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Abstract—In this paper, we propose a new type of information-
theoretic method to resolve the contradiction observed in compet-
itive and input neurons. For competitive neurons, contradiction
between self-evaluation (individuality) and outer-evaluation (col-
lectivity) exists, which is reduced to realize the self-organizing
maps. For input neurons, there exists contradiction between the
use of many and few input neurons. We try to realize a situation
where as many input neurons as possible are used, and at the
same time, another where only a few input neurons are used. This
contradictory situation can be resolved by viewing input neurons
on different levels, namely, the individual and average level. We
applied contradiction resolution to two data sets, namely, the
Japanese short term economy survey (Tankan) and Dollar-Yen
exchange rates. In both data sets, we succeeded in improving
the prediction performance. Many input neurons were used on
average, but a few input neurons were only taken for each
input pattern. In addition, connection weights were condensed
into a small number of distinct groups for better prediction and
interpretation performance.

Keywords—contradiction resolution; self- and outer-evaluation;
visualization; self-organizing maps; dependent input neuron selec-
tion

I. I NTRODUCTION

A. Contradiction Resolution

We have so far introduced contradiction resolution for
neural networks [1], [2]. We believe that neural networks can
be viewed from multiple points of view. If contradiction exits
between the different points of view, it should be reduced as
much as possible. An example of contradiction is two types of
evaluation for a neuron [2], namely, self- and outer-evaluation.
In self-evaluation, a neuron is evaluated for itself without
considering the other neurons. On the other hand, in outer-
evaluation, the neuron can be evaluated by all the other neu-
rons. If contradiction between self- and outer-evaluation exists,
this contradiction should be reduced as much as possible.

Contradiction resolution has previously been applied to the
self-organizing maps (SOM) [3], [4], [5]. In particular, it has
been used to improve the visualization and clarification of class
structure. Roughly speaking, outer-evaluation corresponds to
cooperation between neurons, which is not considered in self-
evaluation. Thus, the self-organizing maps can be realized by
minimizing contradiction between self- and outer-evaluation.

When we applied the method to the SOM, we focused on
the extraction of clear class structure. The SOM is well-known

and has been established as one of the main techniques in the
visualization and interpretation of neural networks. Though
the SOM has a good reputation in visualization and inter-
pretation, we have had serious difficulty in extracting useful
information from the knowledge obtained. Thus, a number of
different types of methods have been developed to clarify SOM
knowledge, [6], [7], [8], [9], [10], [11], [12]. In addition, there
have been many other methods to create more interpretable
connection weights by changing the learning procedures [13],
[14], [15], [16]. However, we cannot say that SOM knowledge
can be easily interpreted with these methods. Contradiction
resolution has been previously introduced to clarify class
structure or to create more interpretable connection weights,
because the characteristics shared by self- and outer-evaluation
tend to be enhanced [2].

B. Contradiction in Input Neurons

The above example of contradiction is concerned with
competitive (output) neurons in the SOM. We have found that
in addition to competitive neurons, contradiction can be found
in input neurons in terms of their types of responses and the
number of input neurons.

First, we try to resolve contradiction between the actual
and expected responses of input neurons. We have found
several cases where only specific input neurons among many
tend to respond to all input patterns. For example, in our
experiments in this paper, the most important input neuron
(winning neuron) tended to respond to specific data (period),
irrespectively of different input patterns. Because these specific
input neurons are only used in learning, we do not have any
way to examine whether the other input neurons have a role in
learning. To examine the roles of all available input neurons,
we need to develop a method to force all input neurons to
play a role in learning. Thus, we need to resolve contradiction
between the use of specific and all input neurons.

However, we can immediately point out another contradic-
tion in input neurons, namely, contradiction between many and
few neurons. If we interpret input neurons as input variables,
this contradiction is related to the variable selection method
widely used in machine learning [17], [18], [19]. Using vari-
able selection, we can more easily interpret data and internal
representations, reducing the computational time and storage.
In addition, it is widely believed that reducing the number of
input variables (neurons) is effective in improving prediction
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performance [17].Thus, we have contradiction between a few
and many neurons to be actually used in learning. We thus
try to use many input neurons while at the same time using
only a few. To resolve contradiction between many and few
input neurons, we introduce dependent input neuron selection.
In dependent input neuron selection, for a given input pattern,
a few input neurons are taken, while for another input pattern,
a few but different input neurons are used. For individual input
patterns, the number of input neurons is small. On the other
hand, many input neurons are used on the whole.

C. Outline

In Section 2, we first explain the concept of contradiction
resolution in the order of competitive neuron, input neurons
and the number of input neurons. By using the Kullback-
Leibler divergence, we formulate contradiction between self-
and outer-evaluation for competitive neurons. Then, contradic-
tion between actual and expected responses of input neurons
is formulated. Contradiction in the number of input neurons is
resolved by introducing dependent input neuron selection. We
applied the method to two data sets, namely, the short term
economic survey and the Dollar-Yen exchange rates. In both
data sets, prediction performance was improved, condensing
connection weights into a few groups. In addition, the first,
the second and the third winners responded to a variety of
input patterns.

II. T HEORY AND COMPUTATIONAL METHODS

A. Contradiction Resolution

We consider learning to be a process of contradiction
resolution. We here propose three types of contradiction reso-
lution processes, namely, contradiction resolution in terms of
competitive neurons, input neurons and the number of input
neurons.

1) Competitive Neurons:Contradiction resolution [1], [2]
has been introduced to produce the self-organizing maps.
In the self-organizing maps, neurons behave collectively and
individual neurons must imitate those collective behaviors.
Figure 1 shows the process of contradiction resolution. In
Figure 1(a1), a neuron at the center is self-evaluated to fire;
the firing rate of the neuron is determined by the neuron
itself. On the other hand, in Figure 1(a2), a neuron at the
center is outer-evaluated; the firing rate of the neuron is
determined by all surrounding neurons. Because the firing
rates obtained by the self- and outer-evaluation are low and
high, respectively, we have contradiction between self- and
outer-evaluation. Figure 1(b) shows an example of resolved
contradiction. As shown in Figure 1(b1), the firing rate by
the self-evaluation is forced to match the level by the outer-
evaluation in Figure 1(b2). Thus, contradiction between self-
and outer-evaluation is finally resolved.

2) Input Neurons:For input neurons, we think that there
is contradiction between actual and expected responses. Let’s
look at an example to explain concretely this contradiction. We
here explain a problem of the data used in our experiments in
Section 3. We chose the time series data for demonstrating our
method, because we found that thet − 1th input neuron was
mainly used for predicting thetth period, as in Figure 2(a1).
This means that the input neuron responded mainly to the

(a1) Self-evaluation

(a) Perceived contradiction

(b) Resolved contradiction

(a2) Outer-evaluation

(b1) Self-evaluation (b2) Outer-evaluation

Fig. 1. Contradiction resolution between self- and outer-evaluation for
competitive neurons.
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Fig. 2. Contradiction resolution between actual and expected responses of
input neurons.

immediately previous step for predicting the present step. We
found this fact in both data sets in this paper. If it is possible to
take into account many input neurons or more previous steps, it
may be possible to improve the prediction performance. More
concretely, we should consider thet − 2, t − 3 and t − 4 as
well as thet − 1th step. Thus, we have a contradiction that
the actual responses of input neurons are biased toward the
immediately previous step, while the expected responses are
more uniform responses of input neurons. This contradiction
between actual (biased) responses and expected (uniform) ones
must be resolved, as shown in Figure 2(b).

3) Number of Input Neurons:Finally, we have the other
contradiction. As mentioned above, we expect that input neu-
rons respond more uniformly to input patterns. However, for
better prediction performance, one of the more conventional
methods is to reduce the number of input variables (neurons),
namely, variable subsection selection, as shown in Figure 3(b).
This is contrary to the state we try to achieve in Figure 2(b).
This contradiction is resolved by introducing dependent input
neuron selection, as shown in Figure 3(c). In dependent input
neuron selection, a smaller number of input neurons are used,
but they are chosen depending on input patterns. As shown in
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(c) Dependent input neuron selection

(b) Expected input neuron 
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Fig. 3. Contradictionresolution by dependent input neuron selection.

Figure 3(c), for each neural network, only one input neuron
is used. However, a different input neuron is used for each
network in Figure 3(c). When we average these firing rates of
four input neurons, they become the same for all input patterns
in Figure 3(a). Thus, a smaller number of input neurons can be
expected for some input neurons with averaged uniform firing
rates.

B. Contradiction Resolution for Competitive Neurons

First, we consider contradiction resolution for competitive
neurons in Figure 4. We suppose that a neuron, for example,
a neuron in the middle of network in Figure 4, is evaluated
by itself (self-evaluation) and evaluated by the other neurons
(outer-evaluation). If any contradiction between self- and outer-
evaluation exits, it should be reduced as much as possible. In
terms of firing rates, if the firing rates by self-evaluation are
different from those by outer-evaluation, this difference should
be as small as possible.

1) Self- and Outer-Evaluation:Let us explain how to
compute outputs from competitive neurons and input pat-
terns in Figure 4. Thesth input pattern can be represented
by xs = [xs

1, x
s
2, · · · , xs

L]
T , s = 1, 2, · · · , S. Connection

weights into thejth competitive neuron are computed by
wj = [w1j , w2j , · · · , wLj ]

T , j = 1, 2, . . . ,M. Now, we
can compute the firing rates by self- and outer-evaluation. A
neuron’s firing rates by self-evaluation can be defined by using
the outputs from the neuron. Then, thejth competitive neuron
output without considering the other neurons can be computed
by

vsj = exp

(
−
∑L

k=1(x
s
k − wkj)

2

2σ2
β1

)
. (1)

Competitive neurons

q(j|s)
p(j|s)

os



y s



wkj


 


wj

f jm

Output neuron

Input neurons

Connection weights

L

M

Fig. 4. Network architecture for contradiction resolution.

where xs and wj are supposed to representL-dimensional
input and weight column vectors, whereL denotes the number
of input neurons. The parameterσβ1 is computed by

σβ1 =
1

β1
, (2)

where β1 is larger than zero. Thus, the firing rate by self-
evaluation is computed by

p(j | s) =
exp

(
−

∑L
k=1(x

s
k−wkj)

2

2σ2
β1

)
∑M

m=1 exp

(
−

∑L
k=1(x

s
k−wkm)2

2σ2
β1

) . (3)

The output ofa neuron by outer-evaluation is determined
by the sum of all outputs of all the other neurons. We suppose
that the result by outer-evaluation does not contain that by
self-evaluation; given this, we have the final output by the
outer-evaluation

zsj =
M∑

m=1

ϕjmvsm − vsj , (4)

where ϕjm denotes the relation between thejth and mth
neuron. When we apply the method to the self-organizing
maps, this corresponds to the neighborhood function. Then,
the firing rate by the outer-evaluation is defined by

q(j | s) =
zsj∑M

m=1 z
s
m

. (5)

2) Reducing Contradiction: Contradiction resolution aims
to reduce contradiction between self- and outer-evaluation. We
use the Kullback-Leibler divergence to represent this contra-
diction. Using the Kullback-Leibler divergence, contradiction
is defined by

C1 =

S∑
s=1

p(s)

M∑
j=1

p(j | s) log p(j | s)
q(j | s)

. (6)

In addition to this contradiction, we have quantization errors
between connection weights and input patterns

Q1 =
S∑

s=1

p(s)
M∑
j=1

p(j | s)
L∑

k=1

(xs
k − wkj)

2. (7)
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To realize minimum contradiction in terms of contradiction
ratio and quantization errors, first, we try to minimize the KL
divergence with fixed quantization errors. Then, we have the
optimal firing rates

p∗(j | s) =
q(j | s) exp

(
−

∑L
k=1(x

s
k−wkj)

2

2σ2
β1

)
∑M

m=1 q(m | s) exp
(
−

∑L
k=1(x

s
k−wkm)2

2σ2
β1

) . (8)

By substitutingthis optimal firing ratep∗(j | s) for p(j | s),
we have the free energy:

F1 = −2σ2
β1

S∑
s=1

p(s) log
M∑
j=1

q(j | s)

× exp

(
−
∑L

k=1(x
s
k − wkj)

2

2σ2
β1

)
. (9)

The freeenergy can be expanded into

F2 =
S∑

s=1

p(s)
M∑
j=1

p∗(j | s)
L∑

k=1

(xs
k − wkj)

2

+2σ2
β1

S∑
s=1

p(s)
M∑
j=1

p∗(j | s) log p∗(j | s)
q(j | s)

. (10)

Thus, weactually minimize KL divergence as well as quanti-
zation errors. By differentiating the free energy, we have the
re-estimation equation

wj =

∑S
s=1 p

∗(j | s)xs∑S
s=1 p

∗(j | s)
. (11)

C. Contradiction for Input Neurons

As mentioned above, we try to use as many input neurons
as possible. On the other hand, only a specific input neuron
responds to the input patterns in our data. This contradiction
between the actual (biased) and expected (uniform) responses
of input neurons must be resolved as much as possible. For
measuring contradiction, we must compute the output from the
kth input neuron.

Let us now compute the output from thekth input unit.
The output from thekth input neuron is defined by

ysk = exp

(
−
∑M

j=1(x
s
k − wkj)

2

2σ2
β2

)
(12)

Then, thefiring rate is computed by

p(k | s) =
exp

(
−

∑M
j=1(x

s
k−wkj)

2

2σ2
β2

)
∑L

l=1 exp

(
−

∑M
j=1(x

s
l−wlj)2

2σ2
β2

) (13)

Because wetry to achieve uniform responses of input neurons,
the expected firing rate should be determined by1/L. Thus,
we should maximize the entropy to achieve this uniform
distribution

C2 =
S∑

s=1

p(s)
M∑
j=1

p(k | s) log p(k | s). (14)

We can define two free energies for input and competitive
neurons and we must minimize two types of free energy at
the same time.

F = −2σ2
β1

S∑
s=1

p(s) log
M∑
j=1

q(j | s) exp

(
−∥ xs −wj ∥2

2σ2
β1

)

−2σ2
β2

S∑
s=1

p(s) log
L∑

k=1

exp

(
−
∑M

j=1(x
s
k − wkj)

2

2σ2
β2

)
.(15)

For simplification, we suppose that two spread parametersβ1

andβ2 are equal. Then, by differentiating the free energy, we
have the re-estimation rule

wj =

∑S
s=1(p

∗(j | s) + p(k | s))xs∑S
s=1(p

∗(j | s) + p(k | s))
. (16)

D. Contradiction resolution by dependent input neuron selec-
tion

We have known that the reduction of the number of
input neurons (variables) can be used to improve prediction
performance [17]. This reduction is contrary to the previous
contradiction resolution, which aimed to achieve the uniform
responses of input neurons. We reduce this contradiction by
introducing dependent input neuron selection. This method
aims to choose an input neuron depending on a given input
pattern. Though a small number of input neurons are used
for the input patterns, they can be different for different
input patterns. However, on average, they are uniformly used.
Thus, the dependent input neuron selection can solve the
contradiction between biased and uniform responses of input
neurons. Figure 5 shows how to choose the input neurons
according to the importance of the neurons.

Let us compute the output from thekth input unit. The
output from thekth input neuron is defined by

vsk = exp

(
−
∑M

j=1(x
s
k − wkj)

2

2σ2
β2

)
(17)

When thesth input pattern is presented, we first determine the
winner g1

g1 = argmaxk vsk. (18)

Then, based on this winner, we can obtain a winning ranking,
as shown in Figure 5,

g1 < g2 < . . . < gL. (19)

Neurons of this ranking should keep the following relation:

vsg1 > vsg2 > . . . > vsgL . (20)

By using this ranking, we can define the output from thejth
neuron with onlyr winning input neurons

vsj (r) = exp

(
−
∑r

k=1(x
s
gk

− wgkj)
2

2σ2
β2

)
, (21)

wherer is aspecified number of input neurons and less than or
equal to the number of input neurons. By using this output, we
obtain the outputs by outer-evaluation for ther input neurons

zsj (r) =

M∑
m=1

ϕjmvsm(r)− vsj (r), (22)
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Fig. 5. Inputneuron selection.

The firing rates are defined by

q(j | s; r) =
zsj (r)∑M

m=1 z
s
m(r)

. (23)

By using thesefiring probabilities, we have

p∗(j | s) =
q(j | s; r) exp

(
−

∑r
k=1(x

s
gk

−wgkj)
2

2σ2
β2

)
∑M

m=1 q(j | s; r) exp
(
−

∑r
k=1(x

s
gk

−wgkj)2

2σ2
β2

) .

(24)
We minimizetwo types of free energy at the same time:

F = −2σ2
β1

S∑
s=1

p(s) log
M∑
j=1

q(j | s; r)

× exp

(
−
∑r

k=1(x
s
k − wkj)

2

2σ2
β1

)

−2σ2
β2

S∑
s=1

p(s)

× log
L∑

k=1

exp

(
−
∑M

j=1(x
s
k − wkj)

2

2σ2
β2

)
. (25)

By differentiating the free energy withβ1 = β2, the re-
estimation rule can be computed by

wj =

∑S
s=1(p

∗(j | s; r) + p(k | s))xs∑S
s=1(p

∗(j | s; r) + p(k | s))
. (26)

Finally, we should note a modification in the experiments.
The parameterβ1 is supposed to be equivalent to the parameter
β2 for the easy implementation of our method. However, it
is interesting to examine the relations between competitive
and input neurons. For this, in the following experiments
we slightly change the values of the two to examine the
relation between competitive and input neurons. Specifically,
the parameterβ2 is defined by

β2 = αβ1, (27)

whereα is larger than zero. When the parameterα is smaller,
the effect of the input neurons becomes weaker.

III. R ESULTS AND DISCUSSION

A. Experimental Outline

We here present two experimental results for demonstrating
the good performance of our method. We used the mean
squared error (MSE) for the testing data to measure the
performance. In addition, we computed quantization and to-
pographic errors [20] to measure the quality of the maps. The
quantization error is the average error between input patterns
and connection weights into the first winner. On the other hand,
the topographic error is the percentage of input patterns that
are not neighboring neurons.

B. Short-Term Economic Survey (Tankan)

We used the quarterly short-term economic survey of
principal enterprise in Japan. This is called ”Tankan.” The
data set ranged between March 1983 and December 2012. The
training data was between March 1983 and December 2004,
and the testing data was between March 2005 and December
2012.

1) Quantitative Evaluation:Table I shows the summary of
experimental results for the Tankan data. When the parameter
β was 48, the parameterα was 1, and the number of input
winners was 4, the MSE was 70.215. When the parameterα
was 0.7, the MSE decreased to 66.298. These MSE values
were lower than the 85.022 by the SOM and much lower than
the 188.319 by the feed-forward selection (FS) of RBF and
the 424.849 by Ridge regression (RR) of RBF networks. The
quantization error increased from 0.783 by SOM to 1.493 (α =
1.0) and to 1.448 (α = 0.7). The topographic error increased
from 0.012 by SOM to 0.602 (α = 1.0) and to 0.988 (α =
0.7). Thus, good prediction performance was accompanied by
a degradation in map quality.

2) Visual Inspection:Figure 6 (a) shows the Tankan rates
by contradiction resolution withα = 0.7. The actual rates
in blue were close to the predicted ones in red. By SOM
in Figure 6(b), differences between actual and predicted ones
were slightly larger than those by contradiction resolution. By
using the feed-forward selection of RBF networks, differences
between actual and predicted rates were larger in the middle of
the period in Figure 6(c). By using Ridge regression of RBF
networks, Tankan rates fluctuated in the later period in Figure
6(d).
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TABLE I. MSE FOR THE TESTING DATA, QUANTIZATION ERRORS
(QE) AND TOPOGRAPHIC ERRORS(TE) FOR THETANKAN DATA BY

CONTRADICTION RESOLUTION, SOM, FEED-FORWARD SELECTION(FS)
AND RIDGE REGRESSION(RR) OF RBF NETWORKS.

Method Beta Alpha Win MSE QE TE

Contradiction 41 0.7 3 66.298 1.448 0.988
48 1.0 4 70.215 1.493 0.602

SOM 85.022 0.783 0.012
RBF(FS) 188.319
RBF(RR) 424.849
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Fig. 6. Tankan rates in blue and predicted values in red by contradiction
resolution (a), SOM (b), RBF(FS) (c) and RBF (RR) (d) for 5 by 3 sized map.

Figure 7(b) shows the results of PCA for connection
weights by contradiction resolution. Connection weights were
condensed into four distinct groups. On the other hand, by
using the SOM, no regularity could be seen on the results of
PCA in Figure 7(a).

Figure 8(a1) shows to which time lag the first input winner
responded by the conventional SOM. The first input winner
responded mainly to thet − 1th and t − 5th time lag. On
the other hand, by contradiction resolution in Figure 8(a2),
the first winner tended to respond more uniformly to the time
lag. Figure 8(b) shows the response to the time lags by the
second winner. The second winner by the SOM responded to
the t− 2th andt− 4th time lag in Figure 8(b1). On the other
hand, the second winner by contradiction resolution responded
to the time lags almost uniformly in Figure 8(b2). Figure 8(c)
shows the responses by the third winner. The third winner
by the SOM responded to thet − 3th time lag in Figure
8(c1), while the third winner by the contradiction resolution
responded mainly to thet − 4th lag but responded to many
time lags (input neurons) in Figure 8(c2) . These results show
that by contradiction resolution, many input neurons were used
to respond to input patterns.
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Fig. 7. Results by the principal component analysis (PCA) for connection
weights by the SOM (a) and the contradiction resolution (b) for the Tankan
data.
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Fig. 8. Frequency of responses by the winners for each time lag for the
Tankan data.

C. Dollar-Yen Exchange Rate Estimation

1) Experiment Outline:We used the dollar-yen exchange
rates during 2012 (for the results of 2011, see [1]). The time lag
was ten, meaning that the exchange rate at thetth period was
determined by the rates oft−1, t−2, . . ., t−10. The training
data ranged between January to September, while the testing
data ranged from October to December. For comparison, we
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TABLE II. T HE PARAMETERβ AND α, THE NUMBER OF INPUT
WINNING NEURONS, MSE FOR THE TESTING DATA, QUANTIZATION

ERRORS(QE) AND TOPOGRAPHIC ERRORS(TE) FOR THEDOLLAR-YEN
EXCHANGE RATES.

Method Beta Alpha Win MSE QE TE

Contradiction 36 0.5 4 0.122 1.601 0.145
32 1.0 1 0.182 1.579 0.436

SOM 0.270 0.986 0.073
RBF(FS) 0.233
RBF(RR) 5.870

used several conventional methods such as the RBF networks
with feed-forward selection and Ridge regression with GCV
model selection criteria.

2) Quantitative Evaluation:Table II shows the summary of
experimental results when the network size was 5 by 3 for the
dollar-yen exchange rates. When the parameterβ was 32, the
parameterα was 1.0, the number of input winning neurons was
one, the MSE was 0.182. When the parameterα was decreased
to 0.5, the MSE further decreased to 0.122. The MSE values
were much smaller than the 0.270 by SOM, 0.233 by the feed-
forward selection of RBF and 5.870 by the Ridge regression
of RBF networks. However, quantization errors increased from
0.986 by SOM to 1.579 (α = 1.0) and to 1.601 (α = 0.5).
The topographical errors also increased from 0.073 by SOM
to 0.436 (α = 1.0) and to 0.145 (α = 0.5). The prediction
performance was improved at the expense of map quality in
terms of quantization and topographic errors.

3) Visual Inspection: Figure 9(a) shows the actual and
predicted rates by contradiction resolution withα = 0.5.
Actual and predicted rates were almost equal for the entire
range of the period. When we used the SOM in Figure 9(b),
differences between actual and predicted rates became larger as
the time went on. By using the feed-forward selection of RBF
networks in Figure 9(c), the predicted rates were almost flat for
the entire range of the period. By the Ridge regression of RBF
networks in Figure 9(d), the differences were relatively small,
but they were larger than those by contradiction resolution for
the entire range of the period. The experimental results showed
that the prediction performance for the entire period was much
improved by contradiction resolution.

Figure 10(a) shows the results of PCA for connection
weights by contradiction resolution. We can see that connec-
tion weights were condensed into one major group with two
distinct groups by contradiction resolution. On the other hand,
by SOM in Figure 10(b), no regularity could be seen on the
results of PCA. We think that the condensation of connection
weights into a small number of groups was one of the main
reasons for better performance.

Figures 11 (a1), (b1) and (c1) show the frequency of
winning input neurons by the conventional SOM. As can be
seen in the figures, the first, the second and third winning input
neurons responded to thet−1th, t−2 andt−3th time lag by
the conventional SOM. On the other hand, the first winning
neuron by contradiction resolution in Figure 11(b1) responded
to thet−1th andt−5th time lag mainly. In addition, the second
and third winning neuron respond almost uniformly to the time
lags in Figure 11 (b2) and (b3). Experimental results showed
that the specific responses of input neurons were attenuated and
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input neurons tended to respond to many different time lags.
This property was certainly related to improved performance.

D. Discussion

1) Validity of Methods and Experimental Results:In this
paper, we have introduced contradiction resolution between
self- and outer-evaluation, and between expected and actual
responses of input neurons. First, we compute two types of
firing rates of a neuron. The first type is computed by self-
evaluation. The firing rate is determined by its own responses
to input patterns. On the other hand, the firing rate of a neuron
is determined by outer-evaluation, namely, other neurons. If
contradiction or difference between self- and outer-evaluation
exists, this should be reduced as much as possible. The outer-
evaluation corresponds to cooperation between competitive
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neurons. Thus, contradiction resolution between self- and
outer-evaluation can be used to realize self-organizing maps.

The second type of contradiction is between actual and
expected responses of input neurons. We have found that
only specific input neurons respond to input patterns for some
problems. The other input neurons are of no use in learning.
We tried to use as many input neurons as possible.

However, we have known that to improve the prediction
performance, the number of input neurons (variables) should
be reduced. This is contradictory to the expected responses
we try to achieve. The contradiction can be resolved by
introducing dependent input neuron selection. In dependent
input neuron selection, a few input neurons are chosen as in
the variable selection. However, chosen input neurons can be
different, depending on input patterns. Thus, when we see the
responses of input neurons for a specific input neuron, few
input neurons are used. However, on average, all input neurons
can be used.

We applied the method to two data sets, namely, the short
term economic survey (Tankan) and dollar-yen exchange rates.
In both data sets, when contradiction resolution was intro-
duced, much better performance in terms of MSE for testing

data was observed, as in Tables I and II. Better performance
was intuitively observed by plotting actual and estimated
values for testing data in Figures 6 and 9. However, in these
data sets, the map resolution in terms of quantization errors,
and topological preservation in terms of topographic errors
tended to degrade, as in Tables I and II. The better prediction
performance was obtained at the expense of resolution and
topological preservation.

The better performance of our method can be explained
by the use of inactive input neurons and the condensation of
connection weights. First, the good performance was due to
the use of many inactive neurons. In both data sets, important
input neurons tended to respond mainly to the specific input
patterns. For example, the first winner tended to respond to
the immediately previous step (t − 1th step) for predicting
the present step (tth step), as in Figures 8 (a1) and 11 (a1).
By introducing contradiction resolution, many different input
neurons tended to respond to input patterns, as in Figures
8 (a2) and 11 (a2). In addition, almost uniform responses
could be detected in 8 (b2) and 11 (b2). Our method tried
to use many input neurons actively. On the other hand, other
conventional methods used, such as variable selection methods
dealt passively with input neurons or input variables. The
active use of input neurons or variables was one of the main
reasons for better prediction performance.

Second, we could observe the condensation of connection
weights. Our method detected four groups in the Tankan data,
as in Figure 7(b). In the dollar-yen exchange rate data, one
major group and two minor ones were detected, as in Figure
10(b). On the other hand, no explicit regularity could be
distinguished by the conventional SOM, as shown in 7(a)
and 10(a). The condensation of connection weights into a
small number of groups is another reason for better prediction
performance.

2) Limitation and Problems of Method:Though our
method produced better results across all data sets, we should
point out three problems or limitations of our method, namely,
the parametersβ and α, and the resolution and topological
preservation of the maps.

First, contradiction between self- and outer-evaluation is
determined by the parameterβ. We define the spread parameter
σβ by using the parameterβ

σβ =
1

β
. (28)

Thus, whenthe parameterβ is increased, competition becomes
more of the winner-take-all type. When the parameterβ is
decreased, the soft type of competition emerges. When the
parameterβ is too high, contradiction between self- and outer-
evaluation becomes intense and produces maps that cannot
well represent input patterns. Additionally, the characteristics
shared by self- and outer-evaluation become clearer. Because
of the focus on shared characteristics, the final maps do
not necessarily represent input patterns accurately. On the
other hand, when the parameterβ is smaller, contradiction
between self- and outer-evaluation becomes weaker and shared
characteristics become weaker as well. At the present state of
research, no explicit rules exist to determine the parameterβ.
Future studies should thus clarify the relationship between the
parameterβ and network performance.
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Second, wehave a problem determining the parameter
α. Though competitive and input neurons are supposed to
be governed by the same parameter,β in our formulation
of contradiction resolution, we have empirically found that
input and competitive neurons should be controlled by different
parameter rules for better prediction performance. This means
that in order to improve prediction performance, contradiction
in competitive and input neurons should be more carefully
treated. More concretely, by changing the values of the pa-
rameterα, we can change the characteristics of input and
competitive neurons. For example, whenα is small, an input
neuron is more weakly evaluated, while competitive neurons
are more strongly evaluated. We can control the relation
between input and competitive neurons. Thus, we need to
develop a method to take into account the different properties
of competitive and input neurons.

Third, we have the problem of poorer resolution and topo-
logical preservation in terms of quantization and topographic
errors. In all experimental results, we found that the best
prediction performance was not accompanied by the better
resolution and topological preservation. This means that better
prediction performance is contradictory to better resolution and
topological preservation. By the results of the PCA in Figures
7(b) and 10(b), we could see that connection weights were
condensed into several groups by contradiction resolution. This
condensation is related to better prediction and interpretation at
the expense of quantization and topographic errors. Thus, we
need to develop a method to provide better prediction perfor-
mance, keeping higher resolution and topological preservation.

3) Possibility of the Method:The possibility of our method
can be summarized by three points, namely, interpretation,
application to time-series analysis and new types of evaluation.
First, the method can be applied to the procedure where neural
networks produce easily interpretable internal representations.
In neural networks, a critical problem is how to interpret
internal representations. Though many methods have been
developed, we have had still serious problems with interpre-
tation. Our method aims to produce explicit and interpretable
representations by stressing the characteristics shared by self-
and outer-evaluation.

Second, our method can be applied to the time series
analysis. In the time series analysis, one key problem is how to
take into account the previous states behind the present state. It
has been difficult to consider long-term correlation between the
present and the previous states. This is because conventional
methods have tried to describe the time-series without taking
into account the properties of input neurons. Our method can
force some inactive input neurons to respond to input patterns
through as many input neurons as possible. This property is
very different from the conventional approach to time series
analysis. Our method actively uses the previous steps, while
conventional methods receive the previous steps very passively.

Third, we aim principally to describe and use many dif-
ferent types of evaluation for neurons. We have introduced
self- and outer-evaluation, but these are only one realization
of social interaction to be observed in neurons. We can imagine
many different kinds of interaction between neurons. If it is
possible to take into account different types of interactions
between neurons, in particular, social interaction observed in
actual human societies, then it will possible to model human

societies and simulate how individual and collective human
being behave.

IV. CONCLUSION

In the present paper, we introduced contradiction resolution
to improve the prediction and interpretation performance of
neural networks. Contradiction is realized in terms of compet-
itive neurons, input neurons and the number of input neurons.
For competitive neurons, there was contradiction between self-
and outer-evaluation. In self-evaluation, the firing rate of a
neuron is determined only by the neuron itself, while in outer-
evaluation, the firing rates of a neuron are determined by all
surrounding neurons. By resolving contradiction between self-
and outer-evaluation, competitive neurons tend to acquire the
collective behaviors realized by outer-evaluation.

For input neurons, there was contradiction between actual
and expected responses. In our data, only a small number of
specific input neurons tended to respond to input patterns. For
example, the first winning input neuron tended to respond to
the input neuron representing one period before (t−1th period).
We expect an input neuron to respond to many types of input
patterns.

For the number of input neurons, we resolved the contra-
diction by introducing dependent input neuron selection. We
know that a small number of neurons (variables) are effective
in improving prediction performance. In variable selection, the
number of input variables is reduced to improve prediction
performance. This reduction in the number of input neurons is
contrary to the objective we achieved, namely, the diversity of
input neurons. For resolving this contradiction, we introduced
dependent input neuron selection. The number of input neurons
was small for an input pattern. However, many input neurons
were used on average. Thus, this dependent input neuron
selection aims to resolve contradiction between a small number
of neurons and the use of many input neurons.

We applied this contradiction resolution to two data sets,
namely, the short term economic survey and dollar-yen ex-
change rates. In both sets, the first, the second and the third
winners tended to respond to specific input neurons, the
representingt − 1th, t − 2th and t − 3th periods. By using
contradiction resolution, the input neuron tended to respond to
many different types of input neurons. For example, the first
neuron did not necessarily respond to the first input neuron,
but many different input neurons. In addition, connection
weights were condensed into a small number of groups. This
condensation is related to improved prediction performance.

However, we observed that quantization and topographic
errors did not decrease by using contradiction resolution. Thus,
when we try to interpret final connection weights, we should
interpret them with due consideration of the quality of internal
representations.

Though several problems should be solved for practical
application, contradiction resolution can be used to improve
prediction as well as interpretation performance.
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