifies the five local optima and produces a high population
density around them regardless of how shallow or sharp they
may be. Fig 12 shows how, with the same input parameters,
the CMN GA is just as effective with the 25 local optima of the
F3 objective function.

Figure 11. CMN GA exploration of F4 objective function.

Figure 12. CMN GA exploration of F3 objective function.

Though more rigorous tuning of parameters could result in
slight performance improvements in any of the four algorithms
I compared, the order-of-magnitude faster convergence of the
CMN GA gives strong evidence of its superior performance in
terms of multimodal convergence versus number of objective
function evaluations.

It should be noted that this measure of performance,
reflective of the design goals of the CMN GA, is only
indicative of performance on optimization problems where
evaluating the objective function dominates the computational
effort. The algorithm operations of the CMN GA are
themselves much slower than those of the other algorithms, so
the CMN GA could be inferior in terms of computation time on
problems with easily-computed objective functions. As well,
with its ever-growing population, the CMN GA’s memory
requirements are greater than those of the other algorithms. In
a sense, my choice of measure of performance puts the MNC,
RCS, and CAB algorithms at a disadvantage because, unlike
the CMN GA, these algorithms were not designed specifically
for computationally-intensive objective functions. That said,
convergence versus number of function evaluations is the most
relevant measure of performance for optimizing over
computationally-expensive multimodal objective functions, and
the algorithms I chose for comparison represent three of the
best existing options out of the selection of applicable GA/EA
approaches available in the literature.

IV. CONCLUSION

In the interest of efficiently finding local optima in
computationally-expensive objective functions, I created a
genetic algorithm that converges robustly to multiple local
optima with a comparatively small number of objective
function evaluations. It does so using a novel arrangement of
genetic operations in which new individuals are continuously
added to the population; I therefore call it a Cumulative Multi-
Niching Genetic Algorithm. The tests presented in this paper
demonstrate that the CMN GA meets its goals – convergence
to multiple local optima with minimal objective function
evaluations – strikingly better than alternative genetic or
evolutionary algorithms available in the literature. It therefore
represents a useful new capability for optimization problems
that have computationally-expensive multimodal objective
functions. The proximity constraint approach used to control
the accumulation of individuals in the population may also be
applicable to other metaheuristic algorithms.

REFERENCES

[1] Y. Xiong and J. B. Schneider, “Transportation network design using a
cumulative genetic algorithm and neural network,” Transportation
Research Record, no. 1364, 1992.

[2] V. B. Gantovnik, C. M. Anderson-Cook, Z. Gürdal, and L. T. Watson,
“A genetic algorithm with memory for mixed discrete–continuous
design optimization,” Computers & Structures, vol. 81, no. 20, pp.
2003–2009, Aug. 2003.

[3] J. H. Holland, Adaptation in natural and artificial systems: An
introductory analysis with applications to biology, control, and artificial
intelligence. U Michigan Press, 1975.

[4] D. E. Goldberg and J. Richardson, “Genetic algorithms with sharing for
multimodal function optimization,” in Proceedings of the Second
International Conference on Genetic Algorithms and their Application,
1987, pp. 41–49.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

10
-2

10
-1

10
0

10
1

10
2

number of objective function evaluations

c
o
n
v
e
rg

e
n
c
e
 m

e
tr

ic

MNC GA

RCS GA

CAB EA

CMN GA

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 1, No. 9, 2012

13 | P a g e

www.ijarai.thesai.org

[5] B. L. Miller and M. J. Shaw, “Genetic algorithms with dynamic niche
sharing for multimodal function optimization,” in Proceedings of IEEE
International Conference on Evolutionary Computation, 1996, pp. 786–
791.

[6] K. A. De Jong, “Analysis of the behavior of a class of genetic adaptive
systems,” PhD Thesis, University of Michigan, 1975.

[7] S. W. Mahfoud, “Crowding and preselection revisited,” Parallel problem
solving from nature, vol. 2, pp. 27–36, 1992.

[8] W. Cedeño, “The multi-niche crowding genetic algorithm: analysis and
applications,” PhD Thesis, University of California Davis, 1995.

[9] C.-G. Lee, D.-H. Cho, and H.-K. Jung, “Niching genetic algorithm with
restricted competition selection for multimodal function optimization,”

Magnetics, IEEE Transactions on, vol. 35, no. 3, pp. 1722 –1725, May
1999.

[10] Z. Hu, Z. Yi, L. Chao, and H. Jun, “Study on a novel crowding niche
genetic algorithm,” in 2011 IEEE 2nd International Conference on
Computing, Control and Industrial Engineering (CCIE), 2011, vol. 1, pp.
238 –241.

[11] Y. Liang and K.-S. Leung, “Genetic Algorithm with adaptive elitist-
population strategies for multimodal function optimization,” Applied
Soft Computing, vol. 11, no. 2, pp. 2017–2034, Mar. 2011.

[12] E. Cuevas and M. González, “An optimization algorithm for multimodal
functions inspired by collective animal behavior,” Soft Computing, Sep.
2012.

