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Abstract—The minimum weighted edge dominating set prob-
lem (MWEDS) generalizes both the weighted vertex cover prob-
lem and the problem of covering the edges of graph by a
minimum cost set of both vertices and edges. In this paper, we
propose a meta-heuristic approach based on genetic algorithm
and local search to solve the MWEDS problem. Therefore, the
proposed method is considered as a memetic search algorithm
which is called Memetic Algorithm with filtering scheme for
minimum weighted edge dominating set, and called shortly
(MAFS). In the MAFS method, three new fitness functions are
invoked to effectively measure the solution qualities. The search
process in the proposed method uses intensification scheme, called
“filtering”, beside the main genetic search operations in order
to achieve faster performance. The experimental results proves
that the proposed method is promising in solving the MWEDS
problem.

Keywords: Minimum weight edge dominating set, Graph theory,
Genetic algorithm, Memetic algorithm, Local search.

I. INTRODUCTION

The Minimum Edge Dominating Set (MEDS) is a subset
of edges of minimum cardinality, where each edge is be in
the edge dominating set, or adjacent to some edges in the
edge dominating set [11], [12], [24]. The weighted version of
MEDS seeks to find an edge dominating set with a minimum
total weight [9]. The MEDS problem is a hard combinatorial
problem, classified as NP-hard [24], and in general cannot
be solved exactly in polynomial time. The MEDS problem
is one of the fundamental covering problems in graphs; edge
cover, vertex cover, dominating set and edge dominating set.
These domination problems in graphs have been subject of
many studies in graph theory, and have many applications in
operations research, resource allocation and network routing,
as well as in coding theory [4], [11], [12], [25].

There are many algorithms proposed for solving MWEDS.
Although these algorithms guarantee the optimality of the
solutions they find, they may fail to give a solution within
reasonable time for large instances. As the size of the problem
increases, these methods become futile. Meta-heuristics are
powerful search methods which can be efficiently in providing
satisfactory solutions to large and complex problems such as
vertex cover [20], dominating set [14] and edge coloring [16]
in a reasonable time. However, up to the authors’ knowledge,
there are no studies up to day used meta-heuristic techniques
for solving the MWEDS problem.

Genetic Algorithms (GAs) are the most popular meta-
heuristic algorithms that have been employed in wide variety
of problems [3]. Actually, GAs are able to incorporate other
techniques within its framework to produce a hybrid method
that brings more promising one. One direction of such hy-
bridization is to use local search which can accelerate the
search process in a pure GA. This modification yields another
search approach which is called the Memetic Algorithm (MA)
[17].

Several meta-heuristic methods have been developed to
solve different problems in graph theory and combinatorial
optimization [2], [19]. However, the number of contributions
that deal with the graph domination problems is very limited.
In this paper, we propose a memetic algorithm with filtering
scheme for finding the minimum edge dominating set, called
shortly MAFS. It uses a 0-1 variable representation of solutions
in searching for the MWEDS, and invokes three new fitness
functions to measure the solution qualities. Intensification
search and filtering schemes are used beside local search in
order to enhance the performance of the MAMEDS method.

The paper is organized as follows. The next section gives a
brief description about the MWEDS problem as preliminaries
needed throughout the paper, and highlights the related works
in solving the considered problem. Section 3 describes the
proposed method steps in details. Section 4 reports numerical
experiments and results. Finally, the conclusions make up
Section 5.

II. PROBLEM FORMULATION AND RELATED WORKS

Given an undirected weighted graph G = (V,E,W ),
without loops and multiple edges, where V is the set of nodes
(or vertices), E the set of edges, and W is the set of positive
edge weights represented by variables w1, w2, . . . , wm, (where
each wi corresponds to an edge i = (u, v) ∈ E). An edge
(u, v) of G is said to dominate itself and any edge adjacent to
it in G. An edge dominating set (EDS) is a set of edges which
is collectively dominate all the other edges in the graph G. The
Minimum Weight Edge Dominating Set (MWEDS) problem
seeks to find an edge dominating set EDS of minimum total
weight Σe∈Dw(e).

The edge dominating set problem is a basic problem intro-
duced in Garey and Johnson’s work [10] on NP-completeness.
Yannakakis and Gavril [24] proved that the edge dominating
set problem is NP-hard even in planar or bipartite graphs
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of maximum degree 3. Although the EDS has important
application in areas such as telephone switching networks, a
very little work was known about the weighted version of the
problem.

For the EDS problem, Randerath and Schiermeyer [8] pre-
sented the first exact algorithm of time complexity O(1.4423n)
algorithm and Fomin et al. [6] improved this to O(1.4082n).
Rooij and Bodlaender [21] got an O(1.3226n) algorithm by us-
ing the “measure and conquer” method, which was further im-
proved to O(1.3160n) [23], where n is the number of vertices.
From the point of approximation algorithm, the best known
result was proposed in [18], which gave a 2-approximation
algorithm for WEDS problem. Recently, parameterized com-
putation theory was applied to solve the EDS and WEDS
problems. Fernau [5] presented parameterized algorithms of
time complexity O(2.62k) for EDS and WEDS problem re-
spectively. The above result was further reduced by Fomin [7],
which gave a parameterized algorithm of time O(2.4181k). For
the first time Wang [22] presented an enumeration algorithm of
time complexity O(5.62kk4z2+42knk3z) for WEDS problem.
Although these algorithms provide the optimal solution, they
are too slow on graphs with few hundreds of nodes. Therefore,
when deals with a very large graphs, these algorithm become
impractical. This motivates us to consider meat-heuristics to
design more efficient algorithm to solve the MWEDS problem.

III. PROPOSED METHOD

In this section, we describe the components of the MAFS
method, and then state its formal algorithm at the end of this
section. The MAFS method is an evolutionary algorithm, there-
fore, we first start by describing the solution representation
and the fitness function. Then, the genetic operators; selec-
tion, crossover and mutation are defined. The main memetic
search element, local search, is stated after that. Finally, our
intensification schemes are explained.

A. Graph Representation

The graph represented as nV × nV adjacency matrix A,
where nV is the number of vertices in the graph. The non-
diagonal entry aij = we, where we is an integer weight
associated with each edge e connected the vertex i to vertex
j. Form an adjacency matrix we create edges matrix Em

which include all edges in the graph. Edge matrix dimension
is nE ×3, where nE is the number of edges in the graph. The
first two columns are the vertex numbers which represent the
endpoints of edges and the third columns represent the weights
of each edge in the graph.

B. Solution Representation

A solution s will be represented as a bit vector with size
equal to the number of edges in the graph. Therefore, s is
equal to (s1, s2, . . . , snE ), as shown in Figure 1. The subscript
numbers 1, 2, . . . , nE , are related to the corresponding edges
in Em. If a component si of s, i = 1, . . . , nE , has the value 1,
then the edge represented by the i-th row in Em is contained
in the edge subset represented by solution s. Otherwise, the
solution s does not contain the i-th edge.

s1 s2 s3 · · · snE

Fig. 1. Solution Representation

C. Fitness Function

Fitness function fit is a function designed to measures the
quality of a solution which plays a major role in the selection
process. The main idea in designing the fitness function is that
better solutions will have a higher fitness function value than
worse one. Three fitness functions are invoked to effectively
measure the solution qualities.

fit1(s) = ρd +
1

sumw(s)× nE
, (1)

fit2(s) = ρd + (1− κ

√
sumw(s)

Tsum
), (2)

fit3(s) = αρd + (1− α)(1− κ

√
sumw(s)

Tsum(s)
), (3)

where 0 ≤ α ≤ 1, κ > 1 is an integer, and ρd, Tsum(s) and
sumw(s) are calculated by

ρd =
nD

nE
,

Tsum(s) =
∑
e∈E

w(e),

sumw(s) =
∑
e∈D

w(e),

where nD is the number of edges dominated by the subset of
edges D represented by the solution s and nE the number of
edges in the graph. All three fitness function consist of two
parts, the first part nD/nE , reflects the size of domination
on G by s. If s represents an edge dominating set, then
this part is equal to 1. On the other hand, the second part
distinguishes between solutions that have the same values of
the first part based on the sum of weights associated with each
edge contained in each of them. It is worthwhile to mention
that the second term is designed to make fit(s1) < fit(s2)
in only two cases:

• x1 < x2, where x1 and x2 are the numbers of edges
covered by s1 and s2 respectively, or

• x1 = x2 and sumw(s1) > sumw(s2).

The parameter κ is set equal to 4 to highly distinguish between
solutions that have the same domination number.
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D. Genetic Operators

The parent selection mechanism first produces an inter-
mediate population, say P ′ from the initial population P :
P ′ ⊆ P as in the canonical GA. For each generation, P ′

has the same size as P but an individual can be present in P ′

more than once. The individuals in P are ranked with their
fitness function values based on the linear ranking selection
mechanism [1], [13]. Indeed, individuals in P ′ are copies of
individuals in P depending on their fitness ranking: the higher
fitness an individual has, the more the probability that it will
be copied is. This process is repeated until P ′ is full while an
already chosen individual is not removed from P .

The crossover operation has an exploration tendency, and
therefore it is not applied to all parents. First, for each
individual in the intermediate population P ′, the crossover
operation chooses a random number from the interval (0, 1).
If the chosen number is less than the crossover probability
pc ∈ (0, 1), the individual is added to the parent pool. After
that, two parents from the parent pool are randomly selected
and mated to produce two children c1 and c2, which are then
replacing their parents in P ′. These procedures are repeated
until all selected parents are mated. The standard one-point
crossover [15] is used in MAFS to compute children.

For each gene each in all individuals in the intermediate
population P ′, a random number from the interval (0, 1) is
associated. If the associated number is less than the mutation
probability pm, then the individual is mutated using the stan-
dard uniform mutation operation [15].

E. Local Search

In LocalSearch mechanism, we add or delete some edges
to improve the best solution sbest found so far, and this process
is repeated nl times. The formal description of this mechanism
is shown in Procedure 1.

Procedure 1: (LocalSearch)

1) Set a suitable value to nl.
2) Repeat the following Steps (2-6) nl times.
3) Set s̃best = sbest.
4) If ρd ≥ 1, select a component s̃ibest with value 1. This

selection is randomly and proportional to the weight
of its corresponding edge. Set s̃ibest = 1- s̃ibest .

5) If ρd < 1, select a component s̃i
best with value 0.

This selection is randomly and inversely proportional
to the weight of its corresponding edge. Set s̃ibest =
1- s̃ibest .

6) If fit(s̃best)> fit(sbest), set sbest = s̃best.

In our numerical experiments, the number nl of local
search iterations is set equal to 0.1 × nE in order to save
computational costs.

F. Intensification Schemes

The intensification mechanism which called “Filtering” is
used in MAFS to reduce the cost of the solution computed.
This mechanism basically checks if an edge contained in sbest

can be removed without losing the coverage.

Procedure 2: (Filtering)

1) If ρd < 1, return.
2) Compute the set X = {x1, ..., xnE} of all positions

of value one in sbest.
3) Repeat the following Steps (4-5) for j = 1, ..., nE .
4) Set sbestxj = 0, and compute the new fitness value.
5) If the fitness value is increased, update sbest .

G. MAFS Algorithm

MAFS starts with an initial population of chromosomes
P0 generated randomly. Each chromosome represents a trial
solution to the MWEDS problem. During each generation,
the quality of each chromosome in the population is evaluated
by using three fitness functions (see Equations 1,2 and 3).
MAFS applies Procedure 1 to improve the best solution.
In each generation, the population is updated through
genetic operators. Linear ranking selection algorithm uses to
select parents for standard one-point crossover and uniform
mutation to generate members of the new population [14].
MAFS invokes Local Search Procedure to update the current
population. If a certain number of consecutive generations
without improvement is achieved, MAFS invokes Procedure
2 to improve the best edge dominating set sbest obtained so
far, if it exists. The search will be terminated if the number
of generations exceeds gmax, or the number of consecutive
generations without improvement exceeds a pre-specified
number.

Algorithm 3: (MAFS)

1) Initialization. Set values of Psize, gmax. Set the
crossover and mutation probabilities pc ∈ (0, 1) and
pm ∈ (0, 1), respectively. Set WEDS to be an empty
set. Generate an initial population P0 of size Psize.

2) Local Search. Evaluate the fitness function of all
chromosomes in P0 by using the Equations 1, 2 or 3,
and then apply Procedures 1 to improve the best trial
solution in P0. Set the generation counter t := 0.

3) Parent Selection. Select an intermediate population
Ṕt from the current population Pt using the linear
ranking selection.

4) Crossover. Apply the standard one-point crossover to
chromosomes in Ṕt , and update Ṕt .

5) Mutation. Apply the standard uniform mutation to
chromosomes in Ṕt , and update Ṕt.

6) Survival Selection. Evaluate the fitness function of
all generated children in the updated Ṕt, and set Pt+1
= Ṕt . If the best solution in Pt+1 is worse than the
best solution in Ṕt, then replace the worst solution in
Ṕt+1 by the best solution in Ṕt.

7) Local Search. Apply Procedure 1 to improve the
sbest, update WEDS.

8) Filtering. If sbest represents a weight edge dominat-
ing set, then apply Procedure 2 to improve it, update
WEDS.

9) Stopping Condition. If t > gmax, then terminate.
Otherwise, set t := t+ 1, and go to Step 3.

IV. NUMERICAL EXPERIMENTS

The MAFS algorithm was programmed using MATLAB.
In this experimental section, we technically discuss the
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implementation of the MAFS code as well as its results. This
section also shows how the test graphs used in the numerical
simulations are generated.

A. Graph Generation

In order to measure the performance of MAFS we apply it
on number of graphs with different sizes. The previous works
in solving MWEDS did not implemented for special types of
graphs. Thus, the graphs which we used in our experiments
are randomly generated with a known edge domination number
γ̀(G) and optimal total weight opw. The following algorithm
describe how these graphs are constructed.

Algorithm 4: (Graph Generation)

1) Set the maximum number of edges maxE = nV ×
(nV − 1)/2, and the number of edges nE = maxE

× d, where d is the density of edges in the graph
which is set to be in (0, 1), and nV is the number of
vertices.

2) Divide the vertices into two groups:
- VED with size equal to γ̀(G) × 2, and

has vertices incident to dominant edges.
Therefore, each pair of them is connected.

- VE with size equal to nV − (γ̀(G) × 2),
and has vertices not incident to dominant
edges.

3) Add edges to connect the graph vertices to reach
the edge density d. This edge adding process should
satisfy the following condition in order to maintain
the edge domination number equal to γ̀(G).

- No edge connects two vertices belong to
different pairs in VED.

4) Set the weights we randomly for each edge in G such
that 0 < we ≤ l1 for each dominant edge and l1 <
we ≤ l2 for the remaining edges.

In our numerical experiments, the parameters l1 and l2 is set
equal to γ̀(G) and nE , respectively.

MAFS was applied to 15 instances of MWEDS problems
created from the five graphs G1-G5, see Table I. These three
graphs generated randomly with a number nV of vertices
and different number nE of edges depending on the density
number d for each instance. For each problem instance, the
edge domination number γ̀(G) and the optimal total weight
opw was known and the code was run 10 times.

B. Parameter Setting

Table II summarizes all parameters setting used in MAFS
with their assigned values. These chosen values are based on
our numerical experiments.

C. Comparison Results

In this section, we study the performance comparison of the
proposed MAFS with three fitness functions that we introduce
in Equations 1, 2 and 3. We have two comparison results,
the first comparison of MAFS with (fit1) against MAFS with
(fit2), and the results of this comparison are reported in Table

TABLE I. TEST PROBLEMS

Test graphs nV nE d γ̀(G) opw

G20
0.1 20 19 0.1 4 4

G20
0.3 20 57 0.3 4 4

G20
0.5 20 95 0.5 4 4

G30
0.1 30 44 0.1 8 8

G30
0.3 30 131 0.3 8 8

G30
0.5 30 218 0.5 8 8

G50
0.1 50 123 0.1 15 15

G50
0.3 50 368 0.3 15 15

G50
0.5 50 613 0.5 15 15

G100
0.1 100 495 0.1 28 28

G100
0.3 100 1485 0.3 28 28

G100
0.5 100 2475 0.5 28 28

G200
0.1 200 1990 0.1 46 46

G200
0.3 200 5970 0.3 46 46

G200
0.5 200 9950 0.5 46 46

TABLE II. MAMEDS PARAMETER SETTING

Parameter Definition Value
Psize Population size 100
pc Crossover probability 0.8
pm Mutation probability 0.01
nEDS Max number of the best weight edge 10

dominating sets used to update WEDS
gmax Max number of generations 100

III. The second performance comparison of MAFS with (fit2)
against MAFS with (fit3), and the results of this comparison
are reported in Table IV. To measure the performance of each
method, two quantities are used in the comparisons which are
computed as follows.

1) Average Number (Ave.). This measure gives the
average of the optimal solution values found in the
independent runs.

2) Rate Number (rate). The rate shows how many times
MAFS acquires an optimal solution opw.

1) Performance Comparison of MAFS with (fit1) and
(fit2): The results of this comparison are reported in Table
III. The results show that MAFS with (fit1) could not acquire
the optimal total weight opw for all instances of the MWEDS
problem especially when the number of edges increased pro-
portionally with the graph size. MAFS with (fit2) achieve
significant improvement in the average results and in acquiring
the optimal total weight opw for all instances. However it has
a low rate (rate) for instances with large number of edges.

2) Performance Comparison of MAFS with (fit2) and
(fit3): In this comparison, we compared MAFS with (fit2)
against MAFS with (fit3). The results of this comparison are
reported in Table IV. To achieve the best performance of the
MAFS, the fit2 was moderated by adding weights α, and
(1 − α) to get a new fitness function fit3 in 3. The weight
parameters α is set equal to 0.4, which is used to efficiently
trade-off between the trail solutions. The comparison results
confirm a superior performance of MAFS with fit3 in both
terms (Ave.) and (rate) against the other two fitness functions.

In Table V the instances generated by algorithm 4 with
modifications in the role of edge weights such that the domi-
nant edges assigned weights we from {1, 2, ..., γ̀(G)}, and for
the remaining edges the set {γ̀(G) + 1, γ̀(G) + 2, . . . , γ̀(G) +
30}. MAFS with fit3 applied for these instances. The results
show that when the dominant edges have different weights
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TABLE III. RESULTS OF MAFS ON G1-G5 USING TWO FITNESS
FUNCTIONS fit1 AND fit2

MAFS with fit1 MWEDS with fit2
Graph no nE opw Ave. rate opw Ave. rate

G20
0.1 19 4 4 10 4 4 10

G20
0.3 57 4 4 10 4 4 10

G20
0.5 95 4 4 10 4 4 10

G30
0.1 44 8 18.5 3 8 10.8 9

G30
0.3 131 8 36.9 4 8 9.2 8

G30
0.5 218 8 40.2 1 8 9.2 8

G50
0.1 123 15 146 3 15 25.2 6

G50
0.3 368 15 180 0 15 33.9 3

G50
0.5 613 15 197 0 15 32.2 4

G100
0.1 495 28 169 1 28 42.9 4

G100
0.3 1485 28 187 1 28 47.2 4

G100
0.5 2475 28 210.9 0 28 50 3

G200
0.1 1990 46 270 0 46 115 1

G200
0.3 5970 46 320 0 46 132.2 2

G200
0.5 9950 46 536 0 46 197 2

TABLE IV. RESULTS OF MAFS ON G1-G5 USING TWO FITNESS
FUNCTIONS fit2 AND fit3

MAFS with fit2 MAFS with fit3
Graph no nE opw Ave. rate opw Ave. rate

G20
0.1 19 4 4 10 4 4 10

G20
0.3 57 4 4 10 4 4 10

G20
0.5 95 4 4 10 4 4 10

G30
0.1 44 8 10.8 9 8 8 10

G30
0.3 131 8 9.2 8 8 8 10

G30
0.5 218 8 9.2 8 8 8 10

G50
0.1 123 15 25.2 6 15 15 10

G50
0.3 368 15 33.9 3 15 15 10

G50
0.5 613 15 32.2 4 15 15 10

G100
0.1 495 28 42.9 4 28 28 10

G100
0.3 1485 28 47.2 4 28 28 10

G100
0.5 2475 28 50 3 28 28 10

G200
0.1 1990 46 115 1 46 46 10

G200
0.3 5970 46 132.2 2 46 46 10

G200
0.5 9950 46 197 2 46 46 10

and near of that in non dominant edges the solutions will
be more difficult to acquired in every time. Moreover, the
MAFS method exhibits very promising performance to obtain
MWEDS of graphs.

V. CONCLUSION

The minimum weight edge dominating set problem in
graph theory has been studied in this paper. We proposed a
memetic-based method to solve this problem called Memetic
Algorithm with Filtering Scheme (MAFS). Intensification

TABLE V. RESULTS OF MAFS ON G1-G5 USING FITNESS FUNCTIONS
fit3

Graph no nE opw Ave. rate

G20
0.1 19 10 10 10

G20
0.3 57 10 10 10

G20
0.5 95 10 10 10

G30
0.1 44 36 36 10

G30
0.3 131 36 36.8 9

G30
0.5 218 36 36.5 7

G50
0.1 123 120 121.8 8

G50
0.3 368 120 122.5 7

G50
0.5 613 120 127.8 8

G100
0.1 495 406 420 8

G100
0.3 1485 406 427.8 8

G100
0.5 2475 406 433.8 7

G200
0.1 1990 1081 1150 7

G200
0.3 5970 1081 1220 8

G200
0.5 9950 1081 1300 6

scheme used beside the genetic and local search method-
ologies in order to achieve better performance. Three new
fitness functions invoked to maximize the performance of the
proposed method. These fitness functions consider different
ways to balance between two objectives; edge dominating and
weight minimizing. Specifically, two of these fitness functions
use absolute additions of valued functions that measure the
considered objectives while the third one uses a weighted
addition way. Numerical experiments of MAFS using the
three fitness functions on various test graphs show that the
MAFS with a weighted fitness function outperform the MAFS
with the other two fitness functions. In addition, the proposed
method show very promising performance to obtain minimum
weighted edge dominating sets for different graphs used in the
numerical experiments.
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