
(IJARAI) International Journal of Advanced Research in Artificial Intelligence,
Vol. 2, No. 6, 2013

6 | P a g e
www.ijarai.thesai.org

Clustering Web Documents based on Efficient Multi-

Tire Hashing Algorithm for Mining Frequent

Termsets

Noha Negm

Math. and Computer Science Dept.

Faculty of Science, Menoufia University
Shebin El-Kom, EGYPT

Mohamed Amin

Math. and Computer Science Dept.

Faculty of Science, Menoufia University

Shebin El-Kom, EGYPT

Passent Elkafrawy

Math. and Computer Science Dept.

Faculty of Science, Menoufia University

Shebin El-Kom, EGYPT

Abdel Badeeh M. Salem

Computer Science Dept. Faculty of Computers and

Information, Ain Shams University

 Cairo, EGYPT

Abstract—Document Clustering is one of the main themes in

text mining. It refers to the process of grouping documents with

similar contents or topics into clusters to improve both

availability and reliability of text mining applications. Some of

the recent algorithms address the problem of high dimensionality

of the text by using frequent termsets for clustering. Although the

drawbacks of the Apriori algorithm, it still the basic algorithm

for mining frequent termsets. This paper presents an approach

for Clustering Web Documents based on Hashing algorithm for

mining Frequent Termsets (CWDHFT). It introduces an efficient

Multi-Tire Hashing algorithm for mining Frequent Termsets

(MTHFT) instead of Apriori algorithm. The algorithm uses new

methodology for generating frequent termsets by building the

multi-tire hash table during the scanning process of documents

only one time. To avoid hash collision, Multi Tire technique is

utilized in this proposed hashing algorithm. Based on the

generated frequent termset the documents are partitioned and

the clustering occurs by grouping the partitions through the

descriptive keywords. By using MTHFT algorithm, the scanning

cost and computational cost is improved moreover the

performance is considerably increased and increase up the

clustering process. The CWDHFT approach improved accuracy,

scalability and efficiency when compared with existing clustering
algorithms like Bisecting K-means and FIHC.

Keywords—Document Clustering; Knowledge Discovery;

Hashing; Frequent termsets; Apriori algorithm; Text Documents;

Text Mining; Data Mining

I. INTRODUCTION

This With the recent explosive growth of the amount of
content on the Internet, it has become increasingly difficult for
users to find and utilize information and for content providers
to classify and index documents. Hundreds or thousands of
results for a search are often returned by traditional web search
engines, which is time consuming for users to browse. On-line
libraries, search engines, and other large document
repositories are growing so rapidly that it is difficult and costly
to categorize every document manually. In order to deal with
these problems, researchers look toward automated methods of

working with web documents so that they can be more easily
browsed, organized, and indexed with minimal human
intervention. To deal with the problem of information
overload on the Internet, Clustering and Classification
considered the useful and active areas of machine learning
research that promise to overcome this problem [1].

Document clustering is known as an unsupervised and
automatic organizing text documents into meaningful clusters
or group, In other words, the documents in one cluster share
the same topic, and the documents in different clusters
represent different topics. It is unlike document classification
since there is no training stage by using labeled documents.
Document clustering has been studied intensively because of
its wide applicability in areas such as Web Mining, Search
Engines, Information Retrieval, and Topological Analysis.

The high dimensionality of the feature space considered a
major characteristic of document clustering algorithms, which
imposes a big challenge to the performance of clustering
algorithms. Next challenge is that not all features are
important for document clustering, some of the features may
be redundant or irrelevant and some may even misguide the
clustering result [2].

Hierarchical and Partitioning methods are categorized as
the essentially two algorithms into the clustering technique [3-
8]. K-means and its variants are the most well-known
partitioning methods that create a flat, non-hierarchical
clustering consisting of k clusters. The Bisecting k-means
algorithm first selects a cluster to split, and then employs basic
k-means to create two sub-clusters, repeating these two steps
until the desired number k of clusters is reached [7]. Steinbach
in [4] showed that the Bisecting k-means algorithm
outperforms basic k-means as well as agglomerative
hierarchical clustering in terms of accuracy and efficiency.

A hierarchical clustering method works by grouping data
objects into a tree of clusters. These methods can further be
classified into agglomerative and divisive hierarchical

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,
Vol. 2, No. 6, 2013

7 | P a g e
www.ijarai.thesai.org

clustering depending on whether the hierarchical
decomposition is formed in a bottom-up or top down fashion
[8]. Steinbach in [9] showed that Unweighted Pair Group
Method with Arithmetic Mean (UPGMA) is the most accurate
one in agglomerative category.

Both hierarchical and partitioning methods do not really
address the problem of high dimensionality in document
clustering. Frequent itemset-based clustering method is shown
to be a promising approach for high dimensionality clustering
in recent literature [10-24]. It reduces the dimension of a
vector space by using only frequent itemsets for clustering.
The frequent term-based text clustering is based on the
following ideas: (1) Frequent terms carry more information
about the “cluster” they might belong to; (2) Highly co-related
frequent terms probably belong to the same cluster.

Finding frequent itemsets is an important data mining
topic, and it was originated from the association rule mining of
transaction dataset. The main drawback of frequent itemsets is
they are very large in number to compute or store in computer.
The very first well known algorithm for frequent itemset
generation is Apriori algorithm [10]. It works on the principle
of Apriori property, which states that the subset of any
frequent itemset is also frequent. Apriori algorithm adopts
layer by layer search iteration method to mine association
rules. The Apriori algorithm suffers from the following two
problems: 1) candidate generation and 2) repeated number of
scans.

In this paper, a CWDHFT approach for clustering web
documents based on a hashing mining algorithm is proposed.
it introduces an efficient Multi-Tire Hashing algorithm
(MTHFT) to discover frequent termsets from web text
documents. It overcomes the drawbacks of the Apriori
algorithm by using new methodology for generating frequent
termsets. The multi-tire hash table is building during the
scanning process of documents only one time. To avoid hash
collision, multi-tire technique is utilized in MTHFT algorithm.
The generated set of frequent termsets with varying length is
used in the clustering process. Based on the generated frequent
termset the documents are partitioned and the clustering
occurs by grouping the partitions through the descriptive
keywords.

The organization of the paper is as follows. Section 2
discusses the related work to our approach on. In Section 3, we
describe the proposed CWDHFT approach and MTHFT
algorithm. Section 4 discusses about the results obtained from
the comparison of the CWDHFT approach with two other
clustering algorithms in this field. Section 5 concludes the work
proposed.

II. RELATED WORK

There are many works in the literature that discuss about
text clustering algorithms. They address the special
characteristics of text documents and use the concept of
frequent termsets for the text clustering.

Reference [9], they proposed a new criterion for clustering
transactions using frequent itemsets, instead of using a distance
function. In principle, this method can also be applied to
document clustering by treating a document as a transaction;

however, the method does not create a hierarchy for browsing.
The novelty of this approach is that it exploits frequent itemsets
(by applying Apriori algorithm) for defining a cluster,
organizing the cluster hierarchy, and reducing the
dimensionality of document sets.

The FTC and HFTC are proposed in [14]. The basic
motivation of FTC is to produce document clusters with
overlaps as few as possible. FTC works in a bottom-up fashion.
As HFTC greedily picks up the next frequent itemset to
minimize the overlapping of the documents that contain both
the itemset and some remaining itemsets. The clustering result
depends on the order of picking up itemsets, which in turn
depends on the greedy heuristic used. The weakness of the
HFTC algorithm is that it is not scalable for large document
collections.

To measure the cohesiveness of a cluster directly using
frequent itemsets, the FIHC algorithm is proposed in [15]. Two
kinds of frequent item are defined in FIHC: global frequent
item and cluster frequent item. However, FIHC has three
disadvantages in practical application: first, it cannot solve
cluster conflict when assigning documents to clusters. Second,
after a document has been assigned to a cluster, the cluster
frequent items were changed and FIHC does not consider this
change in afterward overlapping measure. Third, in FIHC,
frequent itemsets is used merely in constructing initial clusters.

Frequent Term Set-based Clustering (FTSC) algorithm is
introduced in [16]. FTSC algorithm used the frequent feature
terms as candidate set and does not cluster document vectors
with high dimensions directly. The results of the clustering
texts by FTSC algorithm cannot reflect the overlap of text
classes. But FTSC and the improvement FTSHC algorithms are
comparatively more efficient than K-Means algorithm in the
clustering performance.

Clustering based on Frequent Word Sequence (CFWS) is
proposed in [17]. CFWS uses frequent word sequence and K-
mismatch for document clustering. By using the CFWS there
are overlaps in the final clusters. With K-mismatch, frequent
sequences of candidate clusters are used to produce final
clusters. Document Clustering Based on Maximal Frequent
Sequences (CMS) is proposed in [18]. The basic idea of CMS
is to use Maximal Frequent Sequences (MFS) of words as
features in Vector Space Model (VSM) for document
representation and then K-means is employed to group
documents into clusters. CMS is rather a method concerning
feature selection in document clustering than a specific
clustering method. Its performance completely depends on the
effectiveness of using MFS for document representation in
clustering, and the effectiveness of K-means.

A frequent term based parallel clustering algorithm which
could be employed to cluster short documents in very large text
database is presented in [22]. A semantic classification method
is also employed to enhance the accuracy of clustering. The
experimental analysis proved that the algorithm was more
precise and efficient than other clustering algorithms when
clustering large scale short documents. In addition, the
algorithm has good scalability and also could be employed to
process huge data.

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,
Vol. 2, No. 6, 2013

8 | P a g e
www.ijarai.thesai.org

The document clustering algorithm on the basis of frequent
term sets is proposed in [23]. Initially, documents were
denoted as per the Vector Space Model and every term is
sorted in accordance with their relative frequency. Then
frequent term sets can be mined using frequent-pattern growth
(FP growth). Lastly, documents were clustered on the basis of
these frequent term sets. The approach was efficient for very
large databases, and gave a clear explanation of the
determined clusters by their frequent term sets. The efficiency
and suitability of the proposed algorithm has been
demonstrated with the aid of experimental results.

Reference [25] a hierarchical clustering algorithm using
closed frequent itemsets that use Wikipedia as an external
knowledge to enhance the document representation is
presented. Firstly, construct the initial clusters from the
generalized closed frequent itemsets. Then used the two
methods TF-IDF and Wikipedia as external knowledge, to
remove the document duplication and construct the final
clusters. The drawback in this approach is that it might not be
of great use for datasets which do not have sufficient coverage
in Wikipedia.

A Frequent Concept based Document Clustering (FCDC)
algorithm is proposed in [26]. It utilizes the semantic
relationship between words to create concepts. It exploits the
WordNet ontology in turn to create low dimensional feature
vector which allows us to develop an efficient clustering
algorithm. It used a hierarchical approach to cluster text
documents having common concepts. FCDC found more
accurate, scalable and effective when compared with existing
clustering algorithms like Bisecting K-means, UPGMA and
FIHC.

To the best of our knowledge, all the previous researchers
depend on the Apriori algorithm and their improvements for
generating the frequent termsets from text documents.
Moreover they don't address the improvements in the
execution time as the major factor in the mining process.

III. CLUSTERING WEB DOCUMENTS BASED ON HSHING

FREQUENT TERMSETS

The proposed web document clustering approach based on
frequent termsets CWDHFT is shown in Fig.1. The main
characteristic of the approach is that it introduces a new
mining algorithm for generating frequent termsets to
overcome the drawbacks of the Apriori algorithm. Moreover it
speeds up the mining and clustering process. CWDHFT
consists of the four main stages:

 Document Preprocessing

 Mining of Frequent Termsets

 Document Clustering

 Post Processing

Fig. 1. CWDHFT approach.

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,
Vol. 2, No. 6, 2013

9 | P a g e
www.ijarai.thesai.org

A. Document Preprocessing Stage

Our approach employs several preprocessing steps
including stop words removal, stemming on the document set
and indexing by applying TF*ID:

 Stop words removal: Stop-words are words that from
non-linguistic view do not carry information such as (a,
an, the, this, that, I, you, she, he, again, almost, before,
after). Stop-words removing is to remove this non-
information bearing words from the documents and
reduce noise. One major property of stop-words is that
they are extremely common words. The explanation of
the sentences still held after these stop-words are
removed. To organize large corpus, removing the stop
words affords the similar advantages. Firstly it could
save huge amount of space. Secondly it helps to deduce
the noises and keep the core words, and it will make
later processing more effective and efficient.

 Stemming: Removes the affixes in the words and
produces the root word known as the stem. Typically,
the stemming process will be performed so that the
words are transformed into their root form. For example
connected, connecting and connection will be
transformed into connect. A good stemmer should be
able to convert different syntactic forms of a word into
its normalized form, reduce the number of index terms,
save memory and storage and may increase the
performance of clustering algorithms to some extent;
meanwhile it should try stemming. Porter Stemmer [27]
is a widely applied method to stem documents. It is
compact, simple and relatively accurate. It does not
require creating a suffix list before applied. In this
paper, we apply Porter Stemmer in our preprocessing.

 TF*IDF: In many weighting schemes the weights as in
(1) are the product of two factors, the term frequency
(tf) and the inverse document frequency (idf) [28]:

 (1)

 The term frequency is a function of the number of
occurrences of the particular word in the document
divided by the number of words in the entire document.
A word appearing frequently in the text is thus
considered more important to describe the content than
a word appearing less often. The inverse document
frequency models the distinguishing power of the word
in the text set; the fewer documents that contain the
word the more information about the text in the text set
it gives. There are many variants of the idf-measure. A
simple example is as in (2):

 (2)

where jNt denotes the number of documents in collection

N in which jt occurs at least once. Once a weighting scheme

has been selected, automated indexing can be performed by
simply selecting the top K of words that satisfy the given
weight constraints for each document. The major advantage of

an automated indexing procedure is that it reduces the cost of
the indexing step.

B. Mining of Frequent Termset Stage

The goal of frequent termset mining is to discover sets of
terms that frequently co-occur in the document. The problem
is non-trivial in text documents because the documents can be
very large, consisting of many distinct terms, and contain
interesting termsets of high cardinality. Although the
drawbacks of the Apriori algorithm, it still use for generating
the frequent termsets that used in the document clustering.

In order to speed up the mining process as well as to
address the scalability with different documents regardless of
their sizes, we introduce a new algorithm called Multi-Tire
Hashing Frequent Termsets algorithm (MTHFT). It is
basically different from all the previous algorithms since it
overcomes the drawbacks of Apriori algorithm by employing
the power of data structure called Multi-Tire Hash Table.
Moreover it uses new methodology for generating frequent
termsets by building the hash table during the scanning of
documents only one time consequently, the number of
scanning on documents decreased.

1) Hash Table: The hash table is a data structure that

speeds up searching for information by a particular aspect of

that information, called a key. The idea behind the hash table

is to process the key with a function that returns a hash value;

that hash value then determines where in the data structure the

terms will (or probably will) be stored. The hash tables can

provide constant time O(1) lookup on average, regardless of

the number of terms in the table. To avoid hash collision,

Multi Tire technique is utilized in this proposed hashing

algorithm. It consists of two major components: bucket array

and hash function.

a) Bucket Array: A bucket array for a hash table is an
array U of size R, where each cell of U is thought of as a "

Bucket " and the integer R defines the capacity of the array. If

the keys are integers well distributed in the range [0, R-1], this

bucket array is all that is needed. An element e with key v is

simply inserted into the bucket U[v].

b) Hash Function: The second part of a hash table

structure is a function, h, that maps each key v in our

dictionary to an integer in the range [0, R-1], where R is the

capacity of the bucket array for this table. The main idea of

this approach is to use the hash function value, h(v), as an
index into our bucket array, U, instead of the key v. That is,

we store the item (v, e) in the bucket U [h(v)]. The benefit of

the hash function is to reduce the range of array indices that

need to be handled. The Division Method (The mod function

h(v) = v mod R) used for creating hash function h(v) in hash

table.

2) Multi-Tire Hashing Frequent Termsets Algorithm:
The MTHFT algorithm as shown in Fig. 2 employs the
following two main steps:

 Based on the number of the English alphabet letters R
=26, a dictionary table constructed as shown in Table 1

file:///C:/main/ntquery

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,
Vol. 2, No. 6, 2013

10 | P a g e
www.ijarai.thesai.org

and gives each character a unique numeric number from
0 to 25.

MTHFT Algorithm:
Tm: Set of all termsets for each document d

Cm: Candidate termsets for each document d

Ik : Frequent termsets of size k.

Input: All Text documents.

Process logic: Building Multi-Tire Hash Table and Finding

the frequent termsets.

Output: Generating the frequent termsets.

for each document dm  D do begin

 Tm= { ti : ti dm , 1 ≤ i≤ n }

 for each term ti  Tm do
 h(ti)= ti mod N;

 ti .count++;

 // insert each term in hash table

 end

 Ck = all combinations of ti dm

 Cm subset(Ck , dm);

 for each candidate cj  Cm do
 h(cj)= cj mod N;

 cj .count++;

 // insert each candidate in hash table

 end

 end
 for given s= minsup in hash table do

 I1 {t | t.count minsup }

 Ik {c | c.count minsup, k}
 end

Fig. 2. The MTHFT algorithm.

 There are also two main processes for a dynamic multi-
tire hash table: the building process and the scanning
process.

a) The Building Process: In the dynamic hash table, a

primary bucket is only built at the first. It depends on the
number of the English alphabet letter R, not on the number of

all terms as shown in Table 2. Their locations in the hash

table are determined using the division method of hash

function.

TABLE I. THE DICTIONARY TABLE FOR THE ENGLISH ALPHABET

LETTERS

Dictionary Table

Letters Location

A

B

C

D

E

F

........

V

W

X

Y

Z

0

1

2

3

4

5

........

21

22

23

24

25

TABLE II. THE PRIMARY BUCKET OF MULTI-TIRE HASH TABLE

A(0) B(1) C(2) Y(24) Z(25)

For example, the alphabet letter E takes the unique
numeric number 4 in the dictionary table, and their location is
determined by applying the hash function so that its location is
also 4 and so on.

b) The Scanning Process: After building a primary bucket,

each document is scanned only once as follows:

 For first document, select all terms and make all possible
combinations of terms after that determine their
locations in the dynamic hash table using the hash
function h(v). in hash table, insert them in their
locations with their frequencies.

 For each document, all terms and termsets are inserted in
a hash table and their frequencies are updated, the
process continues until there is no document in the
collection.

 Save the multi-tire hash table into secondary storage
media for further processing.

 Insert different minimum support values and scan the
multi-tire hash table to determine the large frequent
termsets that satisfy each threshold support value
without redoing the mining process again.

 Insert the generated large frequent termsets in the
Clustering process.

3) The advantages of MTHFT Algorithm: The MTHFT

algorithm has many advantages summarized as follows:

 Provides facilities to avoid unnecessary scans to the
documents, which minimize the I/O. Where the
scanning process occurs on the hash table instead of
whole documents compared to Apriori algorithm

 The easy manipulations on hash data structure and
directly computing frequent termsets are the added
advantages of this algorithm, moreover the fast access
and search of data with efficiency.

 MTHFT shows better performance in terms of time taken
to generate frequent termsets when compared to Apriori
algorithm. Furthermore, it permits the end user to
change the threshold support and confidence factor
without re-scanning the original documents since the
algorithm saves the hash table into secondary storage
media

 The main advantage of this algorithm is that, it is scalable
with all types of documents regardless of their sizes.

 Depending on the multi-tire technique in building the
primary bucket, each bucket can store only a single
element then we cannot associate more than one term
with a single bucket, which is a problem in the case of
collisions.

C. Documents Clustring Stage

Document clustering algorithm based on frequent termsets
considered a keyword-based algorithm which picks up the core

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,
Vol. 2, No. 6, 2013

11 | P a g e
www.ijarai.thesai.org

words with specific criteria and groups the documents based on
these keywords. this approach includes three main steps:

 Picking out all frequent termsets

 Constructing partitions

 Clustering documents

1) Picking out all Frequent Termsets: The Multi-Tire

Hashing algorithm is used in the previous step to find out the

large frequent termsets furthermore to speeding up the mining

process. it have ability to determine large frequent termsets at

different minimum support threshold values without redoing

the mining process again. Therefore, we can pick out different

sets of frequent termsets in the clustering process easily. We

start with a set of 2-large frequent termsets.

2) Constructing Partitions: Constructing partitions

include two sub steps: constructing initial partitions and

merging non-overlapping partitions.

a) Constructing initial partitions: initially, we sort the set
of 2-large frequent termsets in descending order in accordance

with their support level as in (3):

 Sup(lf1) > Sup(lf2) > Sup(lfk) (3)

Then, the first 2-large frequent termsets from the sorted list
is selected. Afterward, an initial partition P1 which contains
all the documents including the both termsets is constructed.
Next, we take the second 2-large frequent termsets whose
support is less than the previous one to form a new partition
P2. This partition is formed by the same way of the partition
P1 and takes away the documents that are in the initial
partition this avoid the overlapping between partitions since
each document keeps only within the best initial partition. This
procedure is repeated until every 2-large frequent termsets
moved into partition P(i).

b) Merging non-overlapping partitions: in this step, all
partitions that contain the similar documents are merged into

one partition. The benefit of this step is reducing the number

of resulted partitions.

3) Clustering Documents: In this step, we don't require to

pre-specified number of clusters we have a set of non-

overlapping partitions P(i) and each partition has a number of

documents D. We first identify the words that used for

constructing each partition P(i) which called labeling Words

Ld [W(i)]. The labeling words are obtained from all 2-large

frequent termsets that contained in each partition. For each

document, Derived keywords Vd [W(i)] are obtained from

taking into account the difference words between the top

weighted frequent words for each document with the labeling

words. Subsequently the total support of each derived word is

computed within the partition.

The set of words satisfying the partition threshold (the
percentage of the documents in partition P(i) that contains the
termset) are formed as Descriptive Words Pw [c(i)] of the
partition P(i). Afterward, we compute the similarity of each
document in the partitions with respect to the descriptive
words. The definition of the similarity measure plays an

importance role in obtaining effective and meaningful clusters.
The similarity between two documents Sm is computed as in
[8]. Based on the similarity measure, a new cluster is formed
from the partitions i.e. each cluster will contain all partitions
that have the similar similarity measures.

D. Post processing

Includes the major applications in which the document
clustering is used, for example, the recommendation
application which uses the results of clustering for
recommending news articles to the users.

IV. EXPERMENTAL RESULTS AND PERFORMANCE

EVALUATION

Our experiments have been conducted on a personal
computer with a 2.50 GHz CPU and 6.00 GB RAM and we
have implemented the proposed clustering approach
CWDHFT using C#.net language. To evaluate the
effectiveness of proposed MTHFT algorithm in the mining
process, this section presents the result comparisons between
our MTHFT algorithm and Apriori algorithm. Moreover,
several popular hierarchical document clustering algorithms
Bisecting K-means and FIHC are compared with our
CWDHFT approach for clustering web documents. The rest of
this section first describes the characteristics of the datasets,
then explains the evaluation measures, and finally presents and
analyzes the experiment results.

A. Datasets

We have used the largest datasets Reuters-21578 to exam
the efficiency and scalability of our algorithm [29]. The
Reuters-21578 collection is distributed in 22 files. Each of the
first 21 files (reut2-000.sgm through reut2-020.sgm) contain
1000 documents, while the last (reut2- 021.sgm) contains 578
documents. Documents were marked up with SGML tags.
There are 5 categories Exchanges, Organizations, People,
Places and Topics in the Reuters dataset and each category has
again sub categories in total 672 sub categories. We have
collected the TOPIC category sets to form the dataset. The
TOPICS category set contains 135 categories. From these
documents we collect the valid text data of each category by
extracting the text which is in between <BODY> ,</BODY>
and placed in a text document and named it according to the
topic. From Reuters, we have considered 5000 documents the
our datasets.

B. Evaluation Methods

The F-measure, as the commonly used external
measurement, is used to evaluate the accuracy of our
clustering algorithms. F-measure is an aggregation of
Precision and Recall concept of information retrieval. Recall is
the ratio of the number of relevant documents retrieved for a
query to the total number of relevant documents in the entire
collection as in (4):

Precision is the ratio of the number of relevant documents
to the total number of documents retrieved for a query as in
(5):

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,
Vol. 2, No. 6, 2013

12 | P a g e
www.ijarai.thesai.org

While F-measure for cluster and class is calculated as

in (6):

where is the number of members of class in cluster

 . is the number of members of cluster and is the

number of members of class .

The weighted sum of all maximum F-measures for all
natural classes is used to measure the quality of a clustering
result C. This measure is called the overall F-measure of C,
denoted is calculated as in (7):

where K denotes all natural classes; C denotes all clusters
at all levels; denotes the number of documents in natural
class ; and denotes the total number of documents in the
dataset. The range of is [0,1]. A large value
indicates a higher accuracy of clustering.

C. Experimental Results

In this section, we evaluate the performance of our
MTHFT algorithm in terms of the efficiency and scalability of
finding frequent termsets, moreover the accuracy and
efficiency of CWDHFT approach.

1) Evaluation of MTHFT algorithm for finding frequent

termsets: We evaluated our MTHFT algorithm of finding

frequent termsets in terms of its efficiency and scalability. In

our experiment, we compared the MTHFT algorithm with

Apriori algorithm, which is the most representative frequent

itemset mining algorithm although of its drawbacks. As we

know, the efficiency of Apriori is sensitive to the minimum

support level and the size of documents. When the minimum

support is decreased, the runtime of Apriori increases as there

are more frequent itemsets. Moreover, when the size of

documents become very large, most time is consuming in the

multiple scanning on the documents and generating frequent

termsets at different minimum support. In MTHFT algorithm,

the time is consumed in building a hash table only one time.

After saving the hash table there is no time consuming in

generating new different frequent termsets at different

minimum support threshold.
 Fig. 3 shows a comparison of results of Apriori and

MTHFT algorithm for various values of minimum support
thresholds at the Reuters datasets. Support is taken as X-axis
and the execution time taken to find the frequent termsets is
taken as Y-axis. We first chose small value of minimum
support equals to 30% then compute the execution time for
both algorithms.

Fig. 3. Time comparison between Apriori and MTHFT algorithms on

Reuters dataset.

From the chart, it can be seen that the execution time taken
for MTHFT algorithm decreases as the minimum support
increased in comparable to Apriori algorithm. At MTHFT
algorithm, the whole execution time is consumed in building
the hash table the first time. When entering new minimum
support, there is no time consumed, however, the time is taken
for searching the hash table. We noticed that the execution
time decreases as the minimum support increased in
comparable to Apriori algorithm. In Apriori algorithm, each
time entering a new minimum support it required to redo the
mining process from the beginning. We conclude that MTHFT
is significantly more efficient than Apriori algorithm in all
cases specially for large documents since the complexity of
finding the frequent termsets is lower than Apriori.

To examine the scalability of MTHFT algorithm, we create
a larger dataset from Reuters. W duplicated the files in Reuters
until we get 10000 documents. Fig. 4 illustrates the results of
applying MTHFT algorithm and Apriori on different sizes of
documents of Reuters at small value of minimum support
threshold 15% to ensure that the generated frequent termset in
both algorithms is approximately the same. We noticed that
MTHFT algorithm is about two to three times faster than
Apriori and performs better with large number of documents
in contrast Apriori algorithm.

Evaluation of the text clustering algorithm: For a
comparison with CWDHFT approach, we also executed
Bisecting k-means and FIHC on the same documents. We
chose Bisecting k-means because it has been reported to
produce a better clustering result consistently compared to k-
means and agglomerative hierarchical clustering algorithms.
FIHC is also chosen because it uses frequent word sets. For a
fair comparison, we did not implement Bisecting k-means and
FIHC algorithms by ourselves. We downloaded the CLUTO
toolkit [30] to perform Bisecting k-means, and obtained FIHC
[31] from their author.

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,
Vol. 2, No. 6, 2013

13 | P a g e
www.ijarai.thesai.org

Fig. 4. Time comparison between Apriori and MTHFT algorithms on
different sizes of Reuters at MinSup=15%.

Fig. 5 shows the comparison between all the three
clustering approaches based on the overall F-measure values
with different numbers of clusters. Our CWDHFT approach
outperforms all other approaches in terms of accuracy, it has
better F-measure because it uses a better model for text
documents.

Many experiments were conducted to exam the efficiency
of CWDHFT approach. Fig. 6 compares the execution time of
CWDHFT approach with FIHC and Bisecting K-means on
different sizes of documents of Reuters. The minimum support
is set to 15% to ensure that the accuracy of all produced
clustering are approximately the same. The number of
documents is taken as X-axis and the time taken to find the
clusters is taken as Y-axis. CWDHFT approach runs
approximately twice faster than the two approaches FIHC and
Bisecting K-means. We conclude that CWDHFT is more
efficient than other approaches.

Fig. 5. Overall F-measure results comparison with Reuters dataset.

Fig. 6. Efficiency comparison of CWDHFT with FIHC and Bisecting K-

means on different sizes of reuters at minsup=15%.

V. CONCLUSION

In this paper, we presented a novel CWDHFT approach for
web document clustering based on hashing algorithm for
mining frequent termsets that provides significant
dimensionality reduction. The originality of CWDHFT
approach is by introducing an efficient MTHFT algorithm for
mining frequent termsets. MTHFT algorithm introduced a
novel method for mining frequent termsets by building the
multi-tire hash table during the scanning process of documents
only one time. Furthermore it provided a possibility for mining
new frequent termsets at different minimum support threshold
without needing to rescan the documents. This is the major
factor for speeding up the clustering process.

Experiments are conducted to evaluate MTHFT algorithm
in comparison with Apriori algorithm and to evaluate the
CWDHFT approach in comparison with Bisecting K-means
and FIHC. The largest dataset, Reuters, is chosen to exam the
efficiency and scalability of our algorithm. The experimental
results show that in mining process, the scanning and
computational cost is improved when processing large size of
documents. The proposed document clustering, CWDHFT ,
approach improved accuracy, scalability and efficiency when
compared with other clustering algorithms. Moreover, it
automatically generates a natural description for the generated
clusters by a set of frequent termsets. From all experiments,
we conclude that CWDHFT approach has favorable quality in
clustering documents using frequent termsets.

VI. FUTURE WORK

The area of document clustering has many issues which
need to be solved. In this work, few issues e.g. high
dimensionality and accuracy are focused. In future work, we
intend to propose a novel technique for clustering web
documents based on Association Rules instead of using
frequent termsets .

REFERENCES

[1] S. Sharma, and V. Gupta, Recent developments in text clustering
techniques, International Journal of Computer Applications, vol. 37, pp.

14-19, 2012

[2] S. Fabrizio, “Machine learning in automated text categorization,”
International Conference on ACM Computing Surveys, vol. 34, pp. 1-

47, 2002.

[3] K. Jain, N. Murty, and J. Flynn, “Data clustering: a review,”

International Conference on ACM Computing Surveys, vol. 31, pp. 264-
323, 1999.

[4] M. Steinbach, G. Karypis, and V. Kumar, “A comparison of document

clustering techniques,” KDD Workshop on Text Mining, 2000. Avaiable
online : http://glaros.dtc.umn.edu/gkhome/node/157

[5] P. Berkhin, “Survey of clustering data mining techniques,” 2004,

[Online]. Available: http://www.accrue.com/products/rp_cluster_review
pdf

[6] R. Xu, “Survey of clustering algorithms,” International Conference of

IEEE Transactions on Neural Networks, vol.15, pp. 634-678, 2005.

[7] F. Benjamin, W. Ke, and E. Martin, “Hierarchical document clustering,”
Simon Fraser University, Canada, pp. 555-559, 2005.

[8] J. Ashish, J. Nitin, “Hierarchical document clustering: A review,” 2nd

National Conference on Information and Communication Technology,
2011, Proceedings published in International Journal of Computer

Applications.

[9] B. Fung, K. Wang, and M. Ester, “Hierarchical document clustering

using frequent itemsets,” International Conference on Data Mining, vol.

http://www.accrue.com/products/rp_cluster_review

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,
Vol. 2, No. 6, 2013

14 | P a g e
www.ijarai.thesai.org

[10] 30, pp. 59-70, 2003.

[11] R. Agrawal, T. Imielinski, and A. Swami, “Mining association rules
between sets of items in large databases,” International Conference on

Management of Data, vol. 22, pp. 207-216, Washington 1993.

[12] O. Zaiane and M. Antonie, “Classifying text documents by association
terms with text categories,” International Conference of Australasian

Database, vol. 24, pp. 215-222, 2002.

[13] B. Liu, W. Hsu and Y. Ma, “Integrating classification and association
rule mining,” International Conference of ACM SIGKDD on

Knowledge Discovery and Data Mining, pp. 80-86, 1998.

[14] O. Zamir and O. Etzioni, “Web document clustering: A feasability
demonstration,” International Conference of ACM SIGIR, pp. 46-54,

1998.

[15] M. Beil, and X. Xu, “Frequent term-based text clustering,” International
Conference on Knowledge Discovery and Data Mining, pp. 436- 442,

2002.

[16] M. Hassan and K. John, “High quality, efficient hierarchical document
clustering using closed interesting itemsets,” International IEEE

Conference on Data Mining, pp. 991-996, 2006.

[17] L. Xiangwei, H. Pilian, “A study on text clustering algorithms based on

frequent term sets,” Springer-Verlag Berlin Heidelberg, 2005.

[18] Y.J. Li, S.M. Chung, J.D. Holt, “Text document clustering based on
frequent word meaning sequences,” Data & Knowledge Engineering,

vol. 64, pp. 381–404, 2008.

[19] H. Edith, A.G. Rene, J.A. Carrasco-Ochoa, and J.F. Martinez-Trinidad,
“Document clustering based on maximal frequent sequence,” FinTal

vol. 4139, pp. 257-267, LNAI 2006.

[20] Z. Chong, L. Yansheng, Z. Lei and H. Rong, FICW: Frequent itemset
based text clustering with window constraint, Wuhan University journal

of natural sciences, vol. 11, pp. 1345-1351, 2006.

[21] L. Wang, L. Tian, Y. Jia and W. Han, “A Hybrid algorithm for web
document clustering based on frequent term sets and k-means,” Lecture

Notes in Computer Science, Springer Berlin, vol. 4537, pp. 198-203,
2010.

[22] Z. Su, W. Song, M. Lin, and J. Li, “Web text clustering for personalized

e-Learning based on maximal frequent itemsets,” International
Conference on Computer Science and Software Engineering, vol. 06, pp.

452-455, 2008.

[23] Y. Wang, Y. Jia and S. Yang, “Short documents clustering in very large
text databases,” Lecture Notes in Computer Science, Springer Berlin,

vol. 4256, pp. 38-93, 2006.

[24] W. Liu and X. Zheng, “Documents clustering based on frequent term
sets,” Intelligent Systems and Control, 2005.

[25] H. Anaya, A. Pons and R. Berlanga, “A Document clustering algorithm

for discovering and describing topics,” Pattern Recognition Letters, vol.
31, pp. 502-510, April 2010.

[26] R. Kiran, S. Ravi, and p. Vikram, “Frequent itemset based hierarchical

document clustering ung Wikipedia as external knowledge,” Springer-
Verlag Berlin Heidelberg, 2010.

[27] R. Baghel and Dr. R. Dhir, A Frequent concept based document
clustering algorithm, International Journal of Computer Applications,

vol. 4, pp. 0975 – 8887, 2010.

[28] http://tartarus.org/martin/PorterStemmer/

[29] M. Berry, “Survey of text mining: clustering, classification, and
retrieval,” Springer-Verlag New York, Inc., 2004.

[30] http://kdd.ics.uci.edu/databases/reuters21578/reuters21578.html

[31] http://glaros.dtc.umn.edu/gkhome/views/cluto

[32] http://ddm.cs.sfu.ca/dmsoft/Clustering/fihc_index.html

