
(IJARAI) International Journal of Advanced Research in Artificial Intelligence,
Vol. 2, No. 6, 2013

15 | P a g e
www.ijarai.thesai.org

A Structural Algorithm for Complex Natural

Languages Parse Generation

Enikuomehin, A. O.

Dept. of Computer Science,

 Lagos State University,

Lagos, Nigeria

Rahman, M. A.

Dept. of Computer Science,

 Lagos State University,

Lagos, Nigeria

Ameen A. O.

Dept. of Computer Science,

University of Ilorin,

Ilorin, Nigeria

Abstract— In artificial intelligence, the study of how humans

understand natural languages is cognitive based and such science

is essential in the development of a modern day embedded

robotic systems. Such systems should have the capability to

process natural languages and generate meaningful output. As

against machines, humans have the ability to understand a

natural language sentence due to the in-born facility inherent in

them and such is used to process it. Robotics requires

appropriate PARSE systems to be developed in order to handle

language based operations. In this paper, we present a new

method of generating parse structures on complex natural

language using algorithmic processes. The paper explores the

process of generating meaning via parse structure and improves

on the existing results using well established parsing scheme. The

resulting algorithm was implemented in Java and a natural

language interface for parse generation is presented. The result

further shows that tokenizing sentences into their respective units

affects the parse structure in the first instance and semantic

representation in the larger scale. Efforts were made to limit the

rules used in the generation of the grammar since natural
language rules are almost infinite depending on the language set.

Keywords—Natural Language; Syntax; Parsing; Meaning

Representation

I. INTRODUCTION

Natural languages [1,2] are used in our everyday
communication. They are commonly referred to as human
languages. Humans are able to process natural languages
easily because it is their basic language of communication
since birth. The human system has the capability to learn and
use such languages and improve on it over time. Recently,
there has been renewed effort in developing systems that
emulate human due to increased service rendering
requirements including several efforts in [3].

A major factor to be considered in such system is that, they
must have the capability to act like human. The need includes
the ability to process human speech,(Speech Recognition, an
area that has had great research attention) in a way that it can
receive speech signals, converts it into text, processes the text
and provides a response to the user. The user is obviously
more comfortable using his or her natural language to present
such speech. However, natural language is a very complex
language due to the high level of ambiguity existing in it. This
is one of many factors, others include the availability of large
set of words in several unstructured order. Thus, to make a
functional system, these issues must be clearly addressed.
Processing natural languages involves the concept of

interpretation and generalization [4]. In Interpretation, the
process involves understanding the natural languages while
generalization is a next to interpretation handles the
representation of the interpreted language. The process of
representation will only be functional if the language of
presentation is understood by the system. In understanding
such languages, several stages of operations are involved.
They include morphological analysis (how words are built
from morphemes, a morpheme is the smallest meaningful unit
in the grammar of a language), chunking (breaking down
sentences into words known as tokens, a token is a symbol
regarded as an individual concrete mark, not as a class of

identical symbols, it is a popular alternative to full parsing),
syntactic analysis (analyzing the sentences to determine if they
are syntactically correct) and semantic analysis (looking into
the meanings). One can consider the importance related to the
representation in morphemes as stated above, using the
following example, Consider the word “Unladylike” This
word consists of three morphemes and four syllables. The
Morpheme breaks into: un- 'not', lady '(well behaved) female
adult human', like 'having the characteristics of'. None of
these morphemes can be broken up any more without losing
all the meaning the word is trying to convene. Lady cannot be
broken up into "la" and "dy," even though "la" and "dy" are
separate syllables. Note that each syllable has no meaning on
its own.

Thus, our representational framework can be determined
by the morphology existing in any given word. This process
can be manually interpreted but as the set of terms to be
considered increases, the manual interpretation has greater
tendencies to fail. Thus an appropriate scheme is to introduce
algorithms that can handle such complex representation of
natural language in a way that appropriate parse needed for
machine translation of natural language can be generated.
Such algorithm will generates syntactic structures for natural
language sentences by producing a syntactic analysis of any
given sentence correctly whose output is the syntactic
structure represented by a syntax tree. The syntax tree shows
how words build up to form correct sentences. Children learn
language by discovering patterns and templates. We learn how
to express plural or singular and how to match those forms in
verbs and nouns. We learn how to put together a sentence, a
question, or a command. Natural Language Processing
assumes that if we can define those patterns and describe them
to a computer then we can teach a machine something of how
we speak and understand each other. Much of this work is

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,
Vol. 2, No. 6, 2013

16 | P a g e
www.ijarai.thesai.org

based on research in linguistics and cognitive science. A
sentence then has to be parsed for syntactic analysis. Thus, the
need for the appropriate algorithm that can handle the parsing
of complex natural language sentences.

In this paper, the discussions above were considered and
we present an algorithm using the UML (unified modelling
language) to parse natural language sentences. This model
depicts various aspects of the algorithm which includes:

 An association diagram that shows the major
components in our system and how they associate with
one another.

 A dependency diagram that shows how each
component depends on the other in order to be able to
carry out its own work.

 A class diagram that depicts each component in terms
of classes showing its members and methods.

 A pseudo code to show the major steps involved in
each component.

A scalable interface showing the implementation of the
algorithm was developed and tested to determine the level of
correctness of the output.

II. BACKGROUND AND EARLIER WORK

Natural Language Processing (NLP) is the capacity of a
computer to "understand" natural language text at a level that
allows meaningful interaction between the computer and a
person working in a particular application domain [5]. The
natural language processing concepts involves the use of many
tools which are essentials of developing a man-like machine.
This tools includes some programming languages such as
Prolog, Ale, Lisp/Scheme, and C/C++. The tools are
formulated appropriately within some defined concepts using
Statistical Methods - Markov models, probabilistic grammars,
text-based analysis and also Abstract Models such as Context-
free grammars (BNF), Attribute grammars, Predicate calculus
and other semantic models, Knowledge-based and ontological
methods [6].

In this paper, we focus on the generation of appropriate
parse structure for any natural language sentence. This step is
considered as a major step in the natural language research
domain. Syntactic analysis majorly involve the structure of a
given natural language sentence presented by retrieving it in a
structural manner with the rules of forming the sentences, and
the words that make up those sentences. This is also includes
the grammar and lexicon. It involves morphology that is the
formation of words from stems, prefixes, and suffixes.
Syntactic analysis shows the legal combination of words in a
sentence. Generating syntactic structure involves the use of
grammar, that is, the rules for forming correct sentences.
Natural languages have to be parsed to obtain the syntactic
information encoded in them. But natural language is
ambiguous which necessitated the intervention of the use of
an algorithm. This structure will present the analysis of a
sentence by showing how words combine correctly to form
valid phrases and how this phrase legally build up sentences.
A parsing algorithm operates based on some set of rules
known as grammar that tells the parser valid phrases and
words in a sentence. The ambiguity of natural languages leads

to a complex analysis of it, so it is more suitable to use a
parsing algorithm in situations where the natural language
sentence is complex. In such cases, a sentence generates
multiple parse trees for the same natural language. As natural
language understanding improves, computers will be able to
learn from the information online and apply what they learned
in the real world. Combined with natural language generation,
computers will become more and more capable of receiving
and giving instructions. Ambiguities are a problem because
they can lead to two or more different interpretations of the
same word. They are often part of the subconscious
knowledge, so requirements writers will not necessarily
recognize these potential sources of misunderstandings. There
are different kinds of ambiguity. Lexical ambiguity refers to
single expressions that may be reasonably interpreted in more
than one way.

The study of natural language processing also incorporates
other fields such as linguistics and statistics. The knowledge of
linguistics provides the grammars and vocabularies needed
and the knowledge of statistics provide mathematical models
that the algorithm for processing natural languages uses.
Various algorithms had been developed in time past for
natural language processing and more algorithms are currently
under development to solve more of natural language
processing problems. In 1950, Alan Turing [7] proposed
“Turing Test” in his famous article “Computing Machinery
Intelligence”. Turing test is a test that is used to know the
ability of computer systems to impersonate humans. In 1954,
the George Town experiment came up which involved a full
automatic translation of more than sixty Russian sentences
into English. In addition, in 1960s, some successful natural
language processing systems were developed. These systems
majorly include: ELIZA, [8,9]. SHRDLU [10]., a system that
works in restricted blocks with restricted vocabularies that can
be used to control robotic arms. Many programmers began to
write conceptual ontologies in 1970, they are structured to
appropriate real-world information into computer system. Up
to the 1980s, most natural language processing systems were
based on complex sets of hand-written rules.

Furthermore, in 1980s [4], the first “statistical machine
translation systems” was developed. At this time, there was a
great revolution in natural language processing with the
introduction of “machine learning algorithms” for language
processing. This is as a result of the increase in computational
power resulting from the application of Moore’s law [11].
Natural Language Processing (NLP) is an area of research and
application that explores how computers can be used to
understand and manipulate natural language text or speech to
do useful things. NLP researchers aim to gather knowledge on
how human beings understand and use language so that
appropriate tools and techniques can be developed to make
computer systems understand and manipulate natural
languages to perform the desired tasks. Statistical methods are
used in NLP for a number of purposes, e.g., for word sense
disambiguation, for generating grammars and parsing. At the
core of any NLP task there is the important issue of natural
language understanding. The process of building computer
programs that understand natural language involves three
major problems: the first one relates to the thought process,

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,
Vol. 2, No. 6, 2013

17 | P a g e
www.ijarai.thesai.org

the second one to the representation and meaning of the
linguistic input, and the third one to the world knowledge.
Thus, an NLP system may begin at the word level – to
determine the morphological structure, nature (such as part-of-
speech, meaning etc.) of the word – and then may move on to
the sentence level – to determine the word order, grammar,
meaning of the entire sentence, etc.— and then to the context
and the overall environment or domain. A given word or a
sentence may have a specific meaning or connotation in a
given context or domain, and may be related to many other
words and/or sentences in the given context. Automatic text
processing systems generally take some form of text input and
transform it into an output of some different form. The central
task for natural language text processing systems is the
translation of potentially ambiguous natural language queries
and texts into unambiguous internal representations in which
matching and retrieval can take place. Masaru Tornita (1984)
[3],” proposed that “When a parser encounters an ambiguous
input sentence, it can deal with that sentence in one of two
ways. One way is to produce a single parse which is the most
preferable. Such parsers are called one-path parsers. On the
other hand, parsers that produce all possible parses of the
ambiguous sentence are called all-paths parsers”. A suitable
parser for parsing natural languages is one that generates
several parses or parses trees for a natural language sentence
because a sentence can have a syntax and different meaning.
NLP systems, in their fullest implementation, make elegant
use of this kind of structural information. They may store a
representation of either of these sentences, which retains the
fact that Chelsea won Benfica or vice versa. They may also
store, not only the fact that a word is a verb, but the kind of
verb it is.

One-path parsers are, naturally, much faster than all-paths
parsers because they look for only one parse. There are,
however, situations where all-paths parsers should be used.
MLR is an extension of LR. The LR parsing algorithm,
however, has seldom been used for natural language
processing, because the LR parsing algorithm is applicable
only to a small subset of context-free grammars, and usually it
cannot apply to natural languages. Though the efficiency of a
LR parsing algorithm is preserved, MLR parsing algorithm
can apply to arbitrary context-free grammars, and is therefore
applicable to natural languages. We cannot directly adopt the
LR parsing technique for natural languages because not all
context-free phrase structure grammars (CFPSG's) can have an
LR parsing table. Only a small subset of CFPSG's called LR
grammar can have such an LR parsing table. Every ambiguous
grammar is not LR, and since natural language grammars are
almost always ambiguous, they are not LR therefore we
cannot have an LR parsing table for natural language
grammars. Liddy (1998) and Feldman (1999) [5] suggest that
in order to understand natural languages, it is important to be
able to distinguish among the following seven interdependent
levels, that people use to extract meaning from text or spoken
languages:

 Phonetic or phonological level that deals with
pronunciation

 Morphological level that deals with the smallest parts
of words, that carry a meaning, and suffixes and
prefixes

 Lexical level that deals with lexical meaning of words
and parts of speech analyses

 Syntactic level that deals with grammar and structure
of sentences

 Semantic level that deals with the meaning of words
and sentences

 Discourse level that deals with the structure of different
kinds of text using document structures and

 Pragmatic level that deals with the knowledge that
comes from the outside world, i.e., from outside the
contents of the document.

The above justification seems sufficient for the
development of an appropriate model for implementing an
algorithm for parse generation of natural language sentences.

III. MODEL

We present a model to show the major components in our
algorithm and how they interact in order to generate effective
parse results for complex natural language sentences. To
parse a natural language sentence (syntactic analysis), the
most important things to consider are:

 The parser (the algorithm)

 Set of grammars for the language (the rules of correct
syntax)

Based on our model, the major components used are:
Tokenizer - which breaks down a given sentence into words
usually known as tokens, Part of speech tagger - represented
as those whose function is to tag each word to their respective
part of speech. Parse- which analyses the sentence to check if
it conforms to some sets of grammar (English grammar) for
the language of the input sentence and finally the ParseTree,
The parse tree represents the graphical nature of the natural
language. The UML Association diagram is necessary to
visualize the association between the classes. The UML Class
diagram is used to visually describe the problem domain in
terms of types of object (classes) related to each other in
different ways. There are three primary inter-object

relationships: association, aggregation, and composition.
Using the right relationship line is important for placing
implicit restrictions on the visibility and propagation of
changes to the related classes.

Following from above, the formulated PSEUDOCODE is
then presented as:

Class Tokenizer

//variable declaration

String sentence

Int i,tokenLength // i is a counter

Sentence=get sentence from user

Break sentence to tokens//break sentence to words

tokenLength=get number of words in sentence

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,
Vol. 2, No. 6, 2013

18 | P a g e
www.ijarai.thesai.org

//create two arrays to store the words and their part of

speech

New tokenArray(tokenLength)

New posArray(tokenLength)

tokenArray=tokens//store tokens in array

//tag words to their part of speech

For(i=0; i<tokenLength; i++)

{ posArray[i]=posTagger.tagWord(tokenArray[i])

}

//parse sentence and get parse tree

parseTree=parser.parseSentence(tokenArray,posArray)

display parseTree

Class POSTagger
//Variable declaration

String pos

//create an array of words and their part of speech

New dictionary(l)//where l is number of words in

dictionary

New partOfSpeech(l)

Function tagWord(String word)

{

 For(i=0; i<l; i++)
 {

 If(dictionary[i]=word)

 {

 Pos=partOfSpeech[i]

 Return pos

 }

 }

Class parser

//variable declaration

int number of words

function parseSentence(String[] words, String[] pos)

{

 numberOfWords=words.getNumberOfWord

 if(numberOfWords=3)

 {

 If(words follow grammer 1)

 Draw parse tree 1

 Else if(words follow grammer 2)

 Draw parse tree 2
 |

 |

 Else if(words follow grammer n)

 Draw parse tree n

 }

 Else if(numberOfWords=4)

 {

 If(words follow grammer 1)

 Draw parse tree 1

 Else if(words follow grammer 2)

 Draw parse tree 2
 |

 |

 Else if(words follow grammer n)

 Draw parse tree n

 }

 |

 |

 Else if(numberOfWords=n)

 {

 If(words follow grammer n)

 Draw parse tree n

 }
}

IV. IMPLEMENTATION AND RESULT

The model is implemented as a stand-alone application
using the java programming language. The application was
designed such that only an input sentence of a maximally
defined number of terms can be accommodated. When a user
enters a sentence within the specified limit, the system verifies
the correctness of the sentence and then outputs a graphical
display of the parse tree for the sentence. The resulting output
is shown in figure 1.

Fig.1. Simple java based parser

Figure 1.6 shows the parsing of a natural language
sentence based on codes developed in java. The generation is
extended by implementing an internal scheme based on a
dictionary such that when a word is not present in the
application’s dictionary, the structure of the surrounding
words can be used to tell the possible part of speech the word
will belong to. For example, the word “here” shown in figure
1.6 is not in the application’s dictionary yet it was tagged as
either adjective or gerund or adverb, this is because only these
categories of words can occupy that position once the
preceding words follows the order “determinant noun verb”.

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,
Vol. 2, No. 6, 2013

19 | P a g e
www.ijarai.thesai.org

Figure 2 shows another generation of the parser interface
where the rule implements the sentence format “noun verb
gerund”.

Fig.2. Noun Gerund parse

If a user enters an invalid sentence or a sentence whose
grammar is not present in our list of grammars, the system will
output the following:

Fig.3. Parsing non defined sentence grammar

V. CONCLUSION

 The algorithm presented in this paper can be extended
based on the required complexity of the system. The defined
process for tokenization and the use of a natural language
interface in solving parse generation has shown the
effectiveness of a well posted algorithm in solving the natural
language parse generation problem. An extension of this work
is in its ability to generate one parses tree even when the
observed ambiguity is high. Parsing natural language is a
complex task, an efficient algorithm for parsing natural
language has been shown in this work as a necessary tool even
within the inherent complexity observed.

An extended form of the LR parsing algorithm though not
discussed in this paper will also be an efficient algorithm as it
will generate multiple parses for natural language sentences.
Such is similar to multiple application of the algorithm
presented in this paper and can be called the MLR parsing
algorithm.

REFERENCES

[1] J. S. Amberg, Introduction: what is language”, The American journal of

English, history, structure and usage, page 1-10. (1987
[2] J. Lyons, Natural Ianguage and Universal Grammar. New York:

Cambridge University Press. pp. 68–70. ISBN 978-0521246965. (1991).
[3] P.Pantel, T. Lin, and M.l Gamon, Mining Entity Types from Query Logs

via User Intent Modeling, Association for Computational Linguistics,
July 2012

[4] G,G. Chowdhury, Natural language processing”, The journal of
department of computer and information science, university of

strathclyde, page1-22. ,(1991)”
[5] F. S. Liddy, Natural language processing”, The journal of department of

information science, Page 1-20. (1999)”
[6] T. Masaru,”An Efficient All-paths Parsing Algorithm for Natural

Languages”, The journal of Computer Science Department, Carnegie-
Mellon University, Pittsburgh, PA 15213, 25, page 1-36. (1984),

[7] J. Agar, The government machine: a revolutionary history of the
computer. Cambridge, Massachusetts: MIT Press. ISBN 978-0-262-

01202-7. (2003).
[8] P. McCorduck, Machines Who Think (2nd ed.), Natick, MA: A. K.

Peters, Ltd., ISBN 1-56881-205-1(2004),
[9] J. Weizenbaum, "ELIZA—A Computer Program For the Study of

Natural Language Communication Between Man And Machine",
Communications of the ACM 9 (1): 36–45, (January 1966)

doi:10.1145/365153.365168
[10] T. Winograd, "Procedures as a Representation for Data in a Computer

Program for Understanding Natural Language", MIT AI Technical
Report 235, February 1971

[11] La Fontaine, B., "Lasers and Moore's Law", SPIE Professional, Oct.
2010, p. 20; http://spie.org/x42152.xm

http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/978-0521246965
http://research.microsoft.com/apps/pubs/default.aspx?id=169626
http://research.microsoft.com/apps/pubs/default.aspx?id=169626
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-0-262-01202-7
https://en.wikipedia.org/wiki/Special:BookSources/978-0-262-01202-7
http://www.pamelamc.com/html/machines_who_think.html
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/1-56881-205-1
http://en.wikipedia.org/wiki/Communications_of_the_ACM
http://en.wikipedia.org/wiki/Digital_object_identifier
http://dx.doi.org/10.1145%2F365153.365168
http://dspace.mit.edu/bitstream/handle/1721.1/7095/AITR-235.pdf?sequence=2
http://dspace.mit.edu/bitstream/handle/1721.1/7095/AITR-235.pdf?sequence=2
http://spie.org/x42152.xml

