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Abstract—In this paper, we propose a new type of information-  and has been established as one of the main techniques in the
theoretic method to resolve the contradiction observed in compet-  visualization and interpretation of neural networks. Though
itive and input neurons. I_:or_ c_omp_etitive neurons, contr_adiction the SOM has a good reputation in visualization and inter-
between self-evaluation (individuality) and outer-evaluation (col-  npretation, we have had serious difficulty in extracting useful
lectivity) exists, which is reduced to realize the self-organizing information from the knowledge obtained. Thus, a number of
maps. For input neurons, there exists contradiction between the di X ! :

; ; M ifferent types of methods have been developed to clarify SOM
use of many and few input neurons. We try to realize a situation knowledg){ap 6], [71, [8], [9], [10], [11], [12]. Inpaddition tff)llere

where as many input neurons as possible are used, and at the :
same time, another where only a few input neurons are used. This have been many other methods to create more interpretable

contradictory situation can be resolved by viewing input neurons ~ connection weights by changing the learning procedures [13],
on different levels, namely, the individual and average level. We [14], [15], [16]. However, we cannot say that SOM knowledge

applied contradiction resolution to two data sets, namely, the can be easily interpreted with these methods. Contradiction
Japanese short term economy survey (Tankan) and Dollar-Yen resolution has been previously introduced to clarify class
exchange rates. In both data sets, we succeeded in improving structure or to create more interpretable connection weights,

the prediction performance. Many input neurons were used on  hecause the characteristics shared by self- and outer-evaluation
average, but a few input neurons were only taken for each tend to be enhanced [2].

input pattern. In addition, connection weights were condensed
into a small number of distinct groups for better prediction and

interpretation performance. B. Contradiction in Input Neurons
Keywords—contradiction resolution; self- and outer-evaluation; The above example of contradiction is concerned with
visualization; self-organizing maps; dependent input neuron selec- competitive (output) neurons in the SOM. We have found that
tion in addition to competitive neurons, contradiction can be found
in input neurons in terms of their types of responses and the
. INTRODUCTION number of input neurons.
A. Contradiction Resolution First, we try to resolve contradiction between the actual

and expected responses of input neurons. We have found

: several cases where only specific input neurons among man
neural networks [1], [2]. We believe that neural networks can.d to respond to all i)rllplﬁjt patterr?s. For example % oury

be viewed from multiple points of view. If contradiction exits experiments in this paper, the most important input neuron

between the different points of view, it should be reduced a?winning neuron) tended to respond to specific data (period).

2:/%?3 a?i%r? ?grs Iatl)lﬁ él'j‘rgne )fg]mﬁ;emﬂ cosn élr:_\ d;zt('jogu'fe?_’\é?lgfaeﬂsoﬂlrrespectively of different input patterns. Because these specific
’ Y: input neurons are only used in learning, we do not have any

L%ni?gé?i\ﬁalUfﬁgorgthaernﬁgﬂfgnés S\rllaltﬁzteodth?rr r:;sne(;f mtggtjetv_vay to examine whether the other input neurons have a role in
9 ' ’ Tearning. To examine the roles of all available input neurons,

evaluation, the neuron can be evaluated by all the other ney- .
rons. If contradiction between self- and outer-evaluation exists\JNe need to develop a method to force all input neurons to

play a role in learning. Thus, we need to resolve contradiction
between the use of specific and all input neurons.

Contradiction resolution has previously been applied to the However, we can immediately point out another contradic-

self-organizing maps (SOM) [3], [4], [5]. In particular, it has ion in input neurons, namely, contradiction between many and
been used to improve the visualization and clarification of clas P ) Yy . ny
?e]w neurons. If we interpret input neurons as input variables,

We have so far introduced contradiction resolution for

this contradiction should be reduced as much as possible.

structure. Roughly speaking, outer-evaluation corresponds
cooperation between neurons, which is not considered in self-
evaluation. Thus, the self-organizing maps can be realized b
minimizing contradiction between self- and outer-evaluation.

is contradiction is related to the variable selection method
idely used in machine learning [17], [18], [19]. Using vari-
ble selection, we can more easily interpret data and internal
representations, reducing the computational time and storage.
When we applied the method to the SOM, we focused orin addition, it is widely believed that reducing the number of
the extraction of clear class structure. The SOM is well-knowrinput variables (neurons) is effective in improving prediction
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performance [17]Thus, we have contradiction between a few Q Q Q Q Q Q
and many neurons to be actually used in learning. We thus
try to use many input neurons while at the same time using
only a few. To resolve contradiction between many and few
input neurons, we introduce dependent input neuron selection. Q ° Q Q O

In dependent input neuron selection, for a given input pattern,
a few input neurons are taken, while for another input pattern,
a few but different input neurons are used. For individual input Q Q Q Q Q Q
patterns, the number of input neurons is small. On the other

. (al) Self-evaluation (a2) Outer-evaluation
hand, many input neurons are used on the whole.

(a) Perceived contradiction

C. Outline
In Section 2, we first explain the concept of contradiction Q Q Q Q O O
resolution in the order of competitive neuron, input neurons \
and the number of input neurons. By using the Kullback-
Leibler divergence, we formulate contradiction between self- Q ‘ Q O <« O

tion between actual and expected responses of input neurons

is formulated. Contradiction in the number of input neurons is

resolved by introducing dependent input neuron selection. We Q O ' Q O Q Q
applied the method to two data sets, namely, the short term (b1) Self-evaluation (b2) Outer-evaluation
economic survey and the Dollar-Yen exchange rates. In both
data sets, prediction performance was improved, condensing
connection weights into a few groups. In addition, the first,F'g' 1. Contradiction resolution between self- and outer-evaluation for
the second and the third winners responded to a variety g mpetitive neurons.

input patterns.

t-1 t-1
Il. THEORY AND COMPUTATIONAL METHODS
L. . -2 t t-2 1
A. Contradiction Resolution ™~ — AN
We consider learning to be a process of contradiction , O 3
resolution. We here propose three types of contradiction reso-
lution processes, namely, contradiction resolution in terms of J i

competitive neurons, input neurons and the number of input (a) Actual response (b) Expected response
neurons.

and outer-evaluation for competitive neurons. Then, contradic- ‘

(b) Resolved contradiction

Fig. 2.  Contradiction resolution between actual and expected responses of
1) Competitive NeuronsContradiction resolution [1], [2] input neurons.

has been introduced to produce the self-organizing maps.
In the self-organizing maps, neurons behave collectively and
individual neurons must imitate those collective behaviorsimmediately previous step for predicting the present step. We
Figure 1 shows the process of contradiction resolution. Irfound this fact in both data sets in this paper. If it is possible to
Figure 1(al), a neuron at the center is self-evaluated to firégke into account many input neurons or more previous steps, it
the firing rate of the neuron is determined by the neurorimay be possible to improve the prediction performance. More
itself. On the other hand, in Figure 1(a2), a neuron at theconcretely, we should consider tie- 2, ¢t — 3 andt — 4 as
center is outer-evaluated; the firing rate of the neuron igvell as thet — 1th step. Thus, we have a contradiction that
determined by all surrounding neurons. Because the firinghe actual responses of input neurons are biased toward the
rates obtained by the self- and outer-evaluation are low antnmediately previous step, while the expected responses are
high, respectively, we have contradiction between self- andnore uniform responses of input neurons. This contradiction
outer-evaluation. Figure 1(b) shows an example of resolvetietween actual (biased) responses and expected (uniform) ones
contradiction. As shown in Figure 1(b1), the firing rate by must be resolved, as shown in Figure 2(b).
the self-evaluation is forced to match the level by the outer-

evaluation in Figure 1(b2). Thus, contradiction between self- 3) Nymber of Input NeuronsFinally, we have thg other
and outer-evaluation is finally resolved. contradiction. As mentioned above, we expect that input neu-

rons respond more uniformly to input patterns. However, for
2) Input Neurons:For input neurons, we think that there better prediction performance, one of the more conventional
is contradiction between actual and expected responses. Letisethods is to reduce the number of input variables (neurons),
look at an example to explain concretely this contradiction. Wenamely, variable subsection selection, as shown in Figure 3(b).
here explain a problem of the data used in our experiments ifhis is contrary to the state we try to achieve in Figure 2(b).
Section 3. We chose the time series data for demonstrating oithis contradiction is resolved by introducing dependent input
method, because we found that the 1th input neuron was neuron selection, as shown in Figure 3(c). In dependent input
mainly used for predicting theth period, as in Figure 2(al). neuron selection, a smaller number of input neurons are used,
This means that the input neuron responded mainly to theut they are chosen depending on input patterns. As shown in
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-1 Q O Connection weights
Wi
20 ~
30 (b) Expected input neuron o im W
(a) Expected input neurons (variable selection) O !
1 s
L Input neuro (9 0
O @ NS @ y®
O O Output neuron
0 . ®
0 O O M Competitive neurons
Fig. 4. Netvork architecture for contradiction resolution.
O O
0 0O ~ where x* and w; are supposed to represehtdimensional
9 input and weight column vectors, whekedenotes the number
° O of input neurons. The parameteg, is computed by
1
OB = 5 (2)
. . B
(c) Dependent input neuron selection . .
_ o , _ _ where 3 is largerthan zero. Thus, the firing rate by self-
Fig. 3.  Contradictiorresolution by dependent input neuron selection. evaluation is Computed by
ox SR (mp—wey)?
H H p 202
Figure 3(c), for each neural network, only one input neuron Gls)= b1 3)
is used. However, a different input neuron is used for each PULS)=—" S (w2 |
. . .. _ k=1\Fg km
network in Figure 3(c). When we average these firing rates of > m=1 €XP T 203

four input neurons, they become the same for all input patterns

in Figure 3(a). Thus, a smaller number of input neurons can be The output ofa neuron by outer-evaluation is determined

expected for some input neurons with averaged uniform firingyy the sum of all outputs of all the other neurons. We suppose

rates. that the result by outer-evaluation does not contain that by
self-evaluation; given this, we have the final output by the

- : . outer-evaluation
B. Contradiction Resolution for Competitive Neurons

M
First, we consider contradiction resolution for competitive zj = Z DjmUp, — V5, 4)
neurons in Figure 4. We suppose that a neuron, for example, m=1

a neuron in the middle of network in Figure 4, is evaluatedwhere ¢;,, denotes the relation between theh and mth

by itself (self-evaluation) and evaluated by the other neuronseuron. When we apply the method to the self-organizing
(outer-evaluation). If any contradiction between self- and outermaps, this corresponds to the neighborhood function. Then,
evaluation exits, it should be reduced as much as possible. line firing rate by the outer-evaluation is defined by

terms of firing rates, if the firing rates by self-evaluation are 55
different from those by outer-evaluation, this difference should q(j|s) = 77— (5)
be as small as possible. 2 m=1 %

1) Self- and Outer-Evaluation:Let us explain how to 2) Reducing Congadiction: Contradiction resolution aims

compute outputs from competitive neurons and input patto reduce contradiction between self- and outer-evaluation. We
terns in Figure 4. Thesth input pattern can be represented use the Kullback-Leibler divergence to represent this contra-

by x* = [25,23, - ,23]T, s = 1,2,---,S. Connection diction. Using the Kullback-Leibler divergence, contradiction
weights into thejth competitive neuron are computed by is defined by

w; = [wlj?ijv'” ,’UJL]‘]T, ] = 172,...,M. NOW, we S M .

can compute the firing rates by self- and outer-evaluation. A Cy = Zp(s) Zp(j | s)log p(J | 5). (6)
neuron’s firing rates by self-evaluation can be defined by using = q(j | s)

the outputs from the neuron. Then, tjith competitive neuron

output without considering the other neurons can be compute'(rj1 addition tOthiS_ contra_diction, we have quantization errors
by between connection weights and input patterns

s é:l('rz — wk’j)2
v =exp | — 957 . (2) Q1

S M L
o) pi 19D (@ —we)® (@)
s=1 Jj=1 k=

1
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To realize minimum contradiction in terms of contradiction We can define two free energies for input and competitive
ratio and quantization errors, first, we try to minimize the KL neurons and we must minimize two types of free energy at
divergence with fixed quantization errors. Then, we have th¢he same time.

optimal firing rates s M %" — w; |2
L (05 )2 F = —20% p(s)log » q(j | s)exp (—j>
4(j | s) exp (—Z;ﬁ)> 2 ; 203,
p*(Jls)= — ) s L SM (28— )2
T8 —Whm )2 j= k k )
Yoy a(m | s) exp (—Z"—I(Q;‘gl’“)) —203, > p(s)log y_ exp (— i 207 : )15)
s=1 k=1 2
By substitutingthis optimal firing ratep*(j | s) for p(j | s),  For simplification, we suppose that two spread parameters
we have the free energy: and 3, are equal. Then, by differentiating the free energy, we
s M have the re-estimation rule
Fi = 203, % p(s)log) _a(j|s) S 0G| 8) 4l | s)x 16
s=1 j=1 W= "5 .. ' (16)
Lo ) 21 (@G 1 s) +p(k | s))
X ex _Zk:l(‘r; B wk]) (9)
P 2021 D. Contradiction resolution by dependent input neuron selec-
tion

The freeenergy can be expanded into .
We have known that the reduction of the number of

5 Mo L ) input neurons (variables) can be used to improve prediction
Fo o= > p(s)> p" (1)) (af —wiy) performance [17]. This reduction is contrary to the previous
s=1 j=1 k=1 contradiction resolution, which aimed to achieve the uniform
s M p*(j | s) responses of input neurons. We reduce this contradiction by
+20/231 Zp(s)Zp*(j | s)log —==—. (10) introducing dependent input neuron selection. This method
=1 =1 a(j ls) aims to choose an input neuron depending on a given input

Thus, weactually minimize KL divergence as well as quanti- Pattérn. Though a small number of input neurons are used

zation errors. By differentiating the free energy, we have théOr the input patterns, they can be different fpr different
re-estimation equation input patterns. However, on average, they are uniformly used.

Thus, the dependent input neuron selection can solve the
Zlep*(j | s)x* contradiction between biased and uniform responses of input
Wi = Zs “(j | 5) : neurons. Figure 5 shows how to choose the input neurons
s=1P"1 according to the importance of the neurons.
C. Contdiction for Input Neurons Let us compute the output from theth input unit. The
As mentioned above, we try to use as many input neuron@UtPUt from thekth input neuron is defined by
as possible. On the other hand, only a specific input neuron ZM—l(fEZ — w;)?
responds to the input patterns in our data. This contradiction vi =exp [ -—== 5,2 a7)
between the actual (biased) and expected (uniform) responses 7B,
of input neurons must be resolved as much as possible. FQhen thesth input pattern is presented, we first determine the

measuring contradiction, we must compute the output from th@inner ¢,
kth input neuron.

(11)

g1 = argmax, vg. (18)
Let us now compute the output from th¢h input unit.

Then, based on this winner, we can obtain a winning ranking,
The output from thekth input neuron is defined by g g

as shown in Figure 5,

. S (@ — wy)? <gya<...<gr. 19
Yl = exp (_ i=1 i j (12) 91 <92 9L (19)
T, Neurons of this ranking should keep the following relation:

Th hefiri [ s s s
en, thefiring rate is computed by vl >, > >, (20)
exp <W) By using this ranking, we can define the output from jiie

_ 275, neuron with onlyr winning input neurons
plk|s) = — oy 1
_ 2=\ W7 r s _ 32

D1-1 €XP ( 202, ) vj(r) — exp <_ Zk:l(zgké Wg, ;) > 7 21)

20[52

Because weéry to achieve uniform responses of input neurons,
the expected firing rate should be determinedildy.. Thus, wherer is aspecified number of input neurons and less than or
we should maximize the entropy to achieve this uniformequal to the number of input neurons. By using this output, we

distribution obtain the outputs by outer-evaluation for thénput neurons
S M M
Cy=Y p(s)>_p(k|s)logp(k | s). (14) () =Y Gimuin(r) — vi(r), (22)
s=1 J=1 m=1
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Fig. 5. Inputneuron selection.

The firing rates are defined by

z5(r)
a(j | ss7) = 50—
31 7 (r)
By using thesdiring probabilities, we have
. ZZ:1($2k *wykj)2
q(j | s;m)exp (—)

2
2052

(23)

P (jls)= :
i | sy exp (- i)
(24)
We minimizetwo types of free energy at the same time:
S
= —20%1 Zp( 1ogz Jls;r)

s=1

Xexp( Ek:l( W) )

2031

S

—20%2 Zp(s)
s=1

- w’“j)2> . (@5)

By differentiating the free energy withg; = 35, the re-
estimation rule can be computed by

o = T G | s57) 4 plk | 8)x*
LSt s 4k | s)

(26)

IIl. RESULTS ANDDISCUSSION
A. Experimental Outline

We here present two experimental results for demonstrating
the good performance of our method. We used the mean
squared error (MSE) for the testing data to measure the
performance. In addition, we computed quantization and to-
pographic errors [20] to measure the quality of the maps. The
guantization error is the average error between input patterns
and connection weights into the first winner. On the other hand,
the topographic error is the percentage of input patterns that
are not neighboring neurons.

B. Short-Term Economic Survey (Tankan)

We used the quarterly short-term economic survey of
principal enterprise in Japan. This is called "Tankan.” The
data set ranged between March 1983 and December 2012. The
training data was between March 1983 and December 2004,
and the testing data was between March 2005 and December
2012.

1) Quantitative Evaluation:Table | shows the summary of
experimental results for the Tankan data. When the parameter
B was 48, the parameter was 1, and the number of input
winners was 4, the MSE was 70.215. When the parameter
was 0.7, the MSE decreased to 66.298. These MSE values
were lower than the 85.022 by the SOM and much lower than
the 188.319 by the feed-forward selection (FS) of RBF and
the 424.849 by Ridge regression (RR) of RBF networks. The
guantization error increased from 0.783 by SOM to 1.493-(

1.0) and to 1.448 ¢ = 0.7). The topographic error increased
from 0.012 by SOM to 0.602q( = 1.0) and to 0.988 ¢ =

Finally, we should note a modification in the experiments.0.7). Thus, good prediction performance was accompanied by
The parametes; is supposed to be equivalent to the paramete® degradation in map quality.

(Bo for the easy implementation of our method. However, it
is interesting to examine the relations between competitiv

2) Visual Inspection:Figure 6 (a) shows the Tankan rates
%y contradiction resolution withv = 0.7. The actual rates

and input neurons. For this, in the following experlment
we slightly change the values of the two to examine th
relation between competitive and input neurons. Specificall
the parametep, is defined by

B2 = afh,

where« is larger than zero. When the parameteis smaller,
the effect of the input neurons becomes weaker.

in blue were close to the predicted ones in red. By SOM

8n Figure 6(b), differences between actual and predicted ones
Ywere slightly larger than those by contradiction resolution. By

using the feed-forward selection of RBF networks, differences

between actual and predicted rates were larger in the middle of
the period in Figure 6(c). By using Ridge regression of RBF

networks, Tankan rates fluctuated in the later period in Figure
6(d).

(27)
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TABLE |. MSE FOR THE TESTING DATA QUANTIZATION ERRORS (¢ - 1
(QE) AND TOPOGRAPHIC ERRORSTE) FOR THE TANKAN DATA BY +
CONTRADICTION RESOLUTION SOM, FEED-FORWARD SELECTION(FS) + n
AND RIDGE REGRESSION(RR) OF RBF NETWORKS. 04 + 05 +
02 + +
Method Beta Alpha  Win MSE QE TE + 0
Contradiction 41 0.7 3 66.298  1.448  0.988 0 *
77777777 48 10 4 70215 1493  0.602 I N 05 +
SOM 85.022 0783 0.012 0-2 +
RBF(FS) 188.319 04 * 1
RBF(RR) 424.849 ’ .
0.6 15
+ + +
60 60 3 1 0 1 2 3 35 2 15 1 05 0 o0s
40 40 (a) SOM (b) Contradiction resolution
Fig. 7. Results by the principal component analysis (PCA) for connection
20 vacd weights by the SOM (a) and the contradiction resolution (b) for the Tankan
¥ \ data.
0|
-20 s 50
-40
\ / 40 40
-60 Targets ‘4, Predicted -60 Targets V) |
* Predicted 530 30
80 —F1ar-06 Sep-08  Mar-11 80 vrai-os Sep-08 — Mar-11 z
Jun-07 Dec-09 Jun-12 Jun-07 Dec-09 Jun-12 220 20
Time Time )
(a) Contradicion (b) SOM 10 ) 10
60 60 -
| A 0 0
40 20 || Predicted 1 2 3 4 5 ¢l t2 +3 t4 &3
Targets | Time lag Time lag
20 | . e al) SOM 2) Contradicti luti
- Kﬁﬁ}ﬁ}\ ) 20 /;/*/:*:* KM\ (al) (a) Tt winner (a2) Contradiction resolution
g redi g\ \7/, /\ 0 \4}
& X
-20 \Va 5 50 50
-40 4 \* / + 40 40
Targets \f Iy
-60 64 5 30 30
o
-80—Ffar-06 Scp-08  Mar- 11 -8 e — e 220 20 .
07 T Dec09  un-12 Ma ()iun_ofep‘ogec-ogﬂd Yanc12 © —
Time Time 10
(c) RBF(FS) (d) RBF(RR) 10
Fig. 6. Tankan rates in blue and predicted values in red by contradictiora 0
resolution (a), SOM (b), RBF(FS) (c) and RBF (RR) (d) for 5 by 3 sized map. ") 3 4 s o ) 3 o o5
Time lag Time lag
(bl) SOM . (b2) Contradiction resolution
(b) 2nd winner
Figure 7(b) shows the results of PCA for connection
weights by contradiction resolution. Connection weights weré 50
condensed into four distinct groups. On the other hand, hy 0
using the SOM, no regularity could be seen on the results, of
PCA in Figure 7(a). g 30
o
. N o £ 2
Figure 8(al) shows to which time lag the first input winner
responded by the conventional SOM. The first input winnef | TR0
responded mainly to the — 1th andt¢ — 5th time lag. On 0
the other hand, by contradiction resolution in Figure 8(a2), «i R 5 vl 2 3 4 )
X . . . ime lag Time lag
the first winner tended to respond more uniformly to the time (el SOM ' (c2) Contradiction resolution
lag. Figure 8(b) shows the response to the time lags by the (c) 3rd winner

second winner. The second winner by the SOM responded tgg- 8. Frequency of responses by the winners for each time lag for the
the t — 2th and¢ — 4th time lag in Figure 8(b1). On the other ankan data.

hand, the second winner by contradiction resolution responded

to the time lags almost uniformly.in Figure 8(b2). Figure '8(c)C. Dollar-Yen Exchange Rate Estimation

shows the responses by the third winner. The third winner

by the SOM responded to the— 3th time lag in Figure 1) Experiment Outline:We used the dollar-yen exchange
8(cl1), while the third winner by the contradiction resolution rates during 2012 (for the results of 2011, see [1]). The time lag
responded mainly to thé — 4th lag but responded to many was ten, meaning that the exchange rate atthgeriod was
time lags (input neurons) in Figure 8(c2) . These results showletermined by the rates of-1,¢t—2, ..., t—10. The training

that by contradiction resolution, many input neurons were usedata ranged between January to September, while the testing
to respond to input patterns. data ranged from October to December. For comparison, we
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TABLE 11 THE PARAMETER 3 AND &, THE NUMBER OF INPUT 87 37
WINNING NEURONS, MSE FOR THE TESTING DATA QUANTIZATION /
ERRORS(QE) AND TOPOGRAPHIC ERRORéTE) FOR THEDOLLAR-YEN 86 8 86
EXCHANGE RAT
85 85
- 84 /" 84
Method Beta Alpha Win  MSE QE TE % /
Contradicton 36 05 4 0122 1601 0.145 S W*/ 83
32 1.0 1 0182 1579 0.436 E 82 //’ SV 82
SOM 0.270 0.986 0.073 2 81 Predicted | 31
RBF(FS) 0.233 80 %%< 80 Predicted
RBF(RR) 5.870 790 Targcts 79
+‘*‘&%J
781 78
77 77
Oct-15 Nov-13 Dec-11 Oct-15 Nov-13 Dec-11
. Oct-29 Nov-27 Dec-27 - Nov-27 Dec-27
used seeral conventional methods such as the RBF networks Year o o
with feed-forward selection and Ridge regression with GCV (a) Contradiction resolution (b) SOM

87 87
86

2) Quantitative EvaluationTable Il shows the summary of ss
experimental results when the network size was 5 by 3 foréthe
dollar-yen exchange rates. When the paramgteras 32, theu 83
parametery was 1.0, the number of input winning neurons V\m
one, the MSE was 0.182. When the parameteras decreaseg 81
to 0.5, the MSE further decreased to 0.122. The MSE value
were much smaller than the 0.270 by SOM, 0.233 by the feed
forward selection of RBF and 5.870 by the Ridge regressidf

model selection criteria.

82 Targets

Predicted

Predicted

of RBF networks. However, quantization errors increased frofiToccis Novis - becrii 7O s Now3 - Decll
0.986 by SOM to 1.579«( = 1.0) and to 1.601 ¢ = 0.5). 0ct29 yeur Dee2 029 yur V" Dec:27
The topographical errors also increased from 0.073 by SOM () RBE(E'S) (d) RBF(RR)

Fig. 9. Dollar-yen exchange rates and predicted values by contradiction
to 0.436 (v = 1.0) and to 0.145 ¢ = 0.5). The prediction resolution (a), SOM (b), RBF(FS) (c) and RBF (RR) (d) for 5 by 3 sized
performance was improved at the expense of map quality ifhap.

terms of quantization and topographic errors.

3) Visual Inspection: Figure 9(a) shows the actual ando'4 +

predicted rates by contradiction resolution with = 0.5. 3 08 .
Actual and predicted rates were almost equal for the entifg 06
range of the period. When we used the SOM in Figure 9(b), + . I
differences between actual and predicted rates became largér o
the time went on. By using the feed-forward selection of RBR + + 02
networks in Figure 9(c), the predicted rates were almost flat for * *
the entire range of the period. By the Ridge regression of RBF N ! ¥
networks in Figure 9(d), the differences were relatively small; + L 0. ¥

but they were larger than those by contradiction resolution for + o

the entire range of the period. The experimental results showed 2 0 2 43 2 ot 23

that the prediction performance for the entire period was much = (al) SSMh . () Colntf?‘di(gi(‘:’z)“:s"h‘ﬁon _

Fig. esults by the principal component analysis or connection
|mproved by contradiction resolution. weights by contradiction resolution (a) , SOM (b) and data itself (c) for Dollar-
Yen exchange rates.

+

[

Figure 10(a) shows the results of PCA for connection
weights by contradiction resolution. We can see that connec-
tion weights were condensed into one major group with two
distinct groups by contradiction resolution. On the other hand
by SOM in Figure 10(b), no regularity could be seen on the
results of PCA. We think that the condensation of connection
weights into a small number of groups was one of the mairD. Discussion
reasons for better performance.

Input neurons tended to respond to many different time lags.
This property was certainly related to improved performance.

1) Validity of Methods and Experimental Results: this
Figures 11 (al), (b1) and (cl) show the frequency ofpaper, we have introduced contradiction resolution between
winning input neurons by the conventional SOM. As can beself- and outer-evaluation, and between expected and actual
seen in the figures, the first, the second and third winning inputesponses of input neurons. First, we compute two types of
neurons responded to the- 1th, t — 2 andt — 3th time lag by  firing rates of a neuron. The first type is computed by self-
the conventional SOM. On the other hand, the first winningevaluation. The firing rate is determined by its own responses
neuron by contradiction resolution in Figure 11(b1) respondedo input patterns. On the other hand, the firing rate of a neuron
to thet—1th andt—>5th time lag mainly. In addition, the second is determined by outer-evaluation, namely, other neurons. If
and third winning neuron respond almost uniformly to the timecontradiction or difference between self- and outer-evaluation
lags in Figure 11 (b2) and (b3). Experimental results showeexists, this should be reduced as much as possible. The outer-
that the specific responses of input neurons were attenuated aedaluation corresponds to cooperation between competitive
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1007 ‘ ‘ ‘ 7o ‘ ‘ ‘ 7 data was observed, as in Tables | and Il. Better performance
was intuitively observed by plotting actual and estimated

values for testing data in Figures 6 and 9. However, in these
] data sets, the map resolution in terms of quantization errors,
% and topological preservation in terms of topographic errors

tended to degrade, as in Tables | and Il. The better prediction
performance was obtained at the expense of resolution and
topological preservation.

Frequency
wn
=3

E -~ y > — 1‘_2 | ‘ y = _‘ .
L T w6 v10 The better performance of our method can be explained
ime lag Time lag

(al) SOM ) (2) Contradiction resolution by the use of inactive input neurons and the condensation of
(a) Ist winner connection weights. First, the good performance was due to
100F— ‘ ‘ ‘ 50 ‘ ‘ ‘ 7 the use of many inactive neurons. In both data sets, important
input neurons tended to respond mainly to the specific input
patterns. For example, the first winner tended to respond to
the immediately previous steg ¢ 1th step) for predicting
the present stepith step), as in Figures 8 (al) and 11 (al).
By introducing contradiction resolution, many different input
neurons tended to respond to input patterns, as in Figures
8 (a2) and 11 (a2). In addition, almost uniform responses
oo W m Y @ @ w w wo could be detected in 8 (b2) and 11 (b2). Our method tried
Time lag Time lag , to use many input neurons actively. On the other hand, other
OSN3 winner (b2) Contradiction resohtion conventional methods used, such as variable selection methods
0 dealt passively with input neurons or input variables. The
active use of input neurons or variables was one of the main
reasons for better prediction performance.

Frequency
wn
=}
=

=
=3

Second, we could observe the condensation of connection
weights. Our method detected four groups in the Tankan data,

Frequency
wn
=

as in Figure 7(b). In the dollar-yen exchange rate data, one
major group and two minor ones were detected, as in Figure
10(b). On the other hand, no explicit regularity could be
0 R 05 w4 % © w0 distinguished by the conventional SOM, as shown in 7(a)
" Timelag ’ Timehg and 10(a). The condensation of connection weights into a
(c1) SOM _ (c2) Contradiction resolution small number of groups is another reason for better prediction
(c) 3rd winner erformance.
Fig. 11. Frequency of the responses by the winners for each time lag f0|p
dollar-yen exchange rates. 2) Limitation and Problems of Method:Though our

method produced better results across all data sets, we should
point out three problems or limitations of our method, namely,

neurons. Thus, contradiction resolution between self- an¢he parameters and o, and the resolution and topological
outer-evaluation can be used to realize self-organizing mapspreservation of the maps.

The second type of contradiction is between actual and First, contradiction between self- and outer-evaluation is

expected responses of input neurons. We have found th@etermined by the parametérWe define the spread parameter
only specific input neurons respond to input patterns for somg , by using the parametet

problems. The other input neurons are of no use in learning.
We tried to use as many input neurons as possible. op = 3 (28)
a’hus, wherthe parametef is increased, competition becomes
ore of the winner-take-all type. When the parameteis
ecreased, the soft type of competition emerges. When the
rHaramete;ﬁ is too high, contradiction between self- and outer-
ﬁ]valuation becomes intense and produces maps that cannot
ell represent input patterns. Additionally, the characteristics
ared by self- and outer-evaluation become clearer. Because
f the focus on shared characteristics, the final maps do
t necessarily represent input patterns accurately. On the
other hand, when the parametgris smaller, contradiction
between self- and outer-evaluation becomes weaker and shared
We applied the method to two data sets, hamely, the shortharacteristics become weaker as well. At the present state of
term economic survey (Tankan) and dollar-yen exchange ratesesearch, no explicit rules exist to determine the parameter
In both data sets, when contradiction resolution was introfuture studies should thus clarify the relationship between the
duced, much better performance in terms of MSE for testingparameters and network performance.

However, we have known that to improve the prediction

be reduced. This is contradictory to the expected respons
we try to achieve. The contradiction can be resolved b
introducing dependent input neuron selection. In depende
input neuron selection, a few input neurons are chosen as
the variable selection. However, chosen input neurons can

different, depending on input patterns. Thus, when we see th
responses of input neurons for a specific input neuron, fe
input neurons are used. However, on average, all input neuro
can be used.
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Second, wehave a problem determining the parametersocieties and simulate how individual and collective human
«. Though competitive and input neurons are supposed tbeing behave.
be governed by the same parametérjn our formulation
of contradiction resolution, we have empirically found that IV. CONCLUSION
input and competitive neurons should be controlled by different
parameter rules for better prediction performance. This means .
X . o S (o ]
that in order to improve prediction performance, contradiction
in competitive and input neurons should be more carefull;ﬁ. ) dih ber of i
treated. More concretely, by changing the values of the p ltive neurons, Input neurons and the number of Input neurons.
rametera. we can chan’ e the characteristics of input arQ:or competitive neurons, there was contradiction between self-
competitiv'e neurons Forgexample wheris small, an iFr)1put and outer-evaluation. In self-evaluation, the firing rate of a
neuron is more Weékly evaluated,, while compet,itive neurond curon 1S deterrm_ned only by the neuron itself, Wh'l_e in outer-
are more strongly evaluated. We can control the relatiorsY2luation. the firing rates of a neuron are determined by all
between input and competiti\./e neurons. Thus. we need tgurroundmg neurons. By resolving contradiction between self-

develop a method to take into account the different propertieggﬁlegg\tﬁr'g}gﬁg‘?‘ggnéeﬁirgggtt')tlv(e)ur;gﬁfvgsluft?:nto acquire the
of competitive and input neurons. y :

In the present paper, we introduced contradiction resolution
mprove the prediction and interpretation performance of
eural networks. Contradiction is realized in terms of compet-

Third, we have the problem of poorer resolution and topo- For input neurons, there was contradiction between actual

logical preservation in terms of quantization and topographicand 9?<pgcted responses. In our data, only a small number of
errors. In all experimental results, we found that the bes?peclflc Input neurons pendgd to respond to input patterns. For
prediction performance was not accompanied by the bett xa_mple, the first winning input neuron tended to respond o
resolution and topological preservation. This means that bett € Input neuron representing one perlgd beferelth perlodf):
prediction performance is contradictory to better resolution an € expect an input neuron to respond to many types of input
topological preservation. By the results of the PCA in Figurespattems'
7(b) and 10(b), we could see that connection weights were For the number of input neurons, we resolved the contra-
condensed into several groups by contradiction resolution. Thidiction by introducing dependent input neuron selection. We
condensation is related to better prediction and interpretation &now that a small number of neurons (variables) are effective
the expense of quantization and topographic errors. Thus, wie improving prediction performance. In variable selection, the
need to develop a method to provide better prediction performumber of input variables is reduced to improve prediction
mance, keeping higher resolution and topological preservatiomperformance. This reduction in the number of input neurons is
contrary to the objective we achieved, namely, the diversity of
r{'nput neurons. For resolving this contradiction, we introduced
rgependent input neuron selection. The number of input neurons
rgﬁas small for an input pattern. Hov_vever, many input neurons
networks produce easily interpretable internal represent61tion¥‘{ere _used_ on average. Thus, .th.'s dependent input neuron
In neural networks, a critical problem is how to interpretselectlon aims to resolve Contradlt_:tlon between a small number
internal representations. Though many methods have beecﬁ neurons and the use of many input neurons.
developed, we have had still serious problems with interpre- We applied this contradiction resolution to two data sets,
tation. Our method aims to produce explicit and interpretablenamely, the short term economic survey and dollar-yen ex-
representations by stressing the characteristics shared by sathange rates. In both sets, the first, the second and the third
and outer-evaluation. winners tended to respond to specific input neurons, the
gepresentingt — 1th, ¢ — 2th andt — 3th periods. By using
80ntradiction resolution, the input neuron tended to respond to
many different types of input neurons. For example, the first
peuron did not necessarily respond to the first input neuron,
aHt many different input neurons. In addition, connection
eights were condensed into a small number of groups. This
é/ondensation is related to improved prediction performance.

3) Possibility of the MethodThe possibility of our method
can be summarized by three points, namely, interpretatio
application to time-series analysis and new types of evaluatio
First, the method can be applied to the procedure where neu

Second, our method can be applied to the time serie
analysis. In the time series analysis, one key problem is how t
take into account the previous states behind the present state
has been difficult to consider long-term correlation between th
present and the previous states. This is because conventio
methods have tried to describe the time-series without takin
into account the properties of input neurons. Our method ca
force some inactive input neurons to respond to input patterns However, we observed that quantization and topographic
through as many input neurons as possible. This property isrrors did not decrease by using contradiction resolution. Thus,
very different from the conventional approach to time seriesvhen we try to interpret final connection weights, we should
analysis. Our method actively uses the previous steps, whilterpret them with due consideration of the quality of internal
conventional methods receive the previous steps very passivelgpresentations.

Third, we aim principally to describe and use many dif- Though several problems should be solved for practical
ferent types of evaluation for neurons. We have introducedpplication, contradiction resolution can be used to improve
self- and outer-evaluation, but these are only one realizatioprediction as well as interpretation performance.
of social interaction to be observed in neurons. We can imagine
many different kinds of interaction between neurons. If it is REFERENCES
possible to take m,to acc_ount dlffer_ent_ types _Of mteractlon_s 1] R. Kamimura, “Contradiction resolution between self and outer evalua-
between neurons, in particular, social interaction observed in"" tjon for supervised multi-layered neural networkigurnal of Advanced
actual human societies, then it will possible to model human Research in Artificial Intelligengevol. 2, no. 7, pp. 29-38, 2013.
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