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Abstract—This paper proposes a novel adaptive group 

organization cooperative evolutionary algorithm (AGOCEA) for 

TSK-type neural fuzzy networks design. The proposed AGOCEA 

uses group-based cooperative evolutionary algorithm and self-

organizing technique to automatically design neural fuzzy 

networks. The group-based evolutionary divided populations to 

several groups and each group can evolve itself. In the proposed 

self-organizing technique, it can automatically determine the 

parameters of the neural fuzzy networks, and therefore some 

critical parameters have no need to be assigned in advance.   The 

simulation results are shown the better performance of the 
proposed algorithm than the other learning algorithms. 
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I. INTRODUCTION 

In the field of artificial intelligence, neural fuzzy network 
[1-3] refers to combinations of neural networks and fuzzy logic. 
Because the advantages of neural fuzzy networks are powerful 
computation ability and human-like reasoning ability from 
neural networks and fuzzy systems, respectively, it has good 
performance for solving complex nonlinear problems. The 
neural fuzzy networks can perform the nonlinear mapping once 
the system parameters are trained based on a sequence of input 
and desired response pairs, and it does not require 
mathematical descriptions of system. Therefore, the 
determination of parameters is a critical issue for neural fuzzy 
networks. 

The backpropagation (BP) [4, 5] is a common method and 
widely used for training neural fuzzy networks. It is well 
known that BP is an approximate steepest descent algorithm. 
The steepest descent algorithm is the simplest, and the 
minimization method. The advantage of steepest decent 
algorithm is very simple, requiring calculation only of the 
gradient, the disadvantage of steepest descent algorithm is that 
training time is generally longer than other algorithms; based 
on initial weight values, it is often to find the local optimal 
solution but not global optimal solution. Besides, BP training 
performance depends on the initial values of the system 
parameters, and for different network topologies one has to 
derive new mathematical expressions for each network layer. 

Considering the aforementioned disadvantages one may be 
faced with suboptimal performance even for a suitable neural 

fuzzy network topology. Hence, the capability of training 
parameters and finding the global solution while optimizing the 
overall structure are important. The evolutionary methods using 
for training the fuzzy model has become a popular research 
field [6-20] because evolutionary methods simultaneously 
evaluate many points in the search space and are more likely to 
converge toward the global solution. The evolutionary fuzzy 
model is a learning process to generate a fuzzy model 
automatically by incorporating evolutionary learning 
procedures. 

Recently, several improved evolutionary algorithms have 
been proposed [16-22].In [16], Bandyopadhyay et al. used the 
variable-length genetic algorithm (VGA) that allows the 
differentia of lengths of chromosomes in a population. Carse et. 
al. [17] used the genetic algorithm to evolve fuzzy rule based 
controllers. In [18], Chen proposed an efficient immune 
symbiotic evolution learning algorithm for compensatory 
neuro-fuzzy controller. In [19], Lin presented a novel self-
constructing evolutionary algorithm to design a TSK-type 
fuzzy model. In [20], the group-based symbiotic evolution 
(GSE) was proposed to solve the issue of the traditional genetic 
algorithm that all the fuzzy rules were encoded into one 
chromosome. In [21], Lin proposed a hybrid evolutionary 
learning algorithm to combine the compact genetic algorithm 
and the modified variable-length genetic algorithm to perform 
structure/parameter learning to construct a network 
dynamically. Hsu [22] proposed a multi-groups cooperation-
based symbiotic evolution (MGCSE) to train a TSK-type 
neural fuzzy network (TNFN). Their results showed that 
MGCSE can obtain better performance and convergence than 
symbiotic evolution. Although MGCSE being a good approach 
for training a TNFN, there is no systematic way to determine 
suitable groups for selecting chromosomes. 

Although the above evolution learning algorithms [16-22] 
can improve the traditional genetic algorithms, these algorithms 
may encounter one or more of the following issues: 1) all fuzzy 
rules represent one chromosome; 2) the random group selection 
of fuzzy rules; 3) the numbers of fuzzy rules and group 
numbers have to be assigned in advance. 

Recently, the data mining approach has been widespread 
used in several fields [23-30]. The data mining can be regarded 
as a new way of data analysis. One goal of data mining is to 
find association rules among frequent item sets in transactions. 
In [23], the authors proposed a mining method of ascertain 
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large item sets to find association rules in transactions. Han et 
al. [24] proposed the frequent pattern growth (FP-Growth) to 
mine frequent patterns without candidate generation. Wu et al. 
[30] proposed a data mining method based on the genetic 
algorithm that efficiently improve the Traditional genetic 
algorithm by using analysis support and confidence parameters. 

In order to solve aforementioned problems, this paper 
proposes an adaptive group organization cooperative 
evolutionary algorithm (AGOCEA) for designing a TSK-type 
neural fuzzy network. The AGOCEA adopts the group 
symbiotic evolution (GSE). Each population in the GSE is 
divided to several groups and each group represents a set of the 
chromosome that belongs to one single fuzzy rule. To solve the 
problem of random group selection, a data mining based group 
selection method was used to select the better groups. The 
adaptive group organization was used to solve the some 
parameters have to be assigned in advance. 

This paper is organized as follows. In the Section II, a brief 
description of TSK-type neural fuzzy network is introduced. 
The proposed AGOCEA is described in the Section III. In the 
Section IV, the simulation results are presented. The 
conclusions are summarized in the Section V. 

II. THE CONCEPT OF THE TSK-TYPE NEURAL FUZZY 

NETWORKS 

A Takagi-Sugeno-Kang (TSK) type neural fuzzy network 
(TNFN) [1] employs different implication and aggregation 
methods from the standard Mamdani fuzzy model[3]. Instead 
of using fuzzy sets the conclusion part of a rule, is a linear 
combination of the crisp inputs. The fuzzy rule of TSK-type 
neural fuzzy network is shown as following equation: 

IF x1 is A1j (m1j, 1j ) and x2 is A2j(m2j, 2j ) and … and xn is 

Anj (mnj, nj ) 

THEN y=w0j+w1jx1+…+wnjxn.             (1) 

where n is the number of the input dimensions and j is the 
number of the fuzzy rules. 

The structure of the TSK-type neural fuzzy network is 
shown in Fig. 1. It is a five-layer network structure. The 
functions of the nodes in each layer are described as follows: 

Layer 1 (Input Node): No function is performed in this 
layer. The node only transmits input values to layer 2. That is  

(1)
i iu x

.                       (2) 

Layer 2 (Membership Function Node): Nodes in this layer 
correspond to one linguistic label of the input variables in layer 
1; that is, the membership value specifying the degree to which 
an input value belongs to a fuzzy set is calculated in this layer. 
For an external input xi, the following Gaussian membership 
function is used: 
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where mij and σij are, respectively, the center and the width 
of the Gaussian membership function of the jth term of the ith 
input variable xi. 

Layer 3 (Rule Node): The output of each node in this layer 
is determined by the fuzzy AND operation. Here, the product 
operation is utilized to determine the firing strength of each 
rule.  

The function of each rule is 
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Layer 4 (Consequent Node): Nodes in this layer are called 
consequent nodes.  

The input to a node in layer 4 is the output delivered from 
layer 3, and the other inputs are the input variables from layer 1 
as depicted in Fig. 1. 
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where the summation is over all the inputs and where wij 
are the corresponding parameters of the consequent part. 

Layer 5 (Output Node): Each node in this layer 
corresponds to one output variable. The node integrates all the 
actions recommended by layers 3 and 4 and acts as a 
defuzzifier with  
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where Mk is the number of fuzzy rule. 

 

Fig. 1. Structure of TSK-type neural fuzzy network. 
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III. ADAPTIVE GROUP ORGANIZATION COOPERATIVE 

EVOLUTIONARY ALGORITHM 

The flowchart of the proposed adaptive group organization 
cooperative evolutionary algorithm (AGOCEA) is shown in 
Fig. 2. The structure of chromosomes to construct a TNFN is 
shown in Fig. 3. The coding structure of chromosomes is 
shown in Fig. 4. 

 

Fig. 2. The flowchart of the AGOCEA. 

 

Fig. 3. The structure of the chromosome in the AGOCEA. 

 

Fig. 4. The structure of the chromosome in the AGOCEA. 

The learning process of the AGOCEA involves ten 
operators: initialization, two phase self organization, data 
mining based group selection, fitness assignment, reproduction, 
crossover, mutation, calculation of group similarity, splitting 
process, and lumping process. The whole learning process is 
described step-by-step as follows: 

A. Initialization 

Before the AGOCEA is designed, individuals forming 
several initial groups should be generated. The initial groups of 
the AGOCEA are generated randomly within a fixed range. 

The following formulations show how to generate the initial 
chromosomes in each group: 

Deviation: Chrg, c [p]=random[ min , max ]             (7) 

where p=2, 4,…, 2n; g=1, 2,…, Mk; c=1, 2,…, NC, 

Mean: Chrg, c [p]= random[ minm , maxm ]             (8) 

where p=1, 3,…, 2n-1;  

Weight: Chrg, c [p]= random [ minw , maxw ]             (9) 

 where p=2n+1, 2n+2,…, 2n+(n+1), 

where Chrg, c represents cth chromosome in gth group; Mk 
represents k rules that used to form a TNFN and NC is the total 
number of chromosomes in each group; p represents the pth 

gene in a Chrg, c; and  min max,  ,  min max,m m , and 

 min max,w w  represent the range that are predefined to generate 

the chromosomes. 

B. Two phase self organization (TPSO) 

After every group is initialized, the AGOCEA adopts 
pervious research which was TPSO [29, 31] to decide the 
suitable selection times of each number of rules (in this paper 
the number of rules lie between [Mmax, Mmin]); that is, it 
determines the selection times of Mk groups which form a 
TNFN with k rules.  

After the TPSO, the selection times of the suitable number 
of rules in a TNFN will increase, and the selection times of the 
unsuitable number of rules will decrease. The details of the 
TPSO are listed as follows: 

Step 0. Initialize the probability vectors: 

min min 1 max0.5, where , , ,
kM kV M M M M              

(11) 

Accumulator = 0                                         

(12) 
Step 1. Update the probability vectors according to the 

following equations: 
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where 
kMV  is the probability vector,  is a predefine 

threshold value, Avg represents the average fitness value in the 

whole population, _
kMBest Fitness  represents the best fitness 

value with Mk rules, 
kMfit  is the sum of fitness value of TNFN 

with Mk rules, 
kMFitness  is the fitness value with Mk rules, 

ThresholdFitnessvalue is a predefined threshold value. 

Step 2. Determine the selection times according to the 
probability vectors as follows: 

( _ )*( / _ )
M kk

p MR Selection Times V Total Velocy  ,             (17) 

max

min

_
k

Mk

V

M

V

Total Velocy V


   ,            (18) 

where Selection_Times represents total selection times in 
each generation, Total_Velocy is summation of the probability 

vectors 
kMV , 

Mk
pR is the selection times of Mk groups that use 

to select k chromosomes for constructing a TNFN. 

Step 3. After step 2, the selection times of every 

numbers of rules in a TNFN are obtained. Then the 
Mk

pR  times 

are used to select k chromosomes form Mk groups to construct a 
TNFN. 

Step 4. In the proposed TPSO, for avoiding suitable Mk 
groups may fall in the local optima solution, the TPSO 

proposed two different actions to update the 
kMV . Decide the 

deferent action according to the following equations: 

If Accumulator   TPSOTimes           (19) 

Then  do Step1, Step2, and Step 3, 
 

If Best_Fitnessg = Best_Fitness           (20) 

Then Accumulator = Accumulator + 1, 
 

If Accumulator > TPSOTimes           (21) 

Then do Step 0 and Accumulator = 0, 
 

where TPSOTimes is a predefined value; Best_Fitnessg 
represents the best fitness value of the best combination of 
chromosomes in gth generation; Best_Fitness represents the 
best fitness value of the best combination of chromosomes in 
current generations. Eqs. (19)-(21) represents that if the fitness 
is not changed for a sufficient number of generations, the 
suitable Mk groups may fall in the local optima solution. 

C. Data mining based group selection (DMGS) 

After the TPSO step, the selection times of each rule 
number in a TNFN is decided. The AGOCEA then performs 
selection step. The selection step in the AGOCEA can be 
divided by selection of groups and chromosomes. In the 
selection of groups, this paper uses the DMGS to improve the 
random selection. In the DMGS, the groups are selected 
according to the frequent patterns found by FP-Growth. In the 
proposed DMGS, the FP-Growth finds the frequent groups 
from a transaction (in this paper a transaction means a set of the 
Mk group indexes that perform well). After the frequent group 
indexes have been found, the DMGS selects the Mk groups 

indexes according to the frequent group indexes. To avoid the 
frequently-occurring groups from falling in the local optimal 
solution, the DMGS uses three actions to select Mk groups. The 
three actions defined in this paper are normal, search, and 
explore. The detail of the DMGS is shown as follows: 

Step 0. The transactions are building as follow equation: 

if _

then [ ] [ ]

where 1, 2, ,

1, 2, ,

k k

k

M M

j M

k

Fitness Best Fitness ThresholdFitnessvalue

Transaction i TNFNRuleSet i

i M

j TransactionNum

 







          (22) 

where the 
kMFitness  represents the fitness value of TNFN 

with Mk rules, TransactionNum is the total number of 
transactions Transactionj[i] represents the ith item in the jth 

transaction, [ ]
kMTNFNRuleSet i  represents ith group index in 

Mk group indexes that are selected to form a TNFN with Mk 
rules. For example, as shown in Table I, the first transaction of 
the transaction set means the 3 rules TNFN that select from 1st 
group, 4th group, and 8th group has a well performance. 

TABLE I.  TRANSACTIONS IN A FP-GROWTH. 

Transaction index Group indexes 

1 1, 4, 8 

2 2, 4, 7, 10 

    

TransactionNum 1, 3, 4, 6, 8, 9 

Step 1. Normal action: 

After building up the transactions, the DMGS selects group 
according to different action types. If the action type is normal 
action, the DMGS selects the group as following equation: 

min min 1 max

if

then [ ] [1, ]

where 1, 2, , ; , , , ,

size

k k

Accumulator NormalTimes

GroupIndex i Random P

i M M M M M





  

           (23) 

where Accumulator is defined in Eq. (20); GroupIndex[i] 
represents selected ith group index of the Mk group indexes and 
Psize represents there are Psize groups in a population in the 
AGOCEA. 

Step 2. Find the frequent groups: 

If the action is searching or exploring action, the DMGS 
uses the FP-Growth [24] to find frequent group indexes in 
transactions. The frequent group indexes are found according 
to the predefined Minimum_Support. The Minimum_Support 
means the minimum fraction of transactions that contain an 
item set. The FP-Growth algorithm can be viewed as two parts: 
construction of the FP-tree and FP-growth. The sample 
transactions shown in Table II are taken as examples. 
Minimum_Support = 3 is considered in this example. Frequent 
group indexes generated by FP-growth shown in Table III are 
then thrown into the pool that’s named FrequentPool. 
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TABLE II.  SAMPLE TRANSACTIONS. 

Transaction index Group indexes 

1 {b, c, e, f, g, h, p} 

2 {a, b, c, f, i, m, o} 

3 {c, f, i, m, o} 

4 {b, c, e, s, p} 

5 {a, b, c, d, f, m, o} 
 

TABLE III.  FREQUENT GROUP INDEXES GENERATED BY FP-GROWTH 

WITH MINIMUM_SUPPORT = 3. 

Suffix 

group 

Cond. group 

base 

Cond. 

FP-tree 

Frequent group indexes 

B c:4 c:4 cb:4 

F cb:3, c:1 c:4, cb:3 cf:4, bf:3, cbf:3 

M 

 

cbf:2, cf:1 cf:3 cm:3, fm:3, cfm:3 

O cbfm:2, cfm:1 cfm:3 co:3, fo:3, mo:3, cfo:3, cmo:3, 

fmo:3, cfmo:3 

 

Step 3. Select the group indexes according to 
different actions: 

After obtaining the frequent item sets, the DMGS selected 
group indexes according to different actions that describe as 
follows:  

In the searching action, the group indexes are selected from 
the frequent item as follow equations: 

min min 1 m

if

then [ ] ,

where

[1, ] and [ ];

[ ] [ ];

1, 2, , ;

1, 2, , ; , , ,

size

k k

NormalTimes Accumulator SearchingTimes

GroupIndex i w

w Random P w FrequentItemSet q

FrequentItemSet q Random FrequentPool

q FrequentPoolNum

i M M M M M

 



 





  ax ,

    (24) 

where SearchingTimes is a predefined value that judge to 
perform searching action; FrequentPool represents the sets of 
frequent item set that obtain from FP-Growth; 
FrequentPoolNum presents the total number of sets in 
FrequentPool and FrequentItemSet[i] presents a frequent item 
set that select from FrequentPool randomly. In Eq. (24), if Mk 
greater than the size of FrequentItemSet[i], the remaining 
groups are selected by Eq. (23). 

In the exploring action, the group indexes are selected 
according to the frequent item as follow equations: 

min min 1 max

if

then [ ] ,

where

[1, ] and [ ];

[ ] [ ];

1, 2, , ; , , , ,

size

k k

SearchingTimes Accumulator ExploringTimes

GroupIndex i w

w Random P w FrequentItemSet i

FrequentItemSet i Random FrequentPool

i M M M M M

 



 



 

           (25) 

where ExploringTimes is a predefined value that judge to 

perform exploring action. 

Step 4. After selecting Mk group indexes, the k chromosomes 

are selected from Mk group as follows: 

[ ] ,

where   [1, ]

1, 2, ,

c

ChromosomeIndex i q

q Random N

i k






          (26) 

where Nc represents the number of chromosomes in each 
group; ChromosomeIndex[i] represents the index of a 
chromosome that select from ith group. 

The illustration of the DMGS is shown in Fig. 5 with 
simple descriptions as follows: suppose the TPSO determines 
that 4 rules are expected, and 3 out of 7 groups, group 2, 3 and 
6, are deemed as frequent groups. If the current action type of 
the DMGS is normal action, then 4 random groups will be 
selected to form a TFS. If the search action is taken, then 
frequent group 2, 3 and 6 will be selected. The remaining one 
group will be draw randomly from group 1, 4, 5 and 7. If the 
explore action is taken, then the 4 non-frequent group 1, 4, 5 
and 7 will be selected in case of the problem of local optimum. 

 

Fig. 5. The example of the DMGS. 

D. Fitness assignment 

The fitness value of a rule (an individual) is calculated by 
concatenating this individual with elites of other groups 
selected by DMGS. The details for assigning the fitness value 
are described as follows:  

Denote G1, G2, …, 
kMG , the Mk groups selected by the 

DMGS; Gj．pi denotes the ith individual of the jth group; yj 

refers to the elite individual of the jth group. Then the fitness of 

the individual Gj．pi can be computed as follows: 

1 1 1 1( ) ( , , , , , )
k kj i j i j j M Mfitness G p fitness G y G p G y G y                (27) 
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E. Reproduction 

To perform reproduction, elite-based reproduction strategy 
(ERS) [22] is adopted in this study. In ERS, every chromosome 
in the best combination of Mk groups must be kept by 
performing reproduction step. In the remaining chromosomes 
in each group, the roulette-wheel selection method [32] is 
adopted for proceeding with the reproduction process.  

Then the well-performed chromosomes in the top half of 
each group [14] proceed to the next generation. The other half 
is generated by performing crossover and mutation operations 
on chromosomes in the top half of the parent individuals. 

F. Crossover 

In this step, a two-point crossover strategy [32] is adopted. 
Once the crossover points are selected, exchanging the site’s 
values between the selected sites of individual parents can 
create new individuals. These individuals are offspring which 
inherent the parents’ merits. 

G. Mutation 

The utility of the mutation step can provide some new 
information to every group at the site of an individual by 
randomly altering the allele of a gene.  

Thus mutation can lead to search new space which can 
avoid falling into the local minimal solution. In the mutation 
step, uniform mutation [33] is adopted, and the mutated gene is 
drawn randomly from the domain of the corresponding variable. 

H. Calculation of group similarty 

In order to achieve self adaptive group organization, it must 
determine the group similarity first. This paper involves the 
three measurements to determine the group similarity: 1. group 
centers, 2. group distance, and 3. group standard deviation. 

Group centers: 
1

1
,  1,2, ,

j

ij

m

j l C

ij

j N
m 

 y x            (28)

 

Group distance:  
2

1, 1

sizeP

ij i j i j

i j

d
 

   y y y y            (29)
 

Group standard deviation:       
2

1

1 j

pj

m

i i i

j l j

pj

x y
m




           (30) 

    
   0

1, ,
max

i i

j j
i n

 


  

where yj is the center of the jth group, mj is the total number 

of jth group, 
ijlx  is ith chromosome in the jth group, dij is the 

Euclidean distance between the ith group and jth group, 
 i
j  is 

the ith bit standard deviation in the jth group, 
 0i

j  is the 

largest standard deviation of jth group. 

After calculating above three measurements, it will be used 
to adjust the group organization of the neural fuzzy network by 
following two processes: splitting process and lumping process. 

I. Splitting process 

If 
 0

0

i

j  , where 
0  is standard deviation splitting 

threshold, it means the chromosomes in the jth group are very 
dissimilar, so  the AGOCEA will call Splitting process.  

The Splitting process will divide jth group into two groups, 
which are j+ group and j- group, by following step: the top 
50% (fitness value) chromosomes in the jth group will put into 
j+ group, the other 50% chromosomes in the jth group will put 
into j- group. The other 50% in the j+ group and j- group will 
generate randomly. After Splitting process, the dissimilar group 
will be separated into different groups, and total number of 
group will increase. 

3.10 Lumping process 

If 
0ijd d , where d0 is lumping threshold, it means the 

chromosomes are very similar between ith group and jth group, 
so the AGOCEA will call Lumping process. The Lumping 
process will merge ith group and jth group into a new group. 
The new group consists of the top 50% chromosomes from ith 
group and the top 50% chromosomes from jth group. After 
Lumping process, the similar groups will be merged into a new 
group, and total number of group will decrease. 

IV. SIMULATION RESULTS 

The example used for identification of nonlinear dynamic 
system given by Narendra and Parthasarathy [34] is described 
as following difference equation: 

 

 
 

 
 3

2
1

1

y k
y k u k

y k
  


            (31) 

The output of above equation depends nonlinearly on both 
its past value and the input, but the effects of the input and 
output values are not additive. The training input patterns are 
random value in the interval [-2, 2]. To determine the 
performance of the algorithms, this example adopts the root 
mean square error (RMSE). The definition of the RMSE is: 

 

    
2

1

ˆ

RMSE

N

k

y k y k

N








            (32) 

where  ŷ k  is desired output, y(k) is model output, and N 

is number of data. 

In order to determine performance of the difference 
learning algorithm, this example is compared AGOCEA with 
HESP [35], ESP [36], MCGSE [22], SANE [37], and GA [6]. 
All algorithms were learned for 500 generations and repeated 
for 50 trails. The initial parameters of the AGOCEA are given 
in Table IV. Figure 6-11 show the output of all algorithms for 

the input signal    2

25
sin ku k  .  

In these figures, the symbol “o” represents the desired 
output of the nonlinear dynamic system, and the symbol “*” 
represents the output of all algorithms. It can be seen from the 
Fig. 5-10 that the model output of AGOCEA has more 
accuracy than the other comparing learning algorithms. 
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TABLE IV.  INITIAL PARAMETERS OF THE AGOCEA. 

Parameters Value 

Psize 30 

Nc 20 

Selection_Times 40 

NormalTimes 10 

Searching Times 20 

ExploringTimes 30 

Crossover Rate 0.6 

Mutation Rate 0.3 

[Mmin, Mmax] [5, 15] 

[mmin, mmax] [-10, 10] 

[σmin, σmax] [1,15] 

[wmin, wmax] [-10, 10] 

σ0 6 

d0 12 

 

Fig. 6. Identification Results Of The Desired Output And The AGOCEA. 

 

Fig. 7. Figure 4.2 Identification Results Of The Desired Output And The 

HESP. 

 

Fig. 8. Identification Results Of The Desired Output And The ESP. 

 

Fig. 9. Identification Results Of The Desired Output And The MCGSE. 

 

Fig. 10. Identification Results Of The Desired Output And The SANE. 
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Fig. 11. dentification Results Of The Desired Output And The GA. 

Figure 12 (a)-(f) show the identification error between the 
desired output and all algorithms’ output. As shown in Fig. 12 
(a)-(f), the AGOCEA illustrated the smaller error than other 
algorithms. Figure 13 provides the learning curve of the various 
learning algorithms, it can be seen from the learning curve that 
the AGOCEA converge faster and better than the other learning 
algorithms. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Fig. 12. Identification Errors Of The (A) AGOCEA, (B) HESP, (C) 

ESP (D) MCGSE, (E) SANE, And (F) GA. 

 

Fig. 13. The Learning Curve Of AGOCEA, HESP, ESP, MCGSE, 

SANE, And GA. 

Table V shows the results obtained from a RMSE analysis 
of the various learning algorithms. There was a significant 
difference between the proposed AGOCEA and the other 
learning algorithms. No matter which performance index is, the 
proposed AGOCEA has the better performance than the other 
learning algorithms. 

TABLE V.  RMSE COMPARISON OF VARIOUS LEARNING ALGORITHMS. 

Algorithm 
RMSE 

Mean Best Worst STD 

AGOCEA 0.0023 0.0011 0.0034 0.0006 

HESP 0.0417 0.0285 0.0584 0.0071 

ESP 0.0527 0.0342 0.0744 0.0112 

MCGSE 0.0326 0.0228 0.0625 0.0062 

SANE 0.0501 0.0274 0.0765 0.0117 

GA 0.0470 0.0257 0.1117 0.0212 

 

V. CONCLUSIONS 

In this paper, the AGOCEA is proposed for designing TSK-
type neural fuzzy network. The proposed AGOCEA not only 
determine the suitable number of fuzzy rules and group number 
but also efficiently tune the free parameters in the TNFN. The 
AGOCEA adopts the GSE that each population is divided to 
several groups and each group represents only one fuzzy rule. 
In order to solve the problem of random group selection, a data 
mining based group selection method was used to select the 
better groups. Furthermore, the adaptive group organization 
was proposed to solve the some parameters have to be assigned 
in advance. The simulation results show that the AGOCEA 
trained TNFN is superior to other methods. Although the 
proposed AGOCEA can obtain better results in comparison 
with the other learning algorithms, it still has a limitation. The 
important limitation lies in the fact that the proposed AGOCEA 
emphasize the network parameter learning and the group 
structure organization, it is a two level learning structure. 
While the problems become more complex, there is possible 
that increase the levels of learning structure.  
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Further research might explore how to determine the 
suitable levels of the learning structure for dealing with more 
complex problems. 
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