
(IJARAI) International Journal of Advanced Research in Artificial Intelligence,  

Vol. 1, No. 9, 2012 

39 | P a g e  

www.ijarai.thesai.org 

Analysis of Gumbel Model for Software Reliability 

Using Bayesian Paradigm 

Raj Kumar 

National Institute of Electronics and 

Information Technology, 

 Gorakhpur, U.P., India.  

                                                                                                    

Ashwini Kumar Srivastava* 

Department of Computer Application, 

Shivharsh Kisan P.G. College, Basti, 

U.P., India. 
* Corresponding Author 

 Vijay Kumar 

Department of Maths. & Statistics, 

D.D.U. Gorakhpur University, 

Gorakhpur, U.P., India. 

 

 
 

Abstract—In this paper, we have illustrated the suitability of 

Gumbel Model for software reliability data. The model 

parameters are estimated using likelihood based inferential 

procedure: classical as well as Bayesian. The quasi Newton-

Raphson algorithm is applied to obtain the maximum likelihood 

estimates and associated probability intervals. The Bayesian 

estimates of the parameters of Gumbel model are obtained using 

Markov Chain Monte Carlo(MCMC) simulation method in 

OpenBUGS(established software for Bayesian analysis using 

Markov Chain Monte Carlo methods). The R functions are 

developed to study the statistical properties, model validation and 

comparison tools of the model and the output analysis of MCMC 

samples generated from OpenBUGS. Details of applying MCMC 

to parameter estimation for the Gumbel model are elaborated 

and a real software reliability data set is considered to illustrate 

the methods of inference discussed in this paper. 
Keywords- Probability density function; Bayes Estimation; Hazard 

Function; MLE; OpenBUGS; Uniform Priors. 

I. INTRODUCTION 

A frequently occurring problem in reliability analysis is 
model selection and related issues. In standard applications like 
regression analysis, model selection may be related to the 
number of independent variables to include in a final model. In 
some applications of statistical extreme value analysis, 
convergence to some standard extreme-value distributions is 
crucial.  

A choice has occasionally to be made between special cases 
of distributions versus the more general versions. In this 
chapter, statistical properties of a recently proposed distribution 
is examined closer and parameter estimation using maximum 
likelihood as a classical approach by R functions is performed 
where comparison is made to Bayesian approach using 
OpenBUGS. 

In reliability theory the Gumbel model is used to model the 
distribution of the maximum (or the minimum) of a number of 
samples of various distributions. One of the first scientists to 
apply the theory was a German mathematician Gumbel[1]. 
Gumbel focused primarily on applications of extreme value 
theory to engineering problems. The potential applicability of 
the Gumbel model to represent the distribution of maxima 

relates to extreme value theory which indicates that it is likely 
to be useful if the distribution of the underlying sample data is 
of the normal or exponential type. 

The Gumbel model is a particular case of the generalized 
extreme value distribution (also known as the Fisher-Tippett 
distribution)[2]. It is also known as the log-Weibull model and 
the double exponential model (which is sometimes used to 
refer to the Laplace model).  

It is often incorrectly labelled as Gompertz model [3,4]. 
The Gumbel model's pdf is skewed to the left, unlike the 
Weibull model's pdf which is skewed to the right [5, 6]. The 
Gumbel model is appropriate for modeling strength, which is 
sometimes skewed to the left.  

II. MODEL ANALYSIS 

The two-parameter Gumbel model has one location and one 
scale parameter. The random variable x follows Gumbel model 

with the location and scale parameter as - <  < and  σ > 0 
respectively, if it has the following cummulative distribution 
function(cdf)  

   F(x;  , ) = exp exp - x- ; x ( , )       
    (2.1) 

The corresponding probability density function (pdf) is 

  
1

f(x;  , ) = exp u exp(-exp(u)) ; x ( , )    
    (2.2) 

Some of the specific characteristics of the Gumbel model 
are: 

The shape of the Gumbel model is skewed to the left. The 
pdf of Gumbel model has no shape parameter. This means that 
the Gumbel pdf has only one shape, which does not change. 

The pdf of Gumbel model has location parameter μ which 
is equal to the mode but differs from median and mean. This is 
because the Gumbel model is not symmetrical about its μ. 

As μ decreases, the pdf is shifted to the left. As μ increases, 
the pdf is shifted to the right. 
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Figure 1. Plots of the  (a) probability density function and  (b) hazard function of the Gumbel model for  =1 and different values of    

 , σ) is given by 

   
1

h x exp (x )   

where  x ( , ), ( , ), 0

   


       
        (2.3) 

It is clear from the Figure 1 that the density function and 
hazard function of the Gumbel model can take different shapes. 

The quantile function of Gumbel model can be obtained by 
solving 

    
 px log log(p) ; 0 p 1.            (2.4) 

The median is 

 0.5Median(x ) ln ln(0.5)  
                  (2.5) 

The reliability/survival function 

    

   R(x;  , ) = 1-exp exp - x- ;

where  (  , ) 0, x 0

    

   
      (2.6) 

 , σ) 
by 

      
 x log log(u) ; 0 u 1.                    (2.7) 

Where u is uniform distribution over (0,1). The associated 
R functions for above statistical properties of Gumbel model 
i.e. pgumbel( ),  dgumbel( ), hgumbel( ), qgumbel( ), sgumbel( 
) and rgumbel( )  given in [ 7] can be used for the computation 
of cdf, pdf, hazard, quantile, reliability and random deviate 
generation functions respectively. 

Maximum Likelihood Estimation(MLE) and Information 
Matrix  

To obtain maximum likelihood estimators of the parameters 

 , σ).  Let   x1, . . . , xn  be a sample from a distribution 
with cumulative distribution function (2.1). The likelihood 
function is given by  

                                    

  

n n
i i

i 1 i 1

x x
logL = n log exp

 

      
         

            (3.1) 

Therefore, to obtain the MLE’s of  and σ we can 

maximize directly with respect to  and σ or we can solve the 
following two non-linear equations using iterative procedure 
[8, 9, 10 and 11]:  

n
i

i 1

xlog L n 1
 = exp 0



    
     

                          (3.2) 

n
i i

2
i 1

x xlog L n
 = 1 exp 0



        
          

       

(3.3) 

A.  Asymptotic Confidence bounds. based on MLE  

Since the MLEs of the unknown parameters   σ) 
cannot be obtained in closed forms, it is not easy to derive the 
exact distributions of the MLEs. We can derive the asymptotic 

confidence intervals of these parameters when  

is to assume that the MLE 
ˆ ˆ( , ) 

 are approximately bivariate 

normal with mean(,σ) and covariance matrix 
1

0I


,  

[Lawless(2003)], where 
1I0


 is the inverse of the observed 
information matrix 

 

1
2 2

2
1ˆ ˆ ˆ ˆ, ,1

ˆ ˆ0 ( , )
2 2

2
ˆ ˆ ˆ ˆ, ,

ln L ln L

I H

ln L ln L



   
 

   

  
  

 
   
  
  

 
   

ˆ ˆ ˆvar( ) cov( , )

ˆ ˆ ˆcov( , ) var( )

   
  

    .            (3.4) 
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The above approach is used to derive the 100(1 -

, ) as in the 
following forms 

/ 2ˆ ˆz Var( ) 
   and / 2ˆ ˆz Var( ) 

   (3.5) 

Here, z  is the upper ( /2)th percentile of the standard 
normal distribution. 

B. Data Analysis 

In this section we present the analysis of one real data set 
for illustration of the proposed methodology. The data set 
contains 36 months of defect-discovery times for a release of 
Controller Software consisting of about 500,000 lines of code 
installed on over 100,000 controllers. The defects are those that 
were present in the code of the particular release of the 
software, and were discovered as a result of failures reported 
by users of that release, or possibly of the follow-on release of 
the product.[13] First we compute the maximum likelihood 
estimates.  

C. Computation of MLE and model validation 

The Gumbel model is used to fit this data set. We have 
started the iterative procedure by maximizing the log-
likelihood function given in (3.1) directly with an initial guess 

for   = 202.0 and  = 145.0, far away from the solution. We 
have used optim( ) function in R with option Newton-Raphson 
method. The iterative process stopped only after 1211 

iterations. We obtain 
̂ 

 212.1565, ̂   151.7684 and the 
corresponding log-likelihood value = -734.5823. The similar 
results are obtained using maxLik package available in R.  An 
estimate of variance-covariance matrix, using (3.4), is given by 

ˆ ˆ ˆvar( ) cov( , )   230.6859        53.2964
 

ˆ ˆ ˆcov( , ) var( )     53.2964      133.6387

     
   

       

Thus using (3.5), we can construct the approximate 95% 
confidence intervals for the parameters of Gumbel model based 
on MLE’s. Table 1 shows the MLE’s with their standard errors 

and approximate 95% confidence intervals for  and σ.  

TABLE I. MAXIMUM LIKELIHOOD ESTIMATELE(MLE), 
STANDARD ERROR AND 95% CONFIDENCE INTERVAL 

Parameter MLE Std. Error 95% Confidence Interval 

mu 212.1565 15.188 (182.38802, 241.92498) 

sigma 151.7684 11.560 (93.1108, 174.426) 

To check the validity of the model, we compute the 
Kolmogorov-Smirnov (KS) distance between the empirical 
distribution function and the fitted distribution function when 
the parameters are obtained by method of maximum likelihood. 
For this we can use R function ks.gumbel( ), given in [7]. The 
result of K-S test is D =0.0699 with the corresponding p-value 
= 0. 0.6501, therefore, the high p-value clearly indicates that 
Gumbel model can be used to analyze this data set. We also 
plot the empirical distribution function and the fitted 
distribution function in Fig. 2. 

 

Figure 2. The graph of empirical distribution function and fitted distribution 
function. 

Therefore, it is clear that the estimated Gumbel model 
provides excellent good fit to the given data. 

D. Bayesian Estimation in OpenBUGS 

A module dgumbel(mu, sigma) is written in component 
Pascal, given in [13] enables to perform full Bayesian analysis 
of Gumbel model into OpenBUGS using the method described 
in [14, 15]. 

1) Bayesian Analysis under Uniform Priors 

The developed module is implemented to obtain the Bayes 

estimates of the Gumbel model using MCMC method. The 

main function of the module is to generate MCMC sample 

from posterior distribution for given set of uniform priors. 

Which is frequently happens that the experimenter knows in 

advance that 

b] but has no strong opinion about any subset of values over 

this range. In such a case a uniform distribution over [a, b] may 

be a good approximation of the prior distribution, its p.d.f. is 

given by 

 
1

          ; 0<a b
( ) b a

0                 ; otherwise


  

   



  

We run the two parallel chains for sufficiently large number 
of iterations, say 5000 the burn-in, until convergence results. 
Final posterior sample of size 7000 is taken by choosing 
thinning interval five i.e. every fifth outcome is stored. 

Therefore, we have the posterior sample {1i ,1i}, i = 

1,…,7000 from chain 1 and    {2i ,2i}, i = 1,…,7000 from 
chain 2.  

The chain 1 is considered for convergence diagnostics 
plots. The visual summary is based on posterior sample 
obtained from chain 2 whereas the numerical summary is 
presented for both the chains. 

E. Convergence diagnostics 

Before examining the parameter estimates or performing 
other inference, it is a good idea to look at plots of the 
sequential(dependent) realizations of the parameter estimates 
and plots thereof. We have found that if the Markov chain is 
not mixing well or is not sampling from the stationary 
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distribution, this is usually apparent in sequential plots of one 
or more realizations. The sequential plot of parameters is the 
plot that most often exhibits difficulties in the Markov chain. 

 History(Trace) plot  

 

Figure 3. Sequential realization of the parameters  and . 

Fig.3 shows the sequential realizations of the parameters of 
the model. In this case Markov chain seems to be mixing well 
enough and is likely to be sampling from the stationary 
distribution. The plot looks like a horizontal band, with no long 
upward or downward trends, then we have evidence that the 
chain has converged. 

 Running Mean (Ergodic mean) Plot 

In order to study the convergence pattern, we have plotted a 
time series (iteration number) graph of the running mean for 
each parameter in the chain. The mean of all sampled values up 
to and including that at a given iteration gives the running 
mean. In the Fig. 4 given below, a systematic pattern of 
convergence based on ergodic averages can be seen after an 
initial transient behavior of the chain. 

 

Figure 4. The Ergodic mean plots for mu and sigma. 

F. Numerical Summary 

 

In Table 2, we have considered various quantities of 
interest and their numerical values based on MCMC sample of 
posterior characteristics for Gumbel model under uniform 

priors. The numerical summary is based on final posterior 
sample (MCMC output) of 7000 samples for mu and sigma.  

 {1i , σ1i},    i = 1,…,7000 from chain 1 and  

 {2i 2i},  i = 1,…,7000 from chain 2. 

G. Visual summary by using Box plots 

 The boxes represent in Fig. 5, inter-quartile ranges and the 
solid black line at the (approximate) centre of each box is the 
mean; the arms of each box extend to cover the central 95 per 
cent of the distribution - their ends correspond, therefore, to the 
2.5% and 97.5% quantiles. (Note that this representation differs 
somewhat from the traditional. 

 

Figure 5. The boxplots for mu and sigma 

2) Bayesian Analysis under Gamma Priors 

The developed module is implemented to obtain the Bayes 
estimates of the Gumbel model using MCMC method to 
generate MCMC sample from posterior distribution for given 
set of gamma priors, which is most widely used prior 

distribution of  is the inverted gamma distribution with 
parameters a and b (>0) with p.d.f. given by  

(a 1) a /b
e ; 0 (a,b) 0

( ) (a)

0 ; otherwise


   


   

   



 

We also run the two parallel chains for sufficiently large 
number of iterations, say 5000 the burn-in, until convergence 
results. Final posterior sample of size 7000 is taken by 
choosing thinning interval five i.e. every fifth outcome is stored 
and same procedure is adopted for analysis as used in the case 
of uniform priors. 

H. Convergence diagnostics 

Simulation-based Bayesian inference requires using 
simulated draws to summarize the posterior distribution or 
calculate any relevant quantities of interest. We need to treat 
the simulation draws with care. Trace plots of samples versus 
the simulation index can be very useful in assessing 
convergence. The trace indicates if the chain has not yet 
converged to its stationary distribution—that is, if it needs a 
longer burn-in period. A trace can also tell whether the chain is 
mixing well. A chain might have reached stationary if the 
distribution of points is not changing as the chain progresses. 
The aspects of stationary that are most recognizable from a 
trace plot are a relatively constant mean and variance. 

 Autocorrelation   

The graph shows that the correlation is almost negligible. 
We may conclude that the samples are independent. 
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Figure 6. The autocorrelation plots for mu and sigma. 

 Brooks-Gelman-Rubin  

Uses parallel chains with dispersed initial values to test 
whether they all converge to the same target distribution. 
Failure could indicate the presence of a multi-mode posterior 
distribution (different chains converge to different local modes) 
or the need to run a longer chain (burn-in is yet to be 
completed). 

 

Figure 7. The BGR plots for mu and sigma 

From the Fig. 7, it is clear that convergence is achieved. 
Thus we can obtain the posterior summary statistics. 

III. NUMERICAL SUMMARY 

In Table 3, we have considered various quantities of 
interest and their numerical values based on MCMC sample of 
posterior characteristics for Gumbel model under Gamma 
priors. 

 

A. Visual summary by using Kernel density estimates 

Histograms can provide insights on skewness, behaviour in 
the tails, presence of multi-modal behaviour, and data outliers; 

histograms can be compared to the fundamental shapes 
associated with standard analytic distributions. 

 

Figure 8. Histogram and kernel density estimate of  based on MCMC 

samples, vertical lines represent the corresponding MLE and Bayes estimate. 

Fig. 8 and Fig. 9 provide the kernel density estimate of  

and . The kernel density estimates have been drawn using R 
with the assumption of Gaussian kernel and properly chosen 

values of the bandwidths. It can be seen that  and  both are 
symmetric. 

 

Figure 9. Histogram and kernel density estimate of   based on MCMC 

samples, vertical lines represent the corresponding MLE and Bayes estimate. 

B. Comparison with MLE using Uniform Priors 

For the comparison with MLE we have plotted two graphs. 

In Fig. 10, the density functions 
ˆ ˆf(x; , ) 

 using MLEs and 
Bayesian estimates, computed via MCMC samples under 
uniform priors, are plotted. 
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Figure 10. The density functions 
ˆ ˆf(x; , ) 

 using MLEs and Bayesian 
estimates, computed via MCMC samples. 

Whereas, Fig.11 represents the Quantile-Quantile(Q-Q) plot 
of empirical quantiles and theoretical quantiles computed from 
MLE and Bayes estimates. 

 

Figure 11. Quantile-Quantile(Q-Q) plot of empirical quantiles and theoretical 
quantiles computed from MLE and Bayes estimates. 

It is clear from the Figures, the MLEs and the Bayes 
estimates with respect to the uniform priors are quite close and 
fit the data very well. 

C. Comparison with MLE using Gamma Priors 

For the comparison with MLE, we have plotted a graph 
which exhibits the estimated reliability function (dashed line) 
using Bayes estimate under gamma priors and the empirical 
reliability function(solid line). It is clear from Fig.12, the MLEs 
and the Bayes estimates with respect to the gamma priors are 
quite close and fit the data very well. 

  
Figure 12. The estimated reliability function(dashed line) and the empirical 

reliability function (solid line). 

IV. CONCLUSION 

The developed methodology for MLE and Bayesian 
estimation has been demonstrated on a real data set when both 
the parameters mu (location) and sigma (scale) of the Gumbel 
model are unknown under non-informative and informative set 
of independent priors. The bayes estimates of the said priors, 
i.e., uniform and gamma have been obtained under squared 
error, absolute error and zero-one loss functions. A five point 
summary Minimum (x), Q1, Q2, Q3, Maximum (x) has been 
computed. The symmetric Bayesian credible intervals and 
Highest Probability Density (HPD) intervals have been 
constructed. Through the use of graphical representations the 
intent is that one can gain a perspective of various meanings 
and associated interpretations. 

The MCMC method provides an alternative method for 
parameter estimation of the Gumbel model. It is more flexible 
when compared with the traditional methods such as MLE 
method. Moreover, ‘exact’ probability intervals are available 
rather than relying on estimates of the asymptotic variances. 
Indeed, the MCMC sample may be used to completely 
summarize posterior distribution about the parameters, through 
a kernel estimate. This is also true for any function of the 
parameters such as hazard function, mean time to failure etc. 
The MCMC procedure can easily be applied to complex 
Bayesian modeling relating to Gumbel model 
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