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Abstract—This paper shows how to use labeled and unlabeled
data to improve inductive models with the help of transductive
models. We proposed a solution for the self-training scenario. Self-
training is an effective semi-supervised wrapper method which
can generalize any type of supervised inductive model to the
semi-supervised settings. it iteratively refines a inductive model
by bootstrap from unlabeled data. Standard self-training uses
the classifier model(trained on labeled examples) to label and
select candidates from the unlabeled training set, which may be
problematic since the initial classifier may not be able to provide
highly confident predictions as labeled training data is always
rare. As a result, it could always suffer from introducing too much
wrongly labeled candidates to the labeled training set, which
may severely degrades performance. To tackle this problem, we
propose a novel self-training style algorithm which incorporate
a graph-based transductive model in the self-labeling process.
Unlike standard self-training, our algorithm utilizes labeled and
unlabeled data as a whole to label and select unlabeled examples
for training set augmentation. A robust transductive model based
on graph markov random walk is proposed, which exploits
manifold assumption to output reliable predictions on unlabeled
data using noisy labeled examples. The proposed algorithm can
greatly minimize the risk of performance degradation due to
accumulated noise in the training set. Experiments show that
the proposed algorithm can effectively utilize unlabeled data to
improve classification performance.

Keywords—Inductive model, Transductive model, Semi-
supervised learning, Markov random walk.

I. INTRODUCTION

Traditional inductive models like Naive Bayes, CARTs[1],
Support Vector Machines are always in supervised settings,
which means these model can only be trained on labeled
data. Training a good inductive model needs enough labeled
examples. Unfortunately, preparing labeled data for such task
is often expensive and time consuming, while unlabeled data
are readily available. This was the major motivation that led
to the arise of semi-supervised paradigm which utilizes few
labeled examples and vast amounts of cheap unlabeled exam-
ples to learns a model. Semi-supervised learning has achieved
considerable success in a wide variety of domains, existing
semi-supervised learning methods can be roughly categorized
into several paradigms[2], including generative models, semi-
supervised support vector machines (S3VMs), graph based
methods and bootstrapping wrapper method.

Self-training[3] is a simple and effective semi-supervised
algorithm which has been successfully applied to various

real-world tasks. It is an wrapper method, which means it
can generalize any type of supervised inductive model to
the semi-supervised settings[4]. Self-training initially trains a
classifier on labeled data and then iteratively augments its
labeled training set by adding several newly pseudo-labeled
unlabeled examples with most confident predictions of its
own. Standard self-training uses the classifier model(trained
on labeled examples) to label and select candidates from the
unlabeled training set, which may be problematic since the
initial classifier may not be able to provide highly confident
predictions as labeled training data is always rare. In addition,
since self-training utilizes unlabeled data in an incremental
manner, early noise introduced to training sets would be
reinforced round by round, resulting in severe performance
degradation. Although some techniques, e.g. data editing[5],
have been employed to alleviate this noise-related problem[6],
results are yet undesirable. As a result, it could always suffer
from introducing too much wrongly labeled candidates to the
labeled training set, which may severely degrades performance.
Another drawback of self-training is that the newly added
examples are not informative to the current classifier, since
they can be classified confidently[7]. As a result, they may
only help increase the classification margin, without actually
providing any novel information to the current classifier.

In this paper, we show how to use unlabeled data to
improve inductive models with the help of transductive models.
We proposed a solution for the self-training scenario, a novel
self-training style algorithm is proposed. Generally, unlike tra-
ditional self-training only using labeled data to label and select
unlabeled example for training set augmentation, our algorithm
utilizes both labeled and unlabeled data to facilitate the self-
labeling process. In detail, all the labeled and unlabeled exam-
ples are presented as a graph, where a novel markov random
walk with constrains is proposed to label all examples on graph
in a transductive setting[8]. This graph-based method satisfy
manifold assumptionthat examples with high similarities in the
input space should share similar labels. Typically, Most graph
based methods output label information to unlabeled data
in a transductive setting such as Label propagation, markov
random walks, Low density separation[9]. Those methods are
designed to utilize unlabeled by representing both the data
as a graph, with examples as vertices and similarities of
examples as edges. Existing transductive graph-based methods
assume all labels on labeled data correct, can not work under
training sets subject to noise. While our transductive model can
naturally deals with noisy labeled data, which utilize ”label
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smooth” to automatically adjust the potential wrong labels.
By incorporating this transductive model to the self-training
process, we expect any applied supervised inductive model
can be greatly improved.

The main contribution of this paper can be summarized as
follows:

• We show that incorporating transductive models to
inductive models in semi-supervised settings can im-
prove classification performance.

• We propose a novel self-training algorithm which
utilizes a graph-based transductive model for using
both labeled and unlabeled data to label and select
unlabeled example for training set augmentation.

• We propose a novel transductive model based on graph
random walk with constrains. This transductive model
can deal with labeled training set with noise and
provide more reliable predictions for all unlabeled
examples, has strong tolerance to noise in the training
set.

• We conduct extensive experiments on several UCI
benchmark data sets to evaluate its performance with 3
different inductive model and empirically demonstrate
that our algorithm can effectively exploit unlabeled
data to achieve better generalization performance.

The rest of this paper is organized as follows. Section 2
describes the problem and gives the algorithm in detail. Section
3 presents the experimental results on UCI data sets when
various inductive models are utilized. A short conclusion and
future work are presented in Section 4.

mds
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II. THE PROPOSED ALGORITHM

A. Problem Description and Notation

Let L denote the labeled training set with size |L| and
U denote the unlabeled training set with size |U |. The goal
of our algorithm is to learn a classifier from L∪U to classify
unseen examples. Generally, initial labeled examples are quite
few, i.e. |L| ≪ |U |.

The proposed algorithm learns a inductive model f from
labeled and unlabeled data as follows: 1)initialize the model
f using labeled set L; 2)use f to predict labels on unlabeled
set U ; 3)select a subset S from U for which f has the
most confident predictions; 4)construct a neighborhood graph
G with L∪U under certain similarity measure; 5)incorporate a
transductive model into the self-labeling process: knowing the
prior information about labels on L ∪ U , start a constrained
random walk on Graph G to label all the unlabeled examples
in U ; 6)choose k most confident examples from U for labeled
training set augmentation according to the output of random
walk; 7)refine f with augmented labeled data. The procedure
goes on until there are no unlabeled examples left.

The key distinction between the proposed algorithm and
standard self-training is the incorporated transductive model

that utilizes both labeled and unlabeled examples to give pre-
diction on unlabeled data. Most graph based semi-supervised
methods are transductive, which are nonparametric and can
deal with multi-classification problems. We proposed a novel
constrained markov random walk for the transduction purpose.
The most desirable property of the proposed transdutive model
is that it can work well even if training set contains label-noise.
Therefore, it is perfectly suitable for the self-training process,
as the pseudo-labeled set S may contain some wrongly labeled
examples. At this step, it is expected to yield more reliable
predictions on unlabeled data than the classifier does with
training set subject to label-noise. Next, we will present the
details of the proposed transductive graph-based model.

B. Markov Random Walk with Constrains

Markov random walk is regarded as a transductive graph
based approach which exploits manifold assumption to label
all the unlabeled examples. Typically, it is given an undirected
graph G = (V,E,W ) , where a node v ∈ V corresponds to
an example in L ∪ U , an edge e = (a, b) ∈ V × V indicates
that the label of the two vertices a,b should be similar and
the weight Wab reflects the strength of this similarity. In this
paper, graph is constructed by using the k nearest neighbor
criterion. For each example v ∈ L ∪ U , Let C = {1, ,m}
be the set of possible labels. Two row-vectors Yv, Ŷv are
presented. The first vector Yv is the input. The lth element of
the vector Yv encodes the prior knowledge about label l for
example v. For instance, a labeled example v with label c has
Yvc set to 1, and the remaining m− 1 elements of Yv set to
0. Unlabeled examples have all their elements set to 0, that is
Yvl = 0 for l = 1...m. The second vector Ŷv is the output
of the algorithm, using similar semantics as Yv . For instance,
a high value of Ŷvl indicates that algorithms believe that the
vertex(example) v should have label l.

The constrains of random walks is formalized vi-
a three possible actions: inject, continue and aban-
don(denoted by inj, cont, abnd with pre-defined probabilities
pinjv , pcontv , pabndv . Clearly, their sum is unit: pinjv + pcontv +
pabndv = 1 . To label any example v(either labeled or unla-
beled), we initiate a random-walk starting at v facing three
options: with probability pinjv the random-walk stops and
return(i.e. inject) the pre-defined vector information Yv .
We constrain pinjv for unlabeled examples. Second, with
probability pabndv the random-walk abandons the labeling
process and returns the all-zeros vector 0m. Third, with
probability pcontv the random-walk continues to one of vs
neighbors v′ with probability proportional to Wv′v. Note that
by definition Wv′v = 0 if (v′, v) /∈ E . We summarize
the above process with the following set of equations. The
transition probabilities are,

Pr[v′|v] =


Wv′v∑

u:(u,v)∈E

Wuv
, (v′, v) ∈ E

0 , otherwise

(1)

The expected score Ŷv for node v ∈ V is given by,

Ŷv = pinjv ×Yv+pcontv ×
∑

v′:(v′,v)∈E

Pr[v′|v]Ŷv′+pabndv ×0m

(2)
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In this paper, the three probabilities pinjv , pcontv , pabndv are set
using the same heuristics adapted from [10], which are defined
by,

pcontv =
cv
zv

; pinjv =
dv
zv

; pabndv = 1− pcontv − pinjv

(3)
cvis monotonically decreasing with the number of neighbors
for node v in graph G. Intuitively, the higher the value of cv,
the lower the number of neighbors of vertex v and higher the
information they contain about the labeling of v. The other
quantity dvis monotonically increasing with the entropy (for
labeled vertices). It is noteworthy that abandonment occurs
only when the continuation and injection probabilities are low
enough. This is most likely to happen at unlabeled nodes with
high degree. In effect, high pabndv prevents the algorithm from
propagating information through high degree nodes.

The final labeling information for all v ∈ L ∪ U can
be computed through random walk based on Eq.(2). The
algorithm converges when label distribution on each node
ceases to change. Note that initial labeled data set L assumes
to be noise-free, while the pseudo-labeled dataset S may
contain classification noise, hence, certain modification about
the transition probabilities needs to be made:

• Since labels on L, which are considered noise-free,
should not change during the random walk. For ex-
ample v ∈ L, the transition probabilities should be
fixed as follows: pinjv = 1, pcontv = 0, pabndv = 0;

• Since examples in S may be wrongly labeled by
the classifier, labels on S are allowed to change.
For ∀v ∈ S, the transition probabilities should be
computed according to Eq.(3);

• For unlabeled example u ∈ U − S, we only constrain
pinju = 0.

Note that the predicted label yu and labeling confidence
CF(u, yu) of each example u ∈ U − S can be easily obtained
from Yu:

yu = argmax
l

Ŷul , l = 1, ...m (4)

CF(u, yu) = Ŷuc , c = yu (5)

In this paper, our strategy is to incorporates such transduc-
tive model into the standard self-training’s labeling process,
concrete procedures of the proposed algorithm is outlined in
Algorithm 1. It is noteworthy that size of S only has mediate
and minor impact on the final performance. For convenience,
|S| is empirically set equal to the number of initial labeled
examples,i.e. |L|, and we also set k equal to |L|, The maximum
iteration number M is set to 50.

III. EXPERIMENTS AND DISCUSSION

In this section, we design experiments to verify the efficacy
of our algorithm. We mainly focus on the self-training frame-
work, trying to find out how transductive model can improve
the semi-supervised inductive model. 12 UCI data sets are used
in the experiments[11]. Information on these data sets is shown
in Table 1. For each data set, about 25% data are kept as test
examples. 10% of the remaining data set is used as the labeled

Algorithm 1 Proposed Algorithm

Input:
-L ∪ U : training sets
-Learner: learning algorithm for inducing a classifier
-M : number of iteration

Output:
-f : the returned classifier
Construct neighborhood graph G = (V,E,W );

2: initialize pinjv , pcontv , pabndv ;
L′ ← NULL;

4: while Iter ≤M do
Use f to make predictions on U ;

6: Select S from U { |S| most confident predictions of f};
Recompute pinjv , pcontv , pabndv for v ∈ S using Eq.(3);

8: Reset prior labeling knowledge Yv;
Output Ŷu for all u ∈ U − S by constrained random
walk on Graph G;

10: Compute yu, CF(u, yu) for all u ∈ U using Eq.(4)and
Eq.(5)
Choose the k most confident examples from U based
on CF(u, yu);

12: Add the chosen pseudo-labeled examples to L′;
f ← Learn(L ∪ L′)

14: end while

TABLE I: Data set summary

Data set Attribute Size Class Class distribution(%)

australian 14 690 2 55.5/44.5
bupa 6 345 2 42.0/58.0
colic 22 368 2 63.0/37.0

diabetes 8 768 2 65.1/34.9
german 20 1000 2 70.0/30.0

hypothyroid 25 3163 2 4.8/95.2
ionosphere 34 351 2 35.9/64.1

kr-vs-kp 36 3196 2 52.2/47.8
sick 29 3772 2 6.1/93.9

tic-tac-toe 9 958 2 65.3/34.7
vehicle 18 846 4 25.1/25.7/25.7/23.5
wdbc 13 178 3 33.1/39.9/27.0

training set L; the rest examples are treated as the unlabeled
set U .

The proposed algorithm is compared with standard self-
training and SETRED[6]. SETRED is an improved self-
training algorithm by incorporating data editing techniques
to help identify and remove wrong labels from the training
sets during the self-training process. For fair comparison, the
termination criteria used by self-training and SETRED are
similar to that used by our algorithm.

we used three supervised inductive model as base learners
to perform classifier induction, aiming to investigate how
each comparing algorithm behaves along with base learner-
s bearing diverse characteristics. Specifically, Naive Bayes,

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,  

Vol. 3, No. 2, 2014 

 

35 | P a g e  
www.ijarai.thesai.org 



TABLE II: Classification error rates of 3 compared algorithms on 12 datasets using naive bayes

Dataset
Classification error rates: Naive Bayes

initial proposed algorithm SETRED Self-training
final improve/% final improve/% final improve/%

australian 0.243 0.224 7.9 0.234 3.7 0.236 2.9
bupa 0.481 0.442 8.1 0.459 4.6 0.438 8.9
colic 0.217 0.207 4.6 0.212 2.3 0.221 -1.8

diabetes 0.267 0.257 3.7 0.245 8.2 0.264 1.1
german 0.285 0.281 1.4 0.276 3.2 0.298 -4.6

hypothyroid 0.024 0.021 12.5 0.023 4.2 0.021 12.5
ionosphere 0.155 0.129 16.8 0.151 2.6 0.166 -7.1

kr-vs-kp 0.142 0.137 3.5 0.143 -0.7 0.128 9.9
sick 0.089 0.084 5.6 0.084 5.6 0.079 11.2

tic-tac-toe 0.343 0.324 5.5 0.328 4.4 0.346 -0.9
vehicle 0.398 0.322 19.1 0.367 7.8 0.429 -7.8
wine 0.103 0.096 6.8 0.089 13.6 0.116 -12.6

average – – 8.0 – 4.9 – 1.0

TABLE III: Classification error rates of 3 compared algorithms on 12 datasets using CART

Dataset
Classification error rates: CART

initial proposed algorithm SETRED Self-training
final improve/% final improve/% final improve/%

australian 0.222 0.193 13.0 0.199 10.4 0.205 7.7
bupa 0.399 0.368 7.8 0.391 2.0 0.388 2.8
colic 0.181 0.163 10.0 0.174 3.9 0.168 7.2

diabetes 0.316 0.288 8.8 0.272 13.9 0.289 8.5
german 0.351 0.324 7.6 0.336 4.3 0.336 4.3

hypothyroid 0.012 0.011 8.3 0.016 -33.3 0.021 -75
ionosphere 0.155 0.121 22.0 0.144 7.1 0.149 3.9

kr-vs-kp 0.035 0.025 28.6 0.018 48.6 0.022 37.1
sick 0.024 0.021 12.5 0.026 -8.3 0.023 4.2

tic-tac-toe 0.292 0.258 11.6 0.268 8.2 0.277 5.1
vehicle 0.254 0.208 18.1 0.223 12.2 0.234 7.9
wine 0.085 0.061 28.2 0.072 15.3 0.064 24.7

average – – 14.7 – 7.0 – 3.2

CART, SVM models are used in the experiments. We use
LibSVM[12] implementation for SVM. Note that only Naive
Bayes is generative model that can yield probabilistic outputs,
CART uses the proportion of dominating class in leaf node
as probabilistic output and LibSVM is configured to give
probabilistic estimates by using the training option ”-b 1”. For
our algorithm and SETRED, we choose a medium number
of nearest neighbors, i.e 8 for graph construction, we utilize
EUCLIDEAN distance as the similarity measure mainly based
on its simplicity and empirical evidences.

Experiments are carried out on each data set for 100
runs under randomly partitioned labeled/unlabeled/test split-
s. TableII to TableIV present classification errors of these
compared algorithms under different inductive models. The
”initial” column denotes the average error rates of classifi-
cation with labeled data only. Columns denoted by ”final” and
”improve” represent the average error rates and performance
improvements of each algorithm respectively.

TableII to TableIV show that proposed algorithm can
effectively improve the performance with all the underlying in-
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TABLE IV: Classification error rates of 3 compared algorithms on 12 datasets using LibSVM

Dataset
Classification error rates: LibSVM

initial proposed algorithm SETRED Self-training
final improve/% final improve/% final improve/%

australian 0.268 0.229 14.6 0.234 12.7 0.241 10.1
bupa 0.382 0.353 7.6 0.385 -0.8 0.390 -2.1
colic 0.267 0.176 34.1 0.198 25.6 0.235 12.1

diabetes 0.421 0.345 18.0 0.428 -1.6 0.448 -6.4
german 0.214 0.188 12.1 0.202 5.6 0.179 16.4

hypothyroid 0.029 0.024 17.2 0.021 27.6 0.026 10.3
ionosphere 0.183 0.164 10.4 0.142 22.4 0.181 1.1

kr-vs-kp 0.034 0.027 20.6 0.031 8.8 0.023 32.4
sick 0.036 0.034 4.0 0.031 13.9 0.033 8.3

tic-tac-toe 0.071 0.036 49.0 0.056 21.1 0.030 57.7
vehicle 0.398 0.316 20.6 0.367 7.8 0.429 -7.8
wine 0.103 0.048 53.4 0.066 36 0.116 -12.6

average – – 21.8 – 14.9 – 10.0

ductive model. he two-tailed paired t-test under the significant
level of 95% shows that all the improvements of performance
are significant. The biggest improvements achieved by these
three self-training style algorithms have been boldfaced. In
fact, if the improvements are averaged across all the data sets,
base learners, it can be found that the average improvement
of our algorithm is about 14.8%. It is impressive that with all
the employed inductive models our algorithm has achieved the
biggest improvement among the other 2compared algorithms.
Moreover, if the algorithms are compared through counting
the number of winning data sets, i.e. the number of data sets
on which an algorithm has achieved the biggest improvement
among the compared algorithms, our algorithm is almost
always the winner. In detail, when Naive Bayes are used, it has
6 winning data sets while self-training has 4 and SETRED has
3; when CARTs are used, our algorithm and SETRED has 10
and 3 winning data sets respectively, while self-training do not
have winning data sets; when SVMs are used, our algorithm,
SETRED and self-training has 6, 3 and 3 winning data sets
respectively.

In particular, comparing to SETRED which utilizes a
specific data editing technique to actively identify wrongly-
labeled examples in the enlarged training set, the proposed
algorithm has achieved better results with no effort for cleaning
the training set. This evidence supports our arguments that the
incorporated transductive model is robust to noises introduced
by the self-labeled process, thus it can achieve stable perfor-
mance. Moreover, empirical results of on the 2 multi-class
datasets(vehicle,wine) suggest that our algorithm is superior
to self-training and SETRED when dealing with multi-class
classification problems. This is mainly due to the fact that
it can naturally handle multi-class classification by exploiting
manifold assumption to yield confident predictions for training
set augmentation.

IV. CONCLUSIONS

This paper shows the benefits of incorporating transdcu-
tive models into semi-supervised bootstrap inductive models,
such as self-training. This strategy utilizes both labeled and
unlabeled data to yield more reliable predictions for unlabeled
examples. We propose a robust self-training style algorithm
which exploits manifold assumption to facilitate the self-
training process. We adopt a transductive model based on
graph random walks to prevent performance degradation due to
classification noise accumulation. Empirical results on 12 UCI
datasets show that proposed algorithm can effectively exploit
unlabeled data to enhance performance.

Graph construction is vital to our algorithm. In this paper,
we only use the common EUCLIDEAN distance as the dis-
tance measure, there is no guarantee that this is the optimal
choice. Generally, the problem of choosing the best distance
measure for a specific learning task is very difficult, and some
efforts have been made towards tackling this problem under
the name of distance metric learning. How to identify or
learn the optimal distance measure and how does it affect the
performance are worth further investigation.
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