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Abstract—The circumscription of a propositional formula
T may not be representable in polynomial space, unless the
polynomial hierarchy collapses. This depends on the specific
formula T , as some can be circumscribed in little space and others
cannot. The problem considered in this article is whether this
happens for a given formula or not. In particular, the complexity
of deciding whether CIRC(T ) is equivalent to a formula of size
bounded by k is studied. This theoretical question is relevant
as circumscription has applications in temporal logics, diagnosis,
default logic and belief revision.
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I. INTRODUCTION

The circumscriptive reasoning mechanism requires a set of
variables to be minimized [1], [2], that is, set to the logical
value false whenever possible. Similarly to the closed world
assumption [3], it formalizes the assumption that lack of infor-
mation on certain conditions can be considered evidence that
they do not hold. Applications include temporal domains [4],
[5], diagnosis [6], induction [7] and belief revision [8]. Con-
trary to the basic closed world assumption, circumscription
takes into account all possible ways variables can be set to
false; for example, x ∨ y is consistent with either ¬x and ¬y
but not both, leading to the two possible cases (x∨y)∧¬x and
(x∨y)∧¬y. These may be up to 2n, if the number of variables
is n: a trivial representation of the circumscribed formula may
be exponential. However, it may be equivalent to a smaller
formula.

Expressing propositional circumscription as a formula of
size bounded by a polynomial has been proved not possible in
general [9], unless the polynomial hierarchy collapses [10], a
condition generally deemed unlikely. As a result, the problem
of whether propositional circumscription can be represented in
space bounded by some number k has not an obvious answer:
it is possible in some cases but not in others. The problem
considered in this article is whether this is possible; in partic-
ular, the complexity of this problem is studied. This is similar
to the problem of minimizing propositional formulae: given
a formula F , is there an equivalent formula of size bounded
by k [11]? For circumscription, the question is whether the
circumscription of a formula is equivalent to some formula of
size bounded by k. For example, the circumscription of x∨ y
accounts for both (x∨y)∧¬x and (x∨y)∧¬y to be possible;
therefore, the result is the formula ((x∨y)∧¬x)∨((x∨y)∧¬y).
However, this formula is equivalent to (x ∧ ¬y) ∨ (¬x ∧ y).
By the standard metric of formulae where size is defined as
the number of variable occurrences, this formula has size 4.
Therefore, the circumscription of x ∨ y is equivalent to a

formula of size bounded by k = 4, but not for example
k = 1 as no formula of a single variable is equivalent to
(x ∧ ¬y) ∨ (¬x ∧ y). The answer is not this easy when the
formula is more complex than x∨ y. Indeed, it will be proved
that the problem is hard for the complexity class Πp

2, that is,
harder than problems such as propositional satisfiability, vertex
cover and Hamiltonian cycle [10].

The question of the size of the representation has an im-
plementation impact. Indeed, verifying which conditions hold
under the circumscription assumption amounts to CIRC(T ) |=
C, where T represents the current information and C the
condition to check, and this is an hard problem [12], [13],
[14]. However, if CIRC(T ) can be represented by a formula
F of bounded size, the problem can be solved by first finding
F and then solving the easier (coNP) problem F |= C. Once
F is determined, any number of other conditions C1, C2, . . .
can then be checked against F at the same cost.

Since circumscription is also used as the target of transla-
tion of several belief revision operators, the question concerns
the dynamic of logic. Indeed, changing a formula to accom-
modate for new information is generally expected to produce
a result of bounded size.

The article is organized as follows: the next section con-
tains the formal definition of circumscription and the notations
used in this article, plus two preliminary lemmas; in the section
afterwards, the complexity of the problem of whether the cir-
cumscription of a formula can be represented in size bounded
by some number is studied; the final section comments the
practical implications of this analysis and its open problems.

II. PRELIMINARY RESULTS

Propositional formulae are denoted by the capital letters
T and F , and are always assumed to be in Negation Normal
Form (NNF). Sets of variables are denoted by X , Y and Z.
Notation X¬ indicates the set {¬x | x ∈ X}. The shorthand
x 6≡ y indicates (x ∧ ¬y) ∨ (¬x ∧ y).

Models are denoted by ωX , where the suffix X indicates
the set of variables: ωX is a truth evaluation of the variables
X , ωY is a truth evaluation of the variables Y , etc. Models
are identified by the sets of variables they assign to true; this
allows to write ωX ⊆ ω′X to mean that ω′X assigns true to
all variables ωX assigns true, but not necessarily the converse.
The model assigning true to all variables X is denoted ω+

X ,
the one assigning false to all ω−X .

The following notation is used to denote a formula that
represents a single model: Form(ωX) =

∧{x | ωX |= x} ∪
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{¬x | ωX |= ¬x}. If F is a formula over variables X ∪Y and
ωX a truth evaluation over X , the notation F |ωX

indicates the
formula obtained by replacing each variable X in F with its
truth value according to ωX .

In this article, circumscription is defined over propositional
logic, and restricted to the case where all variables are mini-
mized. This gives rise to the following definition.

Definition 1: Given a formula T over variables X , its
circumscription CIRC(T ) is defined as follows, where X¬ =
{¬x | x ∈ X}.

CIRC(T ) =
∨





T ∧ S

∣∣∣∣∣∣∣

S ⊆ X¬
T ∧ S 6|= ⊥
∀S′ ⊆ X¬
S ⊆ S′ ⇒ T ∧ S′ |= ⊥





Some formulae T have small circumscription. For example,
T =

∧
X has a circumscription equal to itself, since S =

∅ is the only subset of X¬ satisfying the definition. Some
other formulae have larger circumscription, such as T =

∨
X;

indeed, for this formula S = X¬\{x} satisfies the definition
for every x ∈ X . Some formulae do not even have polynomial-
size equivalent representations of their circumscription [9].

Circumscription is simple to compute on formulae that
imply either x, ¬x, or x 6≡ x′ for some variables x and x′:

Property 1: The following equivalences hold:

CIRC(T ∧ x) = x ∧ CIRC(T |ω+
{x}

)

CIRC(T ∧ ¬x) = ¬x ∧ CIRC(T |ω−{x}
)

CIRC(T ∧ (x 6≡ x′)) =

(x 6≡ x′)∧
(CIRC(T |ω−{x}ω+

{x′}
)∨

CIRC(T |ω+
{x}ω−{x′}

))

These are well-known properties. The third equivalence
allows evaluating CIRC(T ) separately for x true and x false,
if T does not contain x′.

The size of formulae is defined by the following metrics.

Definition 2: The size of a formula F , denoted ||F ||, is
the number of variable occurrences in F .

For example, the size of (a ∧ ¬b) ∨ c ∨ ¬(¬a) is four,
since the variable a occurs twice in it and b and c once each.
According to this definition, the size of a formula and of its
NNF form obtained by applying the De Morgan rules coincide.
A bound on the size of a formula derives from its models.

Lemma 1: If a NNF formula F has a model that satisfies
a literal l but not the modified model where the value of l is
inverted, then F contains l.

Proof: Let F be a formula and ωX its model satisfying
l. Let us assume, on the converse, that F does not mention
the literal l. Since F is in NNF, no part of it is turned to false
by changing the value of l from true to false. As a result, the
model ω′X obtained by changing the value of l in ωX satisfies
F , contradicting the assumption of the lemma.

As a consequence, if a formula is satisfied by a model
where x is true but not by the same model where x is false,

and vice versa, then any formula equivalent to it contains both
x and ¬x. Therefore, if a formula contains x 6≡ y, either
conjoined with a satisfiable formula not containing x and y
or disjoined with a non-valid formula not containing x and y,
then it must contain at least two literal occurrences for x and
two for y. The following lemma shows a sufficient condition
for the presence of a literal in a formula.

Lemma 2: Let F be a formula over X ∪ Y . For any truth
evaluation ωX , no formula equivalent to F is smaller than the
smallest formula equivalent to F |ωX .

Proof: Let T be a formula equivalent to F . Equivalence
is preserved when replacing a variable with a truth value
in both formulae. As a result, F |ωX

≡ T |ωX
. Furthermore,

such a replacement does not increase the number of literal
occurrences in T , since it only replace some variables with
either true or false. As a result, the size of T |ωX is less than
or equal to the size of T . Since T |ωX

is a formula equivalent to
F |ωX , it is at least as large as the smallest formula equivalent
to F |ωX

. Since T is larger or has the same size, the claim is
proved.

This lemma is useful when formulae contain parts that
are satisfiable only for a specific truth evaluation of some
variables X . Such formulae are built to the aim of generating
a (relatively) large subformula whenever a condition is met.

III. THE SIZE OF CIRCUMSCRIPTIVE FORMULAE

In this section, we analyze the problem of deciding whether
the circumscription of a formula can be represented by a
formula of size bounded by an integer k, in unary notation. The
unary notation is used to avoid exponentially-sized formulae
to be taken into account. Equivalently, the problem could be
reformulated as: is there any formula that is equivalent to
CIRC(T ) and has size less or equal than another formula G?

Theorem 1: The problem of deciding whether CIRC(T ) is
equivalent to a formula F with ||F || ≤ k, where k is a number
in unary notation, is in Σp

3.

Proof: The problem can be reformulated as follows: check
whether there exists a formula F that is equivalent to CIRC(T )
and ||F || ≤ k. The problem F |= CIRC(T ) is in coNP,
since it amounts to check whether ω 6⊂ ω′ for every ω |= T
and ω′ |= F . Since coNP is a subclass of Πp

2, this problem
is also in Πp

2. The problem CIRC(T ) |= F is instead Πp
2-

complete [12], [13], [14]; therefore, it is in Πp
2. The problem

under consideration can be therefore solved by guessing a
formula F of size bounded by k and then checking whether
F |= CIRC(T ) and CIRC(T ) |= F . Since both problems
are in Πp

2, they can be checked by reversing the result of a
Σp

2 oracle. The problem can therefore be solved by a first
nondeterministic step generating all formulae F with ||F || ≤ k
and then by calling the oracle. It is therefore in Σp

3.

The problem can be proved hard for the class Πp
2.

Theorem 2: The problem of deciding whether CIRC(T )
is equivalent to a formula T ′ with ||T ′|| ≤ k is Πp

2-hard.

Proof: Let F be a formula over variables X ∪ Y . The
proof shows how to build in polynomial time a formula T and
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a number k in unary notation such that ∀X∃Y.F is valid if
and only if CIRC(T ) is equivalent to a formula of size ≤ k.

Let us assume, without loss of generality, that |X| = |Y | =
n. The reduction introduces a set of new variables X ′ in in
one-on-one correspondence with X . It also introduces a set of
new variables Y ′ in correspondence with Y and a set of new
variables Z of cardinality m = 3n + ||F ||+ 1.

In this proof the following notations are used, where X
and X ′ are sets of variables in one-to-one correspondence and
each x corresponds to x′ = c(x):

X¬ = {¬x | x ∈ X}
X ≡ X ′ =

∧
{x ≡ x′ | x ∈ X, x′ = c(x)}

X 6≡ X ′ =
∧
{x 6≡ x′ | x ∈ X , x′ = c(x)}

Formula T and number k are as follows.

T = (X 6≡ X ′) ∧(
((Z 6≡ Z ′) ∧

∧
Y ∧

∧
Y ′) ∨

(F ∧ (Y 6≡ Y ′) ∧
∧

Z¬ ∧
∧

Z ′¬)
)

k = 14n + 3||F ||+ 2

The reduction works as follows: X 6≡ X ′ allows express-
ing CIRC(T ) in terms of the disjunction of CIRC(T |ωX )
for all possible ωX ; if ∀X∃Y.F is true, all these formulae
CIRC(T |ωX ) can be expressed in the same way, so that
a single formula equivalent to CIRC(T ) exists with size
bounded by k; otherwise, for the evaluation ωX that makes
F false CIRC(T |ωX ) alone has size greater than k.

The first step employs the third equivalence of Property 1,
when applied to every x ∈ X and its respective x′ ∈ X ′, since
T contains X 6≡ X ′:

CIRC(T ) ≡
∨
ωX

Form(ωX)CIRC(T |ωX )

The second step of the proof is to analyze CIRC(T |ωX
) for

an evaluation ωX . Formula T |ωX
can be rewritten as follows.

T |ωX
≡

(
(X 6≡ X ′) ∧

(((Z 6≡ Z ′) ∧
∧

Y ∧
∧

Y ′) ∨
(F ∧ (Y 6≡ Y ′) ∧

∧
Z¬ ∧

∧
Z ′¬))

)
|ωX

≡ (X 6≡ X ′)|ωX
∧

(((Z 6≡ Z ′) ∧
∧

Y ∧
∧

Y ′)|ωX
∨

(F ∧ (Y 6≡ Y ′) ∧
∧

Z¬ ∧
∧

Z ′¬)|ωX
))

≡ Form(ωX′) ∧
(((Z 6≡ Z ′) ∧

∧
Y ∧

∧
Y ′) ∨

(F |ωX
∧ (Y 6≡ Y ′) ∧

∧
Z¬ ∧

∧
Z ′¬)))

In this last formula, ωX′ is the evaluation of X ′ setting
each variable in X ′ to the opposite value of the corresponding

variable in X . This formula does not contain any variable in
X . Therefore, CIRC(T |ωX

) is defined by taking into account
only the other variables: X ′, Y , Y ′ and Z. Since X ′ has a
fixed value, it holds:

CIRC(T |ωX ) ≡
Form(ωX′) ∧
CIRC(((Z 6≡ Z ′) ∧

∧
Y ∧

∧
Y ′) ∨

(F |ωX
∧ (Y 6≡ Y ′) ∧

∧
Z¬ ∧

∧
Z ′¬))

The first subformula of circumscription ((Z 6≡ Z ′)∧∧
Y ∧∧

Y ′) has only models ω+
Y ∪ω+

Y ′ ∪ωZ ∪ωZ′ in which ω+
Y and

ω+
Y ′ set all variables in Y and Y ′ to true. This model contains

a model of the second subformula if F |ωX
is satisfiable.

Indeed, let ωY be the model that satisfies F |ωX . This model
is contained in ω+

Y . The model ωY ′ that assigns y′ ∈ Y ′
to true if and only if the corresponding y ∈ Y is false in
ωY also satisfies (F |ωX

∧ (Y 6≡ Y ′) ∧ ∧
Z¬ ∧ ∧

Z ′¬), and
is contained in ω+

Y ′ . A model of the second subformula is
therefore ωY ∪ωY ′∪ω−Z ∪ω−Z′ , where ω−Z ∪ω−Z′ set all variables
to false and are therefore contained in ωZ ∪ ωZ′ .

This proves that every model of the first subformula
contains a model of the second, if F |ωX

is satisfiable. If this is
the case, the first subformula is irrelevant to circumscription.
Otherwise, the second subformula is unsatisfiable.

CIRC

(
((Z 6≡ Z ′) ∧∧

Y ∧∧
Y ′)∨

(F |ωX ∧ (Y 6≡ Y ′) ∧∧
Z¬ ∧∧

Z ′¬)

)

≡ CIRC(F |ωX ∧ (Y 6≡ Y ′) ∧
∧

Z¬ ∧
∧

Z ′¬)

if F |ωX is satisfiable

≡ CIRC((Z 6≡ Z ′) ∧
∧

Y ∧
∧

Y ′) otherwise

The rest of the proof depends on whether F is satisfiable
for every ωX . If it is, then CIRC(T |ωX

) is equivalent to ωX′∧
CIRC(F |ωX

∧ (Y 6≡ Y ′)∧∧
Z¬∧∧

Z ′¬) for every ωX . As a
result, CIRC(T ) is equivalent to CIRC((X 6≡ X ′)∧F ∧(Y 6≡
Y ′)∧∧

Z¬ ∧∧
Z ′¬), which is equivalent to (X 6≡ X ′)∧F ∧

(Y 6≡ Y ′) ∧ ∧
Z¬ ∧ ∧

Z ′¬ by Property 1. This formula has
size 4n + ||F ||+ 4n + 2m = 8n + ||F ||+ 6n + 2||F ||+ 2 =
14n + 3||F ||+ 2 = k.

If F is false for some ωX , then CIRC(T |ωX
) is equivalent

to Form(ωX′) ∧ CIRC((Z 6≡ Z ′) ∧ ∧
Y ∧ ∧

Y ′), which is
also equivalent to (Z 6≡ Z ′) ∧ ∧

Y ∧ ∧
Y ′ by applying the

second and third equivalence of Property 1. For every z ∈
Z, this formula has a model that makes z true, but changing
only the evaluation of z results in a model not satisfying this
formula. The same applies to all variables in Z and Z ′ and
their negation, and to all variables in Y and Y ′. By Lemma 1,
every formula equivalent to this one has size greater than or
equal to 4|Z|+ 2|Y | = 4m + 2n = 4(3n + ||F ||+ 1) + 2n =
12n + 4||F ||+ 4 + 2n = 16n + 4||F ||+ 4 > k. By Lemma 2,
every formula equivalent to CIRC(T ) has size greater than or
equal to this amount.
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IV. CONCLUSIONS

The problem of checking whether the circumscription of
a formula can be represented by a formula of size bounded
by k turned out to be Πp

2-hard in Σp
3. These two classes are

at the second and third level of the polynomial hierarchy,
respectively. As a result, the problem cannot be solved by a
propositional satisfiability solver. It can, however, be translated
into a QBF and then passed as input to one of the existing QBF
solvers [15].

An open question is how much complexity decreases if
the formulae are in Horn form, and in particular if some
additional restriction makes the problem tractable. If k is
in binary representation rather than unary, the question is
whether CIRC(T ) can be represented by a formula that may
be exponential, but still bounded by k. The necessity of
considering such large formulae is likely to make this problem
harder than with k in unary notation: polynomial space may
not be sufficient to solve it.

Indeed, assuming k in unary notation amounts to requiring
the equivalent formula to have size comparable to that of the
input data. This is equivalent to ask whether CIRC(T ) is
equivalent to a formula of the same size of another formula
G, for example. Allowing k to be stored in binary form with
n bit allows the bound be as large as 2n−1. As a result, even
formulae of exponential size are allowed as representations
of CIRC(T ). What complicates the analysis is that the usual
guess-and-check algorithm for finding such a formula does not
work in polynomial space, as this may not be enough for even
storing the formula. A cycle of the minimal models of T is
still feasible, but this may not allow determining the size of a
formula satisfied exactly by all of them, unless such a formula
is explicitly produced.
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