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Abstract—This paper addresses a gait generation problem for
the compass-type biped robot on periodically unlevel grounds.

errors, (iii) some laws of physics such as Noether’s theorem
are satisfied. (iv) simulations can be performed for large

We first derive the continuous/discrete compass-type biped robots
(CCBR/DCBR) via continuous/discrete mechanics, respectively.
Next, we formulate a optimal gait generation problem on peri-
odically unlevel grounds for the DCBR as a finite dimensional
nonlinear optimization problem, and show that a discrete control
input can be obtained by solving the optimization problem
with the sequential quadratic programming. Then, we develop
a transformation method from a discrete control input into a
continuous zero-order hold input based on the discrete Lagrange-
d’Alembert principle. Finally, we show numerical simulations,
and it turns out that our new method can generate a stable gaits
on a periodically unlevel ground for the CCBR.

I. INTRODUCTION

sampling times. Hence, discrete mechanics has a possibility
of analysis and controller synthesis with high compatibility
with computers.

We have focused on discrete mechanics and considered its
applications to control theory. In [26], [27], [28], we applied
discrete mechanics to control problems for the cart-pendulum
system, and confirmed the application potentiality to control
theory. Moreover, in [29], [30], [31], [32], we have considered
a gait generation problem for the compass-type biped robot and
confirmed that the proposed method can generate stable gaits
on flats and slopes. However, the method cannot be applied to
gait generation problems on more complex grounds.

Numerous work on humanoid robots have been done via Therefore, this paper aims at gait generation for the

various approaches in the fields of robotics and control theorgompass-type biped robot on periodically unlevel grounds
until now. For instance, there are the following approacheswhich are more complex than flats and slopes from the
theoretical analysis of passive walking [1], [2], [3], [4], re- Standpoint of discrete mechanics. This paper is organized as
searches associated with nonlinear dynamical theory such &lows. In Section II, a brief summary on discrete mechanics
Poindre sections and limit cycles [5], [6], [7], [8], [9], [10], is presented. Next, in section lll, we derive the continuous
[11], gait pattern generation based on CPG (central patterAnd discrete compass-type biped robots by using continuous
generation) and ZMP (zero-moment point) [12], [13], [14], and discrete mechanics, respectively. In Section IV, we then
[15], and self-motivating acquirement of gaits by learningformulate a gait generation problem for the discrete compass-
theory and evolutionary computing [16], [17], [18], [19]. type biped robot and propose a solving method of it by
Especially, as one of the simplest models of humanoid robot$he sequential quadratic programming to calculate a discrete
the compass-type biped robot has been mainly studied by @ontrol input. In addition, we also introduce a transformation
lot of researchers. In general, it is quite difficult to realize method from a discrete control input into a continuous zero-
stable gaits for humanoid robots in terms of nonlinear controprder hold input based on discrete Lagrange-d’Alembert prin-
problems, and hence there are still a lot of problems left teiple. Finally, we show some numerical simulations on gait
solve. generation on a periodically unlevel ground for the continuous

. . ompass-type biped robot in order to confirm the effectiveness
In almost every work on humanoid robots, models derlvedgf omﬁ)r met)r?(j)d inpSection V.

by normal continuous-time mechanics are used. On the other
hand,discrete mechani¢svhich is a new discretizing tool for
nonlinear mechanical systems and is derived by discretization

of basic principles and equations of classical mechanics, has |, this section, some basic concepts in discrete mechanics

been focuseq on [20], [21], [22], [23], [ZA_']' [25.]' a discrete 56 summarized. See [20], [21], [22], [23] for more details on
model (the discrete Euler-Lagrange equations) in discrete mey;

; . . VA . ‘screte mechanics.
chanics has some interesting characteristics; (i) less numerica
error in comparison with other numerical solutions such as Let @ be ann-dimensional configuration manifold amgd=
Euler method and Runge-Kutta method, (ii) it can describeR™ be a generalized coordinate @f We also refer td[,() as
energies for both conservative and dissipative systems with lesBe tangent space @} at a pointg € Q andg € T,() denotes

II. DISCRETE MECHANICS
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a generalizedelocity. Moreover, we consider a time-invariant
Lagrangian ad.(q, ¢) : TQ — R. We first explain about the
discretization method. The time variablec R is discretized
ast = kh (k = 0,1,2,---) by using a sampling interval

h > 0. We denotey;, as a point of@ at the time stepk, that

is, a curve onQ in the continuous setting is represented as a
sequence of pointg? := {g;}&_, in the discrete setting. The
transformation method of discrete mechanics is carried out by
the replacement:

Qe — Gk
g~ (1—a)qe + a1, ¢~ =, (1)

whereq is expressed as a internally dividing point gf and Figure 1: Discrete Hamilton’s principle
gr+1 With an internal division ratiax (0 < a < 1) We then

definea discrete Lagrangian Then, we consider a method to add external forces to

the discrete Euler-Lagrange equations. By an analogy of

- Tk+1 — 9k i hani denote di t t | f b

L (qry quyr) := hL ( 1—a)qe + age 7) , (2)  continuous mechanics, we denote discrete external forces by
( +1) ( ) i h Fd:QxQ — T*(QxQ), and discretize continuous Lagrange-

) _ d’Alembert’s principle as
anda discete action sum

N-1 N—-1
N-1 6y L:qw,art1) + > FHak qe+1) - (0gk, Sqis1) = 0,
Sg (QO7 q1,- - J]N) = Li(le Qk+1)- (3) k=0 k=0 (8)
h=0 where we defingight/left discrete external forced’d*, Fd- :
QxQ—T*Q as
We next summarize the discrete equations of motion. d+ d
Consider a variation of points o) as g, € T, Q (k = Fo ™ (@ ar41)00k = Fo(ar, g1) - (0ak, 0), (9)
0,1,---,N) with the fixed conditiondgy = dgn = 0. In Fg‘f’(qk,qkﬂ)&qkﬂ :Fg(qk,qu) - (0,0qK+1),

analogy with the continuous setting, we define a variation o

the discrete action sum (3) as frespectlvely. By right/left discrete external forces, a continuous

external forceF* : TQQ — T*(Q can be discretized as

y = P+ ( )= (1—a)hFe ((1—a)ge+aqes,, T2
55&(Q07q17"' an) = 5La(qk7Qk+1) (4) a \Gk Qk+1 qk Qk+15 h ’
h=0 e B . Qet1—qk
o ) , o FS (qrs 1) =ahFe | (1—a)qr + aqryr, ———— | .
as shown in Fig. 1. The discrete Hamilton’s principle states h
that only a motion which makes the discrete action sum (3) (10)
stationary is realizedCalculating (4), we have Therefore, bycalculating variations for (8), we obtathe dis-
N crete Euler-Lagrange equations with discrete external farces
653 =Y " {D1LL(qr, Gr11)6qk + D2 L (qr-1, 1) }oqk, (5) Dy L (qw, qi41) + D2 L% (a1, x)
k=1 + F M (s arer) + P (qe-1,ax) =0, (11)

where D; and D, denotes the partial differential operators k=1 ,N-1,
with respect to the first and second arguments, respectivelyyith the initial and terminal equations:
Consequently, from the discrete Hamilton’s principle and (5),

we obtainthe discrete Euler-Lagrange equations D2 L (qo, do) + D1 L (g0, q1) + F& (g0, q1)=0
— DyL%(qn.dn) + DaLe(gn—1,qn) + F& (qv—-1,qn)= 0.
D1LE(qr, qii1) + DL (qe_1,qx) = 0, 6) (12)
k=1,--- ,N—-1
Ill. CONTINUOUS AND DISCRETE COMPASSTYPE BIPED
with the initial and terminal equations: ROBOTS

. ) A. Setting of compass-type biped robot
D>L(qo,do) + D1 L% (g0, 1) = 0

. . (7) In this subsection, we first give a problem setting of the
— Do L (qn, 4n) + DoL% (gn—1,qn) = 0. g P g

compass-type biped robot. In this paper, we consider a simple
. : : . compass-type biped robot which consists of two rigid bars (Le
Itturns out that (6) is represented as difference equations whm% ang 2) ar)lldp ajo?nt without rotational friction (Waisgt) as shcgwng
_co_tr_\t?ms tg‘{?e po'ﬂts’f—l’ ks q’€|+t1’ agd we needp, ¢1 sy Fig. 2. In Fig. 2, Leg 1 is callethe supporting legvhich
initial conditions when we simulate (6). connects to ground and Leg 2 is callde swing legwvhich is
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ungrounded. Moreer, for the sake of simplicity, we give the input to the right-hand sides of them, we have the model of the
following assumptions; (i) the supporting leg does not slip atCCBR in thei-th swing phase as (14), (15). We then derive
the contact point with the ground, (ii) the swing leg hits thea model of the CCBR in théth impact phase. It is assumed
ground with completely inelastic collision, (iii) the compass- that the swing leg hits the ground with completely inelastic
type biped robot is supported by two legs for just a momentgollision, andg® = 90+ 3() = ¢(i+1) holds because of
(iv) the length of the swing leg gets smaller by infinitely small an instantaneous impact. Hence, calculating the principle of
when the swing leg and the supporting leg pass each other.conservation of angular momentum for the CCBR, we obtain
the model of the CCBR in theth impact phase as (16), where
a~,at € R**? are the coefficient matrices defined by (17)
and (18).

ANANA-N-NA

Let 6§ and ¢ be the angles of Leg 1 and 2, respectively.
We also use the notations:: the mass of the legsi/: the A
mass of the waist/: the inertia moment of the legs, the

length between the waist and the center of gravityhe length
between the center of gravity and the toe of the I¢g;, a+b):
the length between the waist and the toe of the leg.

Figure 2: Compass-type biped robot

In the walking process of the compass-type biped robot,
there exist two modeghe swing phasandthe impact phase
In the swing phase the swing leg is ungrounded, and in the
impact phase the toe of the swing leg hit the ground. As shown

in Fig. 3, it is noted that the swing phase and the impact phase
occur alternately and the swing leg and the supporting leg /\ /\
switch positions with each other with respect to each collision.

We denote the order of the swing phase and the impact phase

byi=1,2,---,Landi = 1,2,--- | L — 1, respectively. In

addition, we assume that Leg 1 is the swing leg and Leg 2 Figure 3 : Gait of compass-type biped robot
is the supporting leg in odd-numbered swing phases, and Leg

1 is the supporting leg and Leg 2 is the swing leg in even-

numbered swing phases. C. Discrete compass-type biped robot (DCBR)
. . Next, we derive a model ofliscrete compass-type biped
B. Continuous compass-type biped robot (CCBR) robot (CCBR)by discrete mechanics in this subsection. We
In this subsection, we derive a model ebntinuous here use the notations; the sampling timek = 1,2,--- , N:
compass-type biped robot (CCBRia usual continuous me- the time stepi = 1,..-, L: the order of the swing phases,

chanics. We denote the angles of Leg 1 and 2 injitteswing @ = 1/2: the internal division ratio in discrete mechanics,
phase by, ¢() respectively. In additiond("), ¢(*) denote 9,(5)_, qb,(j): the angles of Leg 1 and 2 at tlketh step in the-th
their angular velocities. swing phase.

First, we consider a model of the CCBR in th¢h swing In this paper, we use only the model of the DCBR in
phase where Leg 1 is the supporting leg and Leg 2 is thé¢he swing phases, and hence we will derive it. By using
swing leg. We assume that the torque at the waist can bihe transformation law from a continuous Lagrangian into a
controlled, and denote it by(® € R. The Lagrangian of discrete Lagrangian (2), we obtain the discrete Lagrangian as
this systemL¢ is given by (13). Substituting the Lagrangian (19) from (13). Since the left and right discrete external forces
(13) into the Euler-Lagrange equations and adding the contra®) satisfy F9* (qi., qry1) = F (qr, qrs1) for a = 1/2, we
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156909, 60,30) = 21 4+ ma? + M 4+ mi?)(§O) + 5 (1 +mb)(30)?

—mbl cos (9(1') — qﬁ(i))é(i)g{ﬁ(i) — (ma + mg + Ml)g cos ¢<i) + mgb cos gb(i) (13)
i aLc(g(l)7 9(1), ¢(1)7 ¢(z)) B aLc(a(t), 0(’), ¢(l)7 ¢(z)) _ (14)
dt 50 06
i aLc(9<i)79(f),¢(i)7¢(i)) B aLc(a(i),g(i)’qé(i)’qb(i)) _ 0 (15)
dt 96 EYI0
I 0 S [ guHD
0.0 | 5 | et | G | (16)
— [ —(2mal + M1?)cos (0 — ¢+ mbl = I mab— I
a 17)
T mab — I 0 ’
ot = —mb? + mblcos (00TY — ¢ty _ T —(2ma® 4+ MI?) + mbl cos (00T — ¢li+D) _ T (18)
o —mb® — 1 mbl cos (0D — ¢li+1) '

dg(i) (@) _1 2 2 2 (001, -0 1 o (D, — &
L7 ’9k+17¢ ¢k+1)_§(1+ma + MI” 4+ ml”) T +§([+mb) T

—mbl cos 0( Y+ 9k+1 _ '+ ¢k+1 el(cJ)rl - 9( X ¢k+1 g)

2 2 h h

_|_
—(ma + mg + Ml)g cos <2¢k+1> + mgb cos (2¢k+l> (19)
DL (6 |, 6" DL (6, 6\ O ru? =0 (k=2,---,N 21
2L°(0,7 1,0, a¢k 15 k) ( k+17 ¢’k+1)+“k 1T Uy ( ) ,N) (21)
D4Ld(9§;>1,9<’% 6 |, 6) — DsL4 (0, 9(”1@(” ¢>§Jll) WP D =0 (k=2,-- | N) (22)
DoLe(08,60 67 6y + Dy L0, 057,60 pSN) + 0l =0 (k=2,---,N) (23)
DL, 659, §’>7 (’))+D3Ld(9(” 080, ¢ s —ul) =0 (k=2 N) (24)
—Do L0, 69, 6%, 6 + Dy L0V, 00,00, §V>)+ @ =0 (25)
_D4LC(9(1) 9(1) ¢(1) (Z)) +D3L (9(1) 95\7)7¢N b N) . =0 (26)

i i a(i) 9(7«+1)
(95\17 N)) |: (1) :| = (95\1)» N) |: (Z'S%H-l) ) (27)
1

set adiscrete control input that consists of only the left discretecoordinate with reference tB;_; as illustrated in Fig. 5. Note
external force['*~ as thatr; > 0, —7/2 < p; < w/2 are assumed. The sequence of
() . pd— . points Py, Ps, - - - , Py, are reference grounding points for the
u =gk ge), k=1, N =1 (20) compass-type biped robot as shown in Fig. 6.
Then, substituting (19) into the discrete Euler-Lagrange equa-
tions (11), (12) and using the discrete control input (20), we -
have the model of the DCBR in theth swing phase as (21)—

(26). P
_ Pr_s e
For the impact phases, we use the model of the CCBR Py Py [ . __./’
(16), and we rewrite it with the terminal variables of ththe p _.®mm=- P,
swing phasa‘)(” ¢(7) 9(” gb(” and the initial variables of the P a
(i 4+ 1)-the swing phasé?f“) P LD G a5 (27). _-- .o

This representation (27) will be utilized in the next section. P,

IV. GAIT GENERATION METHOD ON PERIODICALLY Figure4 : Reference grounding points ire-plane
UNLEVEL GROUNDS

A. Setting of periodically unlevel grounds

First, this subsection formulates the problem setting of
grounds on which the compass-type biped robot walks. As
shown in Fig. 4, set the and z axes to the horizontal and
vertical directions, respectively, aniy denotes the origin of
the zz-plane. We also sell points: Py, Py, - -- , Py, in the zz- }
plane, and represer®; as P, = (r;, p;) by using the polar Figure5 : r; and p;
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Our main purpose is that we obtain the mathematical
formulation of Problem 2 as an optimal control problem. In
order to do this, we focus attention on a periodical motions of
the DCBR. It must be noted that the DCBR walks on upward
and downward slopes alternately, and hence we consider one
upward slope and one downward slope as a set (see Fig. 8).
If the initial angular velocities of the swing leg at tix¢h and
> (i + 2)-th swing phases are pretty much the same, a stable
gait of the DCBR can be generated as shown in Fig. 8. So,
we introduce a cost function of a square of difference between
initial angular velocities in theé-th and(i+2)-th swing phases:

Figure 6 : Desired gait of compass-type biped robot

This problem setting can treat various walking surfaces, for J = (q'bgi“) _ q;gi))z + (9'§i+2) _ ggi))z. (29)
example, flats [30]p; = 0 (z =1,---,L), downward slopes _ . -
[32]: pz =p <0(i=1,---,L), and upward slopes in [32]: However, the cost function (29) contains the angular velocities
pi=pt >0 (=1, L) In this paper, we consider galt in the (¢ + 2)-th swing phase. To avoid this, we eliminate
generation on perlodlcally unlevel grounds as depicted in Figo ”2), (9(”2) by using the(i + 1)-th impact phase modét
7 with the parameter:

. (40 gD gty | Oon"
J— Ps L= 173757"' uL_17 (28) a— ( N ) 9(“‘1)
Pi = —p, i=2,4,6,---,L N (30)
. _ _ (i+2)
wherep > 0 and L is an odd number. Since a periodically R () R ) s |-
unlevel ground contains both downward and upward slopes, 0,

this type of gait generation problems is expected to be more (i42) (i42) o o
difficult to solve in comparison with the downward and upward Solving (30) foréy""* and 6i"**, and substituting this into
slopes cases [32]. Based on the setting above, we consider th cost function (29), we have

following problem on the gait generation for the CCBR. J=(a (i+1)¢')(i+1) (i+1)0'§\i]+1) B -(11;))2
. ( z+1 ¢2+1) (i2+1)0'§\i[+1) _égi))z (31)
Py Ps Pp 2 Pr where
T//.\\ //. ............ .\\ //. ‘ 4 (Z+1) (l+1)
Ap ?\"S \(\./S > (aSﬁH))*la(_lH) =: [ a%zl-q—l) (z+1) ]
Py , P, ) o1 Q29

We can see that the new cost function (31) does not contain
¢(7,+2 1”2 and is represented by only variables in thth

and (i + 1)-th swing phases. Consequently, Problem 2 can be
formulated as (32)—(48). In the optimization control problem
problem L For the continuous compass-type biped 1obot 35y g) (33 is the cost function to be minimized, (33)~(38)
(CCBR) (14)~(16), find a control input™ (i = 1.-- L) re thei-th swing phase model, (39)—(44) are thie+ 1)-th
such that the swing leg of the CCBR lands at the referenc§WIng thase mo%é)l and (46) is tieh impact phase model.
grounding points (i = 1, -+, L) on a periodically unlevel Moreover, (46) and (47) indicates constraints that prevent a

ground of (28) with a stable and natural gait. - reverse behavior of the swing leg and realize a natural gait.

In order to solve Problem 1 above, we shall consider a(48) are given data on initial and desired angles of Leg 1 and
method based on discrete mechanics. The method consists %fWhich can be obtained from data of the reference grounding
two steps: (i) calculation of a discrete control input by solving apoints P; (i = 1,--- , N),
finite dimensional constrained nonlinear optimization problem
(Subsection IV-B), (ii) transformation a discrete control input
into a zero-order hold input by discrete Lagrange-d’Alembert
principle (Subsection IV-C).

Figure7 : Setting of Periodically Unlevel Grounds

B. Gait generation problem for the DCBR

As the first step, we consider a problem on generation of a
discrete gait for the DCBR in stead of the CCBR. The discrete
gait generation problem for the DCBR is stated as follows.

Problem 2: For the discrete compass-type biped robot (DCBR) _ . o
(21)—(26), find a sequence of the control inplb_ff (i = Figure 8 : A gait on a periodically unlevel ground.
L, k = 1,-.-,N — 1) such that the swing leg of g oo™ e swing leg and Leg 2 is the supporting one in(ie1)-

the DCBR llands at the reference g'rounding pOlﬁLS(Z = th swing phase, thé; + 1)-th impact model can be obtained by exchanging
1,---, L) with a stable and natural discrete gait. O 6 for ¢ in (27).
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min ( (1+1)¢(t+1) (i+1)0'(i+1) qz'5(1'))2 ( (i+1)(b(i+l)+a(i+l)9(i+1) 9%”)2 (32)
s.t. dwf: 00,80 00 = DL, 00) 1,0 6\ +ul) ) =0 (k=2,--- ,N) (33)
L0210, 6121, 0) = DaL (0], e“w(“ $l) —uy —u) =0 (k=2,---,N) (34)
L4089, 6% ¢ 1 D¢y + DL (68,68, 1 ) “>)+u =0 (k=2-,N) (35)
D4LA (089, 6() ¢t ,¢;>)+D3Ld(9<) 057, () )y — (k:2,--- N) (36)
—DoL°(03),6% .68, %) + D1 L (051,08, 6, N)+u =0 (37)
“DLLe(0Y 60, ¢, (’))+D3L 09,09, 60 60y~ =0 (38)
DoLY G 0 o) oY) - Dy de“*” Giff%w“wﬁif)) u D bt =0 (k=2,--- N (39)
Dy Ld(el(gwrll) 9(i+1) ¢§€i+11>7¢(i+1)) Ds Ld(9(1+1) elngll>’¢(l+1) gclill>) (Z+1 (1+1) =0 (k — 2’... ,N) (40)
Do LA QU 4UHD gl gli+1y | p pd(glith) glith) gl+1) i+ z+1) —0(k=2---,N) (41)
DaLA(00 D 4UH+D gl+D) GGy | ppd(glith) gli+D) (1) (i1 <z+1> —0 (k=2,---,N) (42)
CDLEOGTY 00D gD GUHDY | p pd(plith) gD D) %H))Jr (i) _ g (43)
DAL, B, 66 66) + DA 0 gD, 6 i —o (44)
a9 (6, 60 [ 0(3 } — (69, 6 { 9%3 ] (45)

e é
() < o <. <o) < gl (46)
eg”” <0(z+1> << gD < gl (47)
given 951')7<Z551'>’9(1)7 1\?79 i+1) ¢(2+1’ (z+1)7¢§\'i7+1) (48)

It turns out that the optimization control problem (32)- Theorem 1. A zero-order hold input (49) that satisfies discrete
(48) is represented as a finite dimensional constrainetlagrange-d’Alembert’s principle is given by
nonlinear optimization problem with respect to t{ﬁaN + 6)

i 2 G
variables: 95%1- 00, gD L gl gl ) o) = cuyl. (50)
7 1 7 7 7
g+ . 7¢ + wiee uN . u+1,... uidl

6%, ¢1l)79N) N), oyt G Gt gD Therefore,  (Proof) Duringthe time interval(i — 1)kh < ¢ < (i —1)(k +
we can solve it bythe sequent|al quadratic programming 1)h, substituting (20) and (49) into the definition of the left
[23] [33], and obtain a sequence of discrete control inpudiscrete external force in (9):

uy " b Q1 —dn
F (qr, qrev1) = §F ((1 —a)qr + aqr1, h) )
C. Transformation to continuous-time zero-order hold input we obtain
The previous subsection presents a synthesis method of “1(;) = gv,(j).
a discrete control to generate a discrete gait of the DCBR b¥|ence wehave (50). ¥

solving a finite dimensional constrained nonlinear optimization

problem. However, since the control input is discrete-time, it
cannot be utilized for the CCBR. Therefore, we here COns'deﬁerg):)rléizlrn%ilo?ng]utTfrr]sr?a:er)n Zl_\qe canNeasinW(r:]i:Icr:]u:;tee a
gggsformaﬂon of a discrete control input into a Contlnuousobtamed by solving a finite d|menS|onaI constrained nonlinear
' opt|m|zat|on problem (32)—(48). In addition, it must be noted

There exist infinite methods to generate a continuoughat since we use discrete Lagrange-d’Alembert’s principle to
control input from a given discrete one, and a continuoudrove Theorem 1, a zero-order hold input with a gain (50) is
control input generated from a given discrete input has to b&onsistent with laws of physics.
consistent with laws of physics. Hence, in this paper, we deal
with a zero-order hold input in the form: V. NUMERICAL SIMULATIONS

V@ (t) = v’?)’ (—1)kh<t<(@-1)k+Dh (49 A. Problem formulation

In this section, some numerical simulations on a gait
which is one of the simplest continuous inputs. We neecyeneration on a periodically unlevel ground for the CCBR
to derive a relationship between a discrete inpﬁﬁ (k = based on our new method proposed in the previous section,
1,2,--- ;N — 1) and a zero-order hold input (49). By using and confirm the effectiveness of it. First, this subsection gives
discrete Lagrange-d’Alembert’'s principle which is explainedthe problem setting. we set parameters as follows; the physical
in Section II, we can have the following theorem. parameters of the CCBRn = 2.0 [kg], M = 10.0 [kg], I =
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the plot of solution trajectory in the phase spacé&of ¢. In
Fig. 14, a snapshot of the continuous gait is illustrated. From

We consider two types of periodically unlevel grounds. Thethese results, we can also see that the proposed method can

one is set ag = 1.0 [m], p = 5[deg], L = 8 (Simulation I),
and the other is set as= 1.0 [m], p = 10 [deg], L = 8 (Sim-
ulation II). Intial conditions are9§1) = —0.5321 [rad], §1> =
2.0273 [rad], 6" = 0.1830 [rad], ¢{") = 2.1820 [rad].

B. Simulation results

Next, numerical simulations are shown in order to check
the availability of our new approach. Figs. 9-11 show the
results of Simulation I. Fig. 9 illustrates the time series of
Leg 1 and 2 § and ¢). Fig. 10 shows the plot of solution
trajectory in the phase space ®f ¢. In Fig. 11, a snapshot N w ¥
of the continuous gait is depicted. From these results, we can I
confirm that a stable gait on periodically unlevel grounds for
the CCBR can be generated by the proposed approach.
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Figure 10 : Solution trajectory ord ¢-space (Simulation 1)
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VI. CONCLUSIONS

This paper has dealt with a gait generation problem for
the compass-type biped robot on periodically unlevel grounds.
We have formulated a discrete gait generation problem for the
DCBR as a finite dimensional constrained nonlinear optimiza-
tion problem. A transformation method from a discrete control
input into a zero-order hold input has been introduced from
the viewpoint of discrete Lagrange-d’Alembert principle. By
numerical simulations, we have verified generation of a stable
gait and the effectiveness of our new approach.

In association with this work, we will tackle the fol-
lowing problems: stable gait generation of the CCBR irreg-
ular grounds, experimental evaluation of the proposed con-

Figs. 12-14 illustrate the results of Simulation II. Fig. 12 trol method, and applications of discrete mechanics to more

depicts the time series of Leg 1 and2and¢). Fig. 13 shows

human-like robots.
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