
(IJARAI) International Journal of Advanced Research in Artificial Intelligence,
Vol. 2, No.3, 2013

1 | P a g e
www.ijarai.thesai.org

Adaptive Group Organization Cooperative

Evolutionary Algorithm for TSK-type Neural Fuzzy

Networks Design

Sheng-Fuu Lin* and Jyun-Wei Chang

Department of Electrical Engineering

National Chiao Tung University

Hsinchu, Taiwan

Abstract—This paper proposes a novel adaptive group

organization cooperative evolutionary algorithm (AGOCEA) for

TSK-type neural fuzzy networks design. The proposed AGOCEA

uses group-based cooperative evolutionary algorithm and self-

organizing technique to automatically design neural fuzzy

networks. The group-based evolutionary divided populations to

several groups and each group can evolve itself. In the proposed

self-organizing technique, it can automatically determine the

parameters of the neural fuzzy networks, and therefore some

critical parameters have no need to be assigned in advance. The

simulation results are shown the better performance of the
proposed algorithm than the other learning algorithms.

Keywords—TSK-type Neural Fuzzy Networks; Evolutionary

Algorithm; Group based Symbiotic; Self Organization; System

Identification

I. INTRODUCTION

In the field of artificial intelligence, neural fuzzy network
[1-3] refers to combinations of neural networks and fuzzy logic.
Because the advantages of neural fuzzy networks are powerful
computation ability and human-like reasoning ability from
neural networks and fuzzy systems, respectively, it has good
performance for solving complex nonlinear problems. The
neural fuzzy networks can perform the nonlinear mapping once
the system parameters are trained based on a sequence of input
and desired response pairs, and it does not require
mathematical descriptions of system. Therefore, the
determination of parameters is a critical issue for neural fuzzy
networks.

The backpropagation (BP) [4, 5] is a common method and
widely used for training neural fuzzy networks. It is well
known that BP is an approximate steepest descent algorithm.
The steepest descent algorithm is the simplest, and the
minimization method. The advantage of steepest decent
algorithm is very simple, requiring calculation only of the
gradient, the disadvantage of steepest descent algorithm is that
training time is generally longer than other algorithms; based
on initial weight values, it is often to find the local optimal
solution but not global optimal solution. Besides, BP training
performance depends on the initial values of the system
parameters, and for different network topologies one has to
derive new mathematical expressions for each network layer.

Considering the aforementioned disadvantages one may be
faced with suboptimal performance even for a suitable neural

fuzzy network topology. Hence, the capability of training
parameters and finding the global solution while optimizing the
overall structure are important. The evolutionary methods using
for training the fuzzy model has become a popular research
field [6-20] because evolutionary methods simultaneously
evaluate many points in the search space and are more likely to
converge toward the global solution. The evolutionary fuzzy
model is a learning process to generate a fuzzy model
automatically by incorporating evolutionary learning
procedures.

Recently, several improved evolutionary algorithms have
been proposed [16-22].In [16], Bandyopadhyay et al. used the
variable-length genetic algorithm (VGA) that allows the
differentia of lengths of chromosomes in a population. Carse et.
al. [17] used the genetic algorithm to evolve fuzzy rule based
controllers. In [18], Chen proposed an efficient immune
symbiotic evolution learning algorithm for compensatory
neuro-fuzzy controller. In [19], Lin presented a novel self-
constructing evolutionary algorithm to design a TSK-type
fuzzy model. In [20], the group-based symbiotic evolution
(GSE) was proposed to solve the issue of the traditional genetic
algorithm that all the fuzzy rules were encoded into one
chromosome. In [21], Lin proposed a hybrid evolutionary
learning algorithm to combine the compact genetic algorithm
and the modified variable-length genetic algorithm to perform
structure/parameter learning to construct a network
dynamically. Hsu [22] proposed a multi-groups cooperation-
based symbiotic evolution (MGCSE) to train a TSK-type
neural fuzzy network (TNFN). Their results showed that
MGCSE can obtain better performance and convergence than
symbiotic evolution. Although MGCSE being a good approach
for training a TNFN, there is no systematic way to determine
suitable groups for selecting chromosomes.

Although the above evolution learning algorithms [16-22]
can improve the traditional genetic algorithms, these algorithms
may encounter one or more of the following issues: 1) all fuzzy
rules represent one chromosome; 2) the random group selection
of fuzzy rules; 3) the numbers of fuzzy rules and group
numbers have to be assigned in advance.

Recently, the data mining approach has been widespread
used in several fields [23-30]. The data mining can be regarded
as a new way of data analysis. One goal of data mining is to
find association rules among frequent item sets in transactions.
In [23], the authors proposed a mining method of ascertain

*Corresponding author: Sheng-Fuu Lin,

Tel.: +883-3-5712121 ext. 54365.

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,
Vol. 2, No.3, 2013

2 | P a g e
www.ijarai.thesai.org

large item sets to find association rules in transactions. Han et
al. [24] proposed the frequent pattern growth (FP-Growth) to
mine frequent patterns without candidate generation. Wu et al.
[30] proposed a data mining method based on the genetic
algorithm that efficiently improve the Traditional genetic
algorithm by using analysis support and confidence parameters.

In order to solve aforementioned problems, this paper
proposes an adaptive group organization cooperative
evolutionary algorithm (AGOCEA) for designing a TSK-type
neural fuzzy network. The AGOCEA adopts the group
symbiotic evolution (GSE). Each population in the GSE is
divided to several groups and each group represents a set of the
chromosome that belongs to one single fuzzy rule. To solve the
problem of random group selection, a data mining based group
selection method was used to select the better groups. The
adaptive group organization was used to solve the some
parameters have to be assigned in advance.

This paper is organized as follows. In the Section II, a brief
description of TSK-type neural fuzzy network is introduced.
The proposed AGOCEA is described in the Section III. In the
Section IV, the simulation results are presented. The
conclusions are summarized in the Section V.

II. THE CONCEPT OF THE TSK-TYPE NEURAL FUZZY

NETWORKS

A Takagi-Sugeno-Kang (TSK) type neural fuzzy network
(TNFN) [1] employs different implication and aggregation
methods from the standard Mamdani fuzzy model[3]. Instead
of using fuzzy sets the conclusion part of a rule, is a linear
combination of the crisp inputs. The fuzzy rule of TSK-type
neural fuzzy network is shown as following equation:

IF x1 is A1j (m1j, 1j) and x2 is A2j(m2j, 2j) and … and xn is

Anj (mnj, nj)

THEN y=w0j+w1jx1+…+wnjxn. (1)

where n is the number of the input dimensions and j is the
number of the fuzzy rules.

The structure of the TSK-type neural fuzzy network is
shown in Fig. 1. It is a five-layer network structure. The
functions of the nodes in each layer are described as follows:

Layer 1 (Input Node): No function is performed in this
layer. The node only transmits input values to layer 2. That is

(1)
i iu x

. (2)

Layer 2 (Membership Function Node): Nodes in this layer
correspond to one linguistic label of the input variables in layer
1; that is, the membership value specifying the degree to which
an input value belongs to a fuzzy set is calculated in this layer.
For an external input xi, the following Gaussian membership
function is used:

2
(1)

(2)

2
exp

i ij

ij

ij

u m
u

 , (3)

where mij and σij are, respectively, the center and the width
of the Gaussian membership function of the jth term of the ith
input variable xi.

Layer 3 (Rule Node): The output of each node in this layer
is determined by the fuzzy AND operation. Here, the product
operation is utilized to determine the firing strength of each
rule.

The function of each rule is

2
(1)

(3) (2)

2
exp

i ij

j ij

iji i

u m
u u

. (4)

Layer 4 (Consequent Node): Nodes in this layer are called
consequent nodes.

The input to a node in layer 4 is the output delivered from
layer 3, and the other inputs are the input variables from layer 1
as depicted in Fig. 1.

(4) (3)
0

1

()

n

j j j ij i

i

u u w w x

, (5)

where the summation is over all the inputs and where wij
are the corresponding parameters of the consequent part.

Layer 5 (Output Node): Each node in this layer
corresponds to one output variable. The node integrates all the
actions recommended by layers 3 and 4 and acts as a
defuzzifier with

(4) (3)
0

1 1 1(5)

(3) (3)

1 1

()
k k k

k k

M M M

j j j ij i

j j i

M M

j j

j j

u u w w x

y u

u u

, (6)

where Mk is the number of fuzzy rule.

Fig. 1. Structure of TSK-type neural fuzzy network.

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,
Vol. 2, No.3, 2013

3 | P a g e
www.ijarai.thesai.org

III. ADAPTIVE GROUP ORGANIZATION COOPERATIVE

EVOLUTIONARY ALGORITHM

The flowchart of the proposed adaptive group organization
cooperative evolutionary algorithm (AGOCEA) is shown in
Fig. 2. The structure of chromosomes to construct a TNFN is
shown in Fig. 3. The coding structure of chromosomes is
shown in Fig. 4.

Fig. 2. The flowchart of the AGOCEA.

Fig. 3. The structure of the chromosome in the AGOCEA.

Fig. 4. The structure of the chromosome in the AGOCEA.

The learning process of the AGOCEA involves ten
operators: initialization, two phase self organization, data
mining based group selection, fitness assignment, reproduction,
crossover, mutation, calculation of group similarity, splitting
process, and lumping process. The whole learning process is
described step-by-step as follows:

A. Initialization

Before the AGOCEA is designed, individuals forming
several initial groups should be generated. The initial groups of
the AGOCEA are generated randomly within a fixed range.

The following formulations show how to generate the initial
chromosomes in each group:

Deviation: Chrg, c [p]=random[min , max] (7)

where p=2, 4,…, 2n; g=1, 2,…, Mk; c=1, 2,…, NC,

Mean: Chrg, c [p]= random[minm , maxm] (8)

where p=1, 3,…, 2n-1;

Weight: Chrg, c [p]= random [minw , maxw] (9)

 where p=2n+1, 2n+2,…, 2n+(n+1),

where Chrg, c represents cth chromosome in gth group; Mk
represents k rules that used to form a TNFN and NC is the total
number of chromosomes in each group; p represents the pth

gene in a Chrg, c; and min max, , min max,m m , and

 min max,w w represent the range that are predefined to generate

the chromosomes.

B. Two phase self organization (TPSO)

After every group is initialized, the AGOCEA adopts
pervious research which was TPSO [29, 31] to decide the
suitable selection times of each number of rules (in this paper
the number of rules lie between [Mmax, Mmin]); that is, it
determines the selection times of Mk groups which form a
TNFN with k rules.

After the TPSO, the selection times of the suitable number
of rules in a TNFN will increase, and the selection times of the
unsuitable number of rules will decrease. The details of the
TPSO are listed as follows:

Step 0. Initialize the probability vectors:

min min 1 max0.5, where , , ,
kM kV M M M M

(11)

Accumulator = 0

(12)
Step 1. Update the probability vectors according to the

following equations:

(_ *), if

(_ *), otherwise

k k k k

k k k

M M M M

M M M

V V Upt value Avg fit

V V Upt value

 (13

)
max

min

max min/ (1)
k

k

M

M

M M

Avg fit M M

 (1 4

)
max

min

_
k k k

k

M

M M M

M M

Upt value fit fit

 (1 5

)

if (_)

then

k k

k k k

M M

M M M

Fitness Best Fitness ThresholdFitnessvalue

fit fit Fitness

 (16)

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,
Vol. 2, No.3, 2013

4 | P a g e
www.ijarai.thesai.org

where
kMV is the probability vector, is a predefine

threshold value, Avg represents the average fitness value in the

whole population, _
kMBest Fitness represents the best fitness

value with Mk rules,
kMfit is the sum of fitness value of TNFN

with Mk rules,
kMFitness is the fitness value with Mk rules,

ThresholdFitnessvalue is a predefined threshold value.

Step 2. Determine the selection times according to the
probability vectors as follows:

(_)*(/ _)
M kk

p MR Selection Times V Total Velocy , (17)

max

min

_
k

Mk

V

M

V

Total Velocy V

 , (18)

where Selection_Times represents total selection times in
each generation, Total_Velocy is summation of the probability

vectors
kMV ,

Mk
pR is the selection times of Mk groups that use

to select k chromosomes for constructing a TNFN.

Step 3. After step 2, the selection times of every

numbers of rules in a TNFN are obtained. Then the
Mk

pR times

are used to select k chromosomes form Mk groups to construct a
TNFN.

Step 4. In the proposed TPSO, for avoiding suitable Mk
groups may fall in the local optima solution, the TPSO

proposed two different actions to update the
kMV . Decide the

deferent action according to the following equations:

If Accumulator TPSOTimes (19)

Then do Step1, Step2, and Step 3,

If Best_Fitnessg = Best_Fitness (20)

Then Accumulator = Accumulator + 1,

If Accumulator > TPSOTimes (21)

Then do Step 0 and Accumulator = 0,

where TPSOTimes is a predefined value; Best_Fitnessg
represents the best fitness value of the best combination of
chromosomes in gth generation; Best_Fitness represents the
best fitness value of the best combination of chromosomes in
current generations. Eqs. (19)-(21) represents that if the fitness
is not changed for a sufficient number of generations, the
suitable Mk groups may fall in the local optima solution.

C. Data mining based group selection (DMGS)

After the TPSO step, the selection times of each rule
number in a TNFN is decided. The AGOCEA then performs
selection step. The selection step in the AGOCEA can be
divided by selection of groups and chromosomes. In the
selection of groups, this paper uses the DMGS to improve the
random selection. In the DMGS, the groups are selected
according to the frequent patterns found by FP-Growth. In the
proposed DMGS, the FP-Growth finds the frequent groups
from a transaction (in this paper a transaction means a set of the
Mk group indexes that perform well). After the frequent group
indexes have been found, the DMGS selects the Mk groups

indexes according to the frequent group indexes. To avoid the
frequently-occurring groups from falling in the local optimal
solution, the DMGS uses three actions to select Mk groups. The
three actions defined in this paper are normal, search, and
explore. The detail of the DMGS is shown as follows:

Step 0. The transactions are building as follow equation:

if _

then [] []

where 1, 2, ,

1, 2, ,

k k

k

M M

j M

k

Fitness Best Fitness ThresholdFitnessvalue

Transaction i TNFNRuleSet i

i M

j TransactionNum

 (22)

where the
kMFitness represents the fitness value of TNFN

with Mk rules, TransactionNum is the total number of
transactions Transactionj[i] represents the ith item in the jth

transaction, []
kMTNFNRuleSet i represents ith group index in

Mk group indexes that are selected to form a TNFN with Mk
rules. For example, as shown in Table I, the first transaction of
the transaction set means the 3 rules TNFN that select from 1st
group, 4th group, and 8th group has a well performance.

TABLE I. TRANSACTIONS IN A FP-GROWTH.

Transaction index Group indexes

1 1, 4, 8

2 2, 4, 7, 10

TransactionNum 1, 3, 4, 6, 8, 9

Step 1. Normal action:

After building up the transactions, the DMGS selects group
according to different action types. If the action type is normal
action, the DMGS selects the group as following equation:

min min 1 max

if

then [] [1,]

where 1, 2, , ; , , , ,

size

k k

Accumulator NormalTimes

GroupIndex i Random P

i M M M M M

 (23)

where Accumulator is defined in Eq. (20); GroupIndex[i]
represents selected ith group index of the Mk group indexes and
Psize represents there are Psize groups in a population in the
AGOCEA.

Step 2. Find the frequent groups:

If the action is searching or exploring action, the DMGS
uses the FP-Growth [24] to find frequent group indexes in
transactions. The frequent group indexes are found according
to the predefined Minimum_Support. The Minimum_Support
means the minimum fraction of transactions that contain an
item set. The FP-Growth algorithm can be viewed as two parts:
construction of the FP-tree and FP-growth. The sample
transactions shown in Table II are taken as examples.
Minimum_Support = 3 is considered in this example. Frequent
group indexes generated by FP-growth shown in Table III are
then thrown into the pool that’s named FrequentPool.

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,
Vol. 2, No.3, 2013

5 | P a g e
www.ijarai.thesai.org

TABLE II. SAMPLE TRANSACTIONS.

Transaction index Group indexes

1 {b, c, e, f, g, h, p}

2 {a, b, c, f, i, m, o}

3 {c, f, i, m, o}

4 {b, c, e, s, p}

5 {a, b, c, d, f, m, o}

TABLE III. FREQUENT GROUP INDEXES GENERATED BY FP-GROWTH

WITH MINIMUM_SUPPORT = 3.

Suffix

group

Cond. group

base

Cond.

FP-tree

Frequent group indexes

B c:4 c:4 cb:4

F cb:3, c:1 c:4, cb:3 cf:4, bf:3, cbf:3

M

cbf:2, cf:1 cf:3 cm:3, fm:3, cfm:3

O cbfm:2, cfm:1 cfm:3 co:3, fo:3, mo:3, cfo:3, cmo:3,

fmo:3, cfmo:3

Step 3. Select the group indexes according to
different actions:

After obtaining the frequent item sets, the DMGS selected
group indexes according to different actions that describe as
follows:

In the searching action, the group indexes are selected from
the frequent item as follow equations:

min min 1 m

if

then [] ,

where

[1,] and [];

[] [];

1, 2, , ;

1, 2, , ; , , ,

size

k k

NormalTimes Accumulator SearchingTimes

GroupIndex i w

w Random P w FrequentItemSet q

FrequentItemSet q Random FrequentPool

q FrequentPoolNum

i M M M M M

 ax ,

 (24)

where SearchingTimes is a predefined value that judge to
perform searching action; FrequentPool represents the sets of
frequent item set that obtain from FP-Growth;
FrequentPoolNum presents the total number of sets in
FrequentPool and FrequentItemSet[i] presents a frequent item
set that select from FrequentPool randomly. In Eq. (24), if Mk
greater than the size of FrequentItemSet[i], the remaining
groups are selected by Eq. (23).

In the exploring action, the group indexes are selected
according to the frequent item as follow equations:

min min 1 max

if

then [] ,

where

[1,] and [];

[] [];

1, 2, , ; , , , ,

size

k k

SearchingTimes Accumulator ExploringTimes

GroupIndex i w

w Random P w FrequentItemSet i

FrequentItemSet i Random FrequentPool

i M M M M M

 (25)

where ExploringTimes is a predefined value that judge to

perform exploring action.

Step 4. After selecting Mk group indexes, the k chromosomes

are selected from Mk group as follows:

[] ,

where [1,]

1, 2, ,

c

ChromosomeIndex i q

q Random N

i k

 (26)

where Nc represents the number of chromosomes in each
group; ChromosomeIndex[i] represents the index of a
chromosome that select from ith group.

The illustration of the DMGS is shown in Fig. 5 with
simple descriptions as follows: suppose the TPSO determines
that 4 rules are expected, and 3 out of 7 groups, group 2, 3 and
6, are deemed as frequent groups. If the current action type of
the DMGS is normal action, then 4 random groups will be
selected to form a TFS. If the search action is taken, then
frequent group 2, 3 and 6 will be selected. The remaining one
group will be draw randomly from group 1, 4, 5 and 7. If the
explore action is taken, then the 4 non-frequent group 1, 4, 5
and 7 will be selected in case of the problem of local optimum.

Fig. 5. The example of the DMGS.

D. Fitness assignment

The fitness value of a rule (an individual) is calculated by
concatenating this individual with elites of other groups
selected by DMGS. The details for assigning the fitness value
are described as follows:

Denote G1, G2, …,
kMG , the Mk groups selected by the

DMGS; Gj．pi denotes the ith individual of the jth group; yj

refers to the elite individual of the jth group. Then the fitness of

the individual Gj．pi can be computed as follows:

1 1 1 1() (, , , , ,)
k kj i j i j j M Mfitness G p fitness G y G p G y G y (27)

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,
Vol. 2, No.3, 2013

6 | P a g e
www.ijarai.thesai.org

E. Reproduction

To perform reproduction, elite-based reproduction strategy
(ERS) [22] is adopted in this study. In ERS, every chromosome
in the best combination of Mk groups must be kept by
performing reproduction step. In the remaining chromosomes
in each group, the roulette-wheel selection method [32] is
adopted for proceeding with the reproduction process.

Then the well-performed chromosomes in the top half of
each group [14] proceed to the next generation. The other half
is generated by performing crossover and mutation operations
on chromosomes in the top half of the parent individuals.

F. Crossover

In this step, a two-point crossover strategy [32] is adopted.
Once the crossover points are selected, exchanging the site’s
values between the selected sites of individual parents can
create new individuals. These individuals are offspring which
inherent the parents’ merits.

G. Mutation

The utility of the mutation step can provide some new
information to every group at the site of an individual by
randomly altering the allele of a gene.

Thus mutation can lead to search new space which can
avoid falling into the local minimal solution. In the mutation
step, uniform mutation [33] is adopted, and the mutated gene is
drawn randomly from the domain of the corresponding variable.

H. Calculation of group similarty

In order to achieve self adaptive group organization, it must
determine the group similarity first. This paper involves the
three measurements to determine the group similarity: 1. group
centers, 2. group distance, and 3. group standard deviation.

Group centers:
1

1
, 1,2, ,

j

ij

m

j l C

ij

j N
m

 y x (28)

Group distance:
2

1, 1

sizeP

ij i j i j

i j

d

 y y y y (29)

Group standard deviation:
2

1

1 j

pj

m

i i i

j l j

pj

x y
m

 (30)

 0

1, ,
max

i i

j j
i n

where yj is the center of the jth group, mj is the total number

of jth group,
ijlx is ith chromosome in the jth group, dij is the

Euclidean distance between the ith group and jth group,
 i
j is

the ith bit standard deviation in the jth group,
 0i

j is the

largest standard deviation of jth group.

After calculating above three measurements, it will be used
to adjust the group organization of the neural fuzzy network by
following two processes: splitting process and lumping process.

I. Splitting process

If
 0

0

i

j , where
0 is standard deviation splitting

threshold, it means the chromosomes in the jth group are very
dissimilar, so the AGOCEA will call Splitting process.

The Splitting process will divide jth group into two groups,
which are j+ group and j- group, by following step: the top
50% (fitness value) chromosomes in the jth group will put into
j+ group, the other 50% chromosomes in the jth group will put
into j- group. The other 50% in the j+ group and j- group will
generate randomly. After Splitting process, the dissimilar group
will be separated into different groups, and total number of
group will increase.

3.10 Lumping process

If
0ijd d , where d0 is lumping threshold, it means the

chromosomes are very similar between ith group and jth group,
so the AGOCEA will call Lumping process. The Lumping
process will merge ith group and jth group into a new group.
The new group consists of the top 50% chromosomes from ith
group and the top 50% chromosomes from jth group. After
Lumping process, the similar groups will be merged into a new
group, and total number of group will decrease.

IV. SIMULATION RESULTS

The example used for identification of nonlinear dynamic
system given by Narendra and Parthasarathy [34] is described
as following difference equation:

 3

2
1

1

y k
y k u k

y k

 (31)

The output of above equation depends nonlinearly on both
its past value and the input, but the effects of the input and
output values are not additive. The training input patterns are
random value in the interval [-2, 2]. To determine the
performance of the algorithms, this example adopts the root
mean square error (RMSE). The definition of the RMSE is:

2

1

ˆ

RMSE

N

k

y k y k

N

 (32)

where ŷ k is desired output, y(k) is model output, and N

is number of data.

In order to determine performance of the difference
learning algorithm, this example is compared AGOCEA with
HESP [35], ESP [36], MCGSE [22], SANE [37], and GA [6].
All algorithms were learned for 500 generations and repeated
for 50 trails. The initial parameters of the AGOCEA are given
in Table IV. Figure 6-11 show the output of all algorithms for

the input signal 2

25
sin ku k .

In these figures, the symbol “o” represents the desired
output of the nonlinear dynamic system, and the symbol “*”
represents the output of all algorithms. It can be seen from the
Fig. 5-10 that the model output of AGOCEA has more
accuracy than the other comparing learning algorithms.

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,
Vol. 2, No.3, 2013

7 | P a g e
www.ijarai.thesai.org

TABLE IV. INITIAL PARAMETERS OF THE AGOCEA.

Parameters Value

Psize 30

Nc 20

Selection_Times 40

NormalTimes 10

Searching Times 20

ExploringTimes 30

Crossover Rate 0.6

Mutation Rate 0.3

[Mmin, Mmax] [5, 15]

[mmin, mmax] [-10, 10]

[σmin, σmax] [1,15]

[wmin, wmax] [-10, 10]

σ0 6

d0 12

Fig. 6. Identification Results Of The Desired Output And The AGOCEA.

Fig. 7. Figure 4.2 Identification Results Of The Desired Output And The

HESP.

Fig. 8. Identification Results Of The Desired Output And The ESP.

Fig. 9. Identification Results Of The Desired Output And The MCGSE.

Fig. 10. Identification Results Of The Desired Output And The SANE.

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,
Vol. 2, No.3, 2013

8 | P a g e
www.ijarai.thesai.org

Fig. 11. dentification Results Of The Desired Output And The GA.

Figure 12 (a)-(f) show the identification error between the
desired output and all algorithms’ output. As shown in Fig. 12
(a)-(f), the AGOCEA illustrated the smaller error than other
algorithms. Figure 13 provides the learning curve of the various
learning algorithms, it can be seen from the learning curve that
the AGOCEA converge faster and better than the other learning
algorithms.

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 12. Identification Errors Of The (A) AGOCEA, (B) HESP, (C)

ESP (D) MCGSE, (E) SANE, And (F) GA.

Fig. 13. The Learning Curve Of AGOCEA, HESP, ESP, MCGSE,

SANE, And GA.

Table V shows the results obtained from a RMSE analysis
of the various learning algorithms. There was a significant
difference between the proposed AGOCEA and the other
learning algorithms. No matter which performance index is, the
proposed AGOCEA has the better performance than the other
learning algorithms.

TABLE V. RMSE COMPARISON OF VARIOUS LEARNING ALGORITHMS.

Algorithm
RMSE

Mean Best Worst STD

AGOCEA 0.0023 0.0011 0.0034 0.0006

HESP 0.0417 0.0285 0.0584 0.0071

ESP 0.0527 0.0342 0.0744 0.0112

MCGSE 0.0326 0.0228 0.0625 0.0062

SANE 0.0501 0.0274 0.0765 0.0117

GA 0.0470 0.0257 0.1117 0.0212

V. CONCLUSIONS

In this paper, the AGOCEA is proposed for designing TSK-
type neural fuzzy network. The proposed AGOCEA not only
determine the suitable number of fuzzy rules and group number
but also efficiently tune the free parameters in the TNFN. The
AGOCEA adopts the GSE that each population is divided to
several groups and each group represents only one fuzzy rule.
In order to solve the problem of random group selection, a data
mining based group selection method was used to select the
better groups. Furthermore, the adaptive group organization
was proposed to solve the some parameters have to be assigned
in advance. The simulation results show that the AGOCEA
trained TNFN is superior to other methods. Although the
proposed AGOCEA can obtain better results in comparison
with the other learning algorithms, it still has a limitation. The
important limitation lies in the fact that the proposed AGOCEA
emphasize the network parameter learning and the group
structure organization, it is a two level learning structure.
While the problems become more complex, there is possible
that increase the levels of learning structure.

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,
Vol. 2, No.3, 2013

9 | P a g e
www.ijarai.thesai.org

Further research might explore how to determine the
suitable levels of the learning structure for dealing with more
complex problems.

REFERENCES

[1] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its

applications to modeling and control,” IEEE Trans. on Systems, Man
and Cybernetics, vol. 15, no. 1, pp. 116-132, 1985.

[2] J. SR Jang, C. T. Sun, and E. Mizutani, Neuro-fuzzy and soft computing :

A computational approach to learning and machine intelligence,
Prentice Hall, Upper Saddle River, NJ, 1997.

[3] C. T. Lin and C. S. G. Lee, Neural fuzzy systems: A neural-fuzzy

synergism to intelligent systems, Prentice Hall PTR, Upper Saddle River,
NJ, 1996.

[4] C. J. Lin and C. T. Lin, “An ART-based fuzzy adaptive learning control

network,” IEEE Trans. on Fuzzy Systems, vol. 5, no. 4, pp. 477-496,
1997.

[5] C. F. Juang and C. T. Lin, “An on-line self-constructing neural fuzzy

inference network and its applications,” IEEE Trans. on Fuzzy Systems,
vol. 6, no. 1, pp.12-31, 1998.

[6] D. E. Goldberg, Genetic algorithms in search, optimization, and

machine learning, Addison-Wesley, Reading, 1989.

[7] J. R. Koza, Genetic programming: on the programming of computers by

means of natural selection, MIT Press, Cambridge, 1992.

[8] L. J. Fogel, Evolutionary programming in perspective: The top-down
view, In: Zurada JM,Marks JM, Goldberg C (eds) Computational

intelligence: imitating life, IEEE Press, New York, 1994.

[9] I. Rechenberg, Evolution strategy, In: Zurada JM, Marks JM, Goldberg
C (eds) Computational intelligence: imitating life. IEEE Press, New

York, 1994.

[10] C. L. Karr, “Design of an adaptive fuzzy logic controller using a genetic
algorithm,” in Proc. of the 4th International Conference on Genetic

Algorithms, pp. 450-457, 1991.

[11] A. Homaifar and E. Mccormick, “Simultaneous design of membership
functions and rule sets for fuzzy controllers using genetic algorithms,”

IEEE Trans. on Fuzzy Systems, vol. 3, no. 2, pp. 129-139, 1995.

[12] M. A. Lee and H. Takagi, “Integrating design stages of fuzzy systems
using genetic algorithms,” in Proc. of the IEEE International

Conference on Fuzzy Systems, pp. 612-617, 1993.

[13] C. F. Juang, “A TSK-type recurrent fuzzy network for dynamic systems

processing by neural network and genetic algorithms,” IEEE Trans. on
Fuzzy Systems, vol. 10, no. 2, pp. 155-170, 2002.

[14] C. F. Juang, J. Y. Lin, and C. T. Lin, “Genetic reinforcement learning

through symbiotic evolution for fuzzy controller design,” IEEE Trans.
on Systems, Man and Cybernetics, Part B, vol. 30, no. 2, pp. 290-302,

2000.

[15] P. Kumar, V. K. Chandna, and M. S. Thomas, “Fuzzy-genetic algorithm
for pre-processing data at the RTU,” IEEE Trans. on Power Systems,

vol. 19, no. 2, pp. 718-723, 2004.

[16] S. Bandyopadhyay, C. A. Murthy, and S. K. Pal, “VGA-classifier:
Design and applications,” IEEE Trans. on Systems, Man and

Cybernetics, Part B, vol. 30, no. 6, pp. 890-895, 2000.

[17] B. Carse, T. C. Fogarty, and A. Munro, “Evolving fuzzy rule based
controllers using genetic algorithms,” Fuzzy Sets and Systems, vol. 80,

no. 3, pp. 273-293, 1996.

[18] C. H. Chen, C. J. Lin, and C. T. Lin, “Using an efficient immune
symbiotic evolution learning for compensatory neuro-fuzzy controller,”

IEEE Trans. on Fuzzy Systems, vol. 17, no. 3, pp. 668-682, 2009.

[19] C. J. Lin, C. H. Chen, C. T. Lin, “An efficient evolutionary algorithm for

fuzzy inference systems,” Evolving Systems, vol. 2, no. 2, pp. 83-99,
2011.

[20] C. H. Lin and Y. J. Xu, A self-adaptive neural fuzzy network with
group-based symbiotic evolution and its prediction applications, Fuzzy

Sets and Systems, vol 157, no. 8, pp. 1036-1056, 2006.

[21] C. J. Lin and Y. C. Hsu, “Reinforcement hybrid evolutionary learning
for recurrent wavelet-based neuro-fuzzy systems,” IEEE Trans. on Fuzzy

Systems, vol. 15, no. 4, pp. 729-745, 2007.

[22] Y. C. Hsu, S. F. Lin, and Y. C. Cheng “Multi groups cooperation based
symbiotic evolution for TSK-type neuro-fuzzy systems design,” Expert

Systems with Applications, vol. 37, no. 7, pp. 5320-5330, 2010.

[23] R. Agrawal and R. Srikant, “Fast algorithms for mining association rules
in large databases,” in Proc. of the 20th International Conference on

Very Large Data Bases, pp 487-499, 1994.

[24] J. Han, J. Pei, and Y. Yin, “Mining frequent patterns without candidate
generation,” in Proc. of the ACM SIGMOD International Conference on

Management of Data, pp. 1-12, 2000.

[25] D. T. Larose, Discovering knowledge in data: an introduction to data
mining, Wiley-Interscience, Hoboken, 2005.

[26] U. Fayyad, “Data mining and knowledge discovery in databases:
implications for scientific database,” in Proc. of International

Conference on Scientific and Statistical Database Management, pp 2-11,
1997.

[27] J. T. Lee, H. W. Wu, T. Y. Lee, Y. H. Liu, and K. T. Chen, “Mining

closed patterns in multi-sequence time-series database,” Data and
Knowledge Engineering, vol. 68, no. 10, pp. 1071-1090, 2009.

[28] S. K. Tanbeer, C. F. Ahmed, and B. S. Jeong, “Parallel and distributed

algorithm for frequent pattern mining in large database,” IETE Technical
Review, vol. 26, no. 1, pp. 55-65, 2009.

[29] S. F. Lin, J. W. Chang, and Y. C. Hsu, “A self-organization mining

based hybrid evolution learning for TSK-type fuzzy model design,”
Applied Intelligence, vol. 36, no. 2, pp. 454-471, 2012.

[30] Y. T. Wu, Y. J. An, J. Geller, and Y. T. Wu, “A data mining based

genetic algorithm,” in Proc. of the Fourth IEEE Workshop on Software
Technologies for Future Embedded and Ubiquitous Systems, and the

second International Workshop on Collaborative Computing,
Integration, and Assurance, pp 52-62, 2006.

[31] S. F. Lin and Y. C. Cheng, “Two-strategy reinforcement evolutionary

algorithm using data-mining based crossover strategy with TSK-type
fuzzy controllers,” International Journal of Innovative Computing,

Information and Control, vol. 6, no. 9, pp.3863-3885, 2010.

[32] O. Cordon, F. Herrera, F. Hoffmann, and L. Magdalena, Genetic fuzzy

systems evolutionary tuning and learning of fuzzy knowledge bases,
advances in fuzzy systems-applications and theory, vol 19. World

Scientific Publishing, NJ, USA, 2001.

[33] E. Cox, Fuzzy modeling and genetic algorithms for data mining and
exploration, 1st ed. Morgan Kaufman Publications, San Francisco, USA,

2005.

[34] K. S. Narendra and K. Parthasarathy, “Identification and control of
dynamical systems using neural networks,” IEEE Trans. on Neural

Networks, vol. 1, no. 1, pp. 4-27, 1990.

[35] F. Gomez F and J. Schmidhuber (2005) “Co-evolving recurrent neurons
learn deep memory POMDPs,” in Proc. of Conference on Genetic and

Evolutionary Computation, pp 491-498

[36] F. J. Gomez, Robust non-linear control through neuroevolution, Ph. D.
Disseration, The University of Texas at Austin, 2003.

[37] D. E. Moriarty and R. Miikkulainen, “Efficient reinforcement leraning

through symbiotic evolution,” Meachin Learning, vol. 22, pp. 11-32,
1996.

