
A novel hybrid genetic differential evolution
algorithm for constrained optimization problems

Ahmed Fouad Ali
Faculty of Computers and Information

Dept. of Computer Science, Suez Canal University
Ismailia, Egypt

Email: ahmed fouad@ci.suez.edu.eg

Abstract—Most of the real-life applications have many con-
straints and they are considered as constrained optimization
problems (COPs). In this paper, we present a new hybrid genetic
differential evolution algorithm to solve constrained optimization
problems. The proposed algorithm is called hybrid genetic dif-
ferential evolution algorithm for solving constrained optimization
problems (HGDESCOP). The main purpose of the proposed
algorithm is to improve the global search ability of the DE
algorithm by combining the genetic linear crossover with a DE
algorithm to explore more solutions in the search space and to
avoid trapping in local minima. In order to verify the general
performance of the HGDESCOP algorithm, it has been compared
with 4 evolutionary based algorithms on 13 benchmark functions.
The experimental results show that the HGDESCOP algorithm
is a promising algorithm and it outperforms other algorithms.

Keywords—Constrained optimization problems, Genetic algo-
rithms, Differential evolution algorithm, Linear crossover.

I. INTRODUCTION

Evolutionary algorithms (EAs) have been widely used to
solve many unconstrained optimization problems [1], [3], [10],
[15]. EAs are unconstrained search algorithms and lake a
technique to handel the constraints in the constrained op-
timization problems (COPs). There are different techniques
to handle constraints in EAs, these techniques have been
classified by Michalewicz [13] as follows. Methods based on
penalty functions, methods based on the rejection of infeasible
solutions, methods based on repair algorithms, methods based
on specialized operators and methods based on behavioral
memory.

Differential evolutionary algorithm (DE) is one of the
most widely used evolutionary algorithms (EAs) introduced
by Stron and Price [17]. Because of the success of DE in
solving unconstrained optimization problems, it attracts many
researchers to apply it with their works to solve constrained
optimization problems (COPs) [2], [18], [19]. In this pa-
per, we proposed a new hybrid algorithm in order to solve
constrained optimization problems. The proposed algorithm
is called hybrid genetic differential evolution algorithm for
solving constrained optimization problems (HGDESCOP). The
HGDESCOP algorithm starts with an initial population con-
sists of NP individuals, the initial population is evaluated using
the objective function. At each generations, the new offspring
is created by applying the DE mutation. In order to increase
the global search behavior of the proposed algorithm and
explore wide area of the search space, a genetic algorithm
linear crossover operator is applied. In the last stage of the

algorithm, the greedy selection is applied in order to accept or
reject the trail solutions. These operations are repeated until
the termination criteria satisfied.

The main objective of this paper is to construct an efficient
algorithm which seeks optimal or near-optimal solutions of a
given objective function for constrained problems by combin-
ing the genetic linear crossover with a DE algorithm to explore
more solutions in the search space and to avoid trapping in
local minima.

The reminder of this paper is organized as fellow. The
problem definition and an overview of genetic algorithm and
differential evolution are given in Section II. In Section III,
we explain the proposed algorithm in detail. The numerical
experimental results are presented in Section IV. Finally, The
conclusion of the paper is presented in Section V.

II. PROBLEM DEFINITION AND OVERVIEW OF GENETIC
ALGORITHM AND DIFFERENTIAL EVOLUTION ALGORITHM

In the following section and subsections, we give an
overview of the constraint optimization problem and we high-
light the penalty function technique, which are used to convert
the constrained optimization problems to unconstrained opti-
mization problems. Finally, we present the standard genetic
algorithm and deferential evolutionary algorithm.

A. Constrained optimization problems

A general form of a constrained optimization is defined
as follows:

Minimize f(x), x = (x1, x2, · · · , xn)T , (1)
Subject to

gi(x) ≤ 0, i = 1, · · · ,m
hj(x) = 0, j = 1, · · · , l
xl ≤ xi ≤ xu

Where f(x) is the objective function, x is the vector of n
variables, gi(x) ≤ 0 are inequality constraints, hj(x) = 0 are
equality constraints, xl, xu are variables bounds. In this paper,
we used the penalty function technique to solve constrained
optimization problems [11]. The following subsection gives
more details about the penalty function technique.

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,
Vol. 3, No.6, 2014

 

6 | P a g e
www.ijarai.thesai.org 



1) The Penalty function technique: The penalty function
technique is used to transform the constrained optimization
problems to unconstrained optimization problem by penalizing
the constraints and forming a new objective function as follow:

f(x) =

{
f(x) if x ∈ feasible region
f(x) + penalty(x) x 6∈ feasible region.

(2)

Where,

penalty(x) =
{
0 if no constraint is violated
1 otherwise.

There are two kind of points in the search space of the con-
strained optimization problems (COP), feasible points which
satisfy all constraints and unfeasible points which violate at
least one of the constraints. At the feasible points, the penalty
function value is equal the value of objective function, but
at the infeasible points the penalty function value is equal to
a high value as shown in Equation 2. In this paper, a non
stationary penalty function has been used, which the values of
the penalty function are dynamically changed during the search
process. A general form of the penalty function as defined in
[21] as follows:

F (x) = f(x) + h(k)H(x), x ∈ S ⊂ Rn, (3)

Where f(x) is the objective function, h(k) is a non stationary
(dynamically modified) penalty function, k is the current iter-
ation number and H(x) is a penalty factor, which is calculated
as follows:

H(x) =
m∑
i=1

θ(qi(x))qi(x)
γ(qi(x)) (4)

Where qi(x) = max(0, gi(x)), i = 1, . . . ,m, gi are the
constrains of the problem, qi is a relative violated function
of the constraints, θ(qi(x)) is the power of the penalty func-
tion, the values of the functions h(.), θ(.)andγ(.) are problem
dependant. We applied the same values, which are reported in
[21].

The following values are used for the penalty function:

γ(qi(x)) =

{
1 if qi(x) < 1,

2 otherwise.

Where the assignment function was

θ(qi(x))) =


10 if qi(x) < 0.001,

20 if 0.001 ≤ qi(x) < 0.1,

100 if 0.1 ≤ qi(x) < 1,

300 otherwise.

and the penalty value h(t) = t ∗
√
t.

B. An overview of genetic algorithm

Genetic algorithm (GA) was introduced by Holland [8].
The basic principles of GA are inspired from the principles
of life which were first described by Darwin [4]. GA starts
with a number of individuals (chromosomes) which form a
population. After randomly creating of the population, the
initial population is evaluated using fitness function. The
selection operator is start to select highly fit individuals with

high fitness function score to create new generation. Many type
of selection have been developed like roulette wheel selection,
tournament selection and rank selection [12]. The selected
individuals are going to matting pool to generate offspring
by applying crossover and mutation. Crossover operator is
applied to the individuals in the mating pool to produces two
new offspring from two parents by exchanging substrings. The
most common crossover operators are one point crossover [8],
two point crossover [12], uniform crossover [12]. The parents
are selected randomly in crossover operators by assign a
random number to each parent, the parent with random number
lower than or equal the probability of crossover ration Pc is
always selected. Mutation operators are important for local
search and to avoid premature convergence. The probability of
mutation pm must be selected to be at a low level otherwise
mutation would randomly change too many alleles and the new
individual would have nothing in common with its parents.
The new offspring is evaluated using fitness function, these
operations are repeated until termination criteria stratified, for
example number of iterations. The main structure of genetic
algorithm is presented in Algorithm 1

Algorithm 1 The structure of genetic algorithm

1: Set the generation counter t := 0.
2: Generate an initial population P 0 randomly.
3: Evaluate the fitness function of all individuals in P 0.
4: repeat
5: Set t = t+ 1. { Generation counter increasing}.
6: Select an intermediate population P t from P t−1.

{Selection operator}.
7: Associate a random number r from (0, 1) with each row

in P t.
8: if r < pc then
9: Apply crossover operator to all selected pairs of P t.

10: Update P t.
11: end if{Crossover operator}.
12: Associate a random number r1 from (0, 1) with each

gene in each individual in P t.
13: if r1 < pm then
14: Mutate the gene by generating a new random value

for the selected gene with its domain.
15: Update P t.
16: end if

{Mutation operator}.
17: Evaluate the fitness function of all individuals in P t.
18: until Termination criteria satisfied.

1) Liner crossover operator: HGDESCOP uses a linear
crossover [20] in order to generate a new offspring to substitute
their parents in the population. The main steps of the linear
crossover is shown in Procedure 1.

Procedure 1: Linear Crossover(p1, p2)

1. Generate three offspring c1 = (c11, . . . , c
1
D), c

2 =
(c21, . . . , c

2
D) and c3 = (c31, . . . , c

3
D) from parents

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,
Vol. 3, No.6, 2014

 

7 | P a g e
www.ijarai.thesai.org 



p1 = (p11, . . . , p
1
D) and p2 = (p21, . . . , p

2
D), where

c1i =
1

2
p1i +

1

2
p2i ,

c2i =
3

2
p1i −

1

2
p2i ,

c3i = −1

2
p1i +

3

2
p2i ,

i = 1, . . . , D.
2. Choose the two most promising offspring of the

three to substitute their parents in the population.
3. Return.

C. An overview of differential evolution algorithm

Differential evolution algorithm (DE) proposed by Stron
and Price in 1997 [17]. In DE, the initial population consists of
number of individuals, which is called a population size NP .
Each individual in the population size is a vector consists of
D dimensional variables and can be defined as follows:

x(G)
i = {x(G)

i,1 , x
(G)
i,2 , . . . , x

(G)
i,D}, i = 1, 2, . . . ,NP. (5)

Where G is a generation number, D is a problem dimensional
number and NP is a population size. DE employs mutation and
crossover operators in order to generate a trail vectors, then
the selection operator starts to select the individuals in new
generation G+1. The overall process is presented in details as
follows:

1) Mutation operator: Each vector xi in the population size
create a trail mutant vector vi as follows.

v(G)
i = {v(G)

i,1 , v
(G)
i,2 , . . . , x

(G)
i,D}, i = 1, 2, . . . ,NP. (6)

DE applied different strategies to generate a mutant vector as
fellows:

DE/rand/1 : v(G)
i = x(G)

r1 + F · (xr2 + xr3) (7)

DE/best/1 : v(G)
i = x(G)

best + F · (xr1 + xr2) (8)

DE/currenttobest/1 : v(G)
i = x(G)

i + F · (xbest − xi)
+F · (xr1 − xr2) (9)

DE/best/2 : v(G)
i = x(G)

best + F · (xr1 − xr2)
+F · (xr3 − xr4) (10)

DE/rand/2 : v(G)
i = x(G)

r1 + F · (xr2 − xr3)
+F · (xr4 − xr5) (11)

where rd, d = 1, 2, . . . , 5 represent random integer indexes,
rd ∈ [1, NP ] and they are different from i. F is a mutation
scale factor, F ∈ [0, 2]. x(G)

best is the best vector in the
population in the current generation G.

2) Crossover operator: A crossover operator starts after
mutation in order to generate a trail vector according to target
vector xi and mutant vector vi as follows:

ui,j =

{
vi,j , if rand(0, 1) ≤ CR or j = jrand
xi,j , otherwise

(12)

Where CR is a crossover factor, CR ∈ [0, 1], jrand is a random
integer and jrand ∈ [0, 1]

3) Selection operator: The DE algorithm applied greedy
selection, selects between the trails and targets vectors. The
selected individual (solution) is the best vector with the better
fitness value. The description of the selection operator is
presented as fellows:

x(G+1)
i =

{
u(G)
i , if f(u(G)

i ) ≤ f(x(G)
i ),

xi, otherwise
(13)

The main steps of DE algorithm are presented in Algorithm 2

Algorithm 2 The structure of differential evolution algorithm

1: Set the generation counter G := 0.
2: Set the initial value of F and CR.
3: Generate an initial population P 0 randomly.
4: Evaluate the fitness function of all individuals in P 0.
5: repeat
6: Set G = G+ 1. {Generation counter increasing}.
7: for i = 0; i < NP; i++ do
8: Select random indexes r1, r2, r3, where r1 6= r2 6=

r3 6= i.
9: v(G)

i = x(G)
r1 + F × (x(G)

r2 − x(G)
r3 ). {Mutation oper-

ator}.
10: j = rand(1, D)
11: for (k = 0; k < D; k ++) do
12: if (rand(0, 1) ≤ CR or k = j then
13: u

(G)
ik = v

(G)
ik {Crossover operator}

14: else
15: u

(G)
ik = x

(G)
ik

16: end if
17: end for
18: if (f(u(G)

i ) ≤ f(x(G)
i )) then

19: x(G+1)
i = u(G)

i {Greedy selection}.
20: else
21: x(G+1)

i = x(G)
i

22: end if
23: end for
24: until Termination criteria satisfied.

III. THE PROPOSED HGDESCOP ALGORITHM

HGDESCOP algorithm starts by setting the parameter
values. In HGDESCOP, the initial population is generated
randomly, which consists of NP individuals as shown in
Equation 5. Each individual in the population is evaluated by
using the objective function. At each generation (G), each
individual in the population is updated by applying the DE
mutation operator by selecting a random three indexes r1, r2,
r3, where r1 6= r2 6= r3 6= i as shown in Equations 6, 7. After
updating the individual in the population, a random number r
from (0, 1) is associated with each individual in the population
by applying the genetic algorithm linear crossover operator as
shown in Procedure 1. The greedy selection operator is starting
to select the new individuals to form the new population in
next generation as shown in Equation 13. These operations

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,
Vol. 3, No.6, 2014

 

8 | P a g e
www.ijarai.thesai.org 



are repeated until termination criterion satisfied, which is the
number of iterations in our algorithm.

Algorithm 3 The proposed HGDESCOP algorithm

1: Set the generation counter G := 0.
2: Set the initial value of F , pc and NP.
3: Generate an initial population P 0 randomly.
4: Evaluate the fitness function of all individuals in P 0.
5: repeat
6: Set G = G+ 1. {Generation counter increasing}.
7: for (i = 0; i < NP; i++) do
8: Select random indexes r1, r2, r3, where r1 6= r2 6=

r3 6= i
9: v(G)

i = x(G)
r1 + F × (x(G)

r2 − x(G)
r3 ) {DE mutation

operator}.
10: end for
11: for (j = 0; j < NP; j++) do
12: Associate a random number r from (0, 1) with each

v(G)
j in P (G).

13: if r < Pc then
14: Apply Procedure 1 to all selected pairs of v(G)

i in
P (G). {GA linear crossover operator}.

15: Update u(G)
i .

16: end if
17: end for
18: for (k = 0; k < NP; k++) do
19: if (f(u(G)

k ) ≤ f(x(G)
k )) then

20: x(G+1)
k = u(G)

k {Greedy selection}.
21: else
22: x(G+1)

k = x(G)
k

23: end if
24: end for
25: Update P (G)

26: until Itrno ≤Maxitr {Termination criteria satisfied}.

IV. NUMERICAL EXPERIMENTS

The general performance of the proposed HGDESCOP
algorithm is tested using 13 benchmark function G1 − G13,
which are reported in details in [5], [7], [13]. These functions
are listed in Table I as follows.

TABLE I: Constrained benchmark functions.

Function D Type of function Optimal
G1 13 quadratic -15.000
G2 20 nonlinear -0.803619
G3 10 polynomial -1.000
G4 5 quadratic -30665.539
G5 4 cubic 5126.498
G6 2 cubic -6961.814
G7 10 quadratic 24.306
G8 2 nonlinear -0.095825
G9 7 polynomial 680.630
G10 8 linear 7049.248
G11 2 quadratic 0.75
G12 3 quadratic -1.000
G13 5 nonlinear 0.053950

TABLE II: HGDESCOP parameter settings.

Parameters Definitions Values
NP Population size 30
pc Crossover probability 0.8
F Mutation scale factor 0.7
Maxitr Maximum number of iterations 1000

A. Parameter settings

The parameters used by HGDESCOP and their values are
summarized in Table II. These values are either based on the
common setting in the literature or determined through our
preliminary numerical experiments.

B. Performance analysis

In order to test the general performance of the proposed
HGDESCOP algorithm, we applied it with 13 benchmark
functions G1 − G13 and the results are reported in Table III.
Also, six functions have been plotted as shown in Figure 1.

1) The general performance of the HGDESCOP algorithm:
The best, mean, worst and standard deviation values are
averaged over 30 runs and reported in Table III. We can
observe from the results in Table III, that HGDESCOP could
obtain the optimal solution or very near to optimal solution for
all functions G1−G12 for all 30 runs, However HGDESCOP
could obtain the optimal solution with function G13 for 9
out of 30 runs. Also in Figure 1, we can observe that the
function values are rapidly decrease as the number of function
generations increases.

We can conclude from Table III and Figure 1, that HGDE-
SCOP is an efficient algorithm and it can obtain the optimal
or near optimal solution with only few number of iterations.

C. HGDESCOP and other algorithms

In order to evaluate the performance of HGDESCOP algo-
rithm, we compare it with four evolutionary based algorithms,
All results are reported in Table IV, and the results of the
other algorithms are taken from their original papers. The four
algorithms are listed as follows.

• Homomorphous Mappings (HM) [9]
This algorithm, incorporates a homomorphous map-
ping between n-dimensional cube and a feasible search
space.

• Stochastic Ranking (SR) [16]
This algorithm introduces a new method to bal-
ance objective and penalty functions stochastically,
(stochastic ranking), and presents a new view on
penalty function methods in terms of the dominance
of penalty and objective functions.

• Adaptive Segregational Constraint Handling EA (AS-
CHEA) [6]
This algorithm is called ASCHEA and it is used
after extending the penalty function and introducing
a niching techniques with adaptive radius to handel
multimodel functions. The main idea of the algorithm
is to start for each equality with a large feasible

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,
Vol. 3, No.6, 2014

 

9 | P a g e
www.ijarai.thesai.org 



TABLE III: Experimental results of HGDESCOP for G1 −G13

Function optimal best mean worst std
G1 -15.000 -15.000 -15.000 -15.000 0.0e+00
G2 -0.803619 -0.8036187 -0.7993549 -0.7861574 0.0062361
G3 -1.000 -1.0005001 -1.0005000 -1.0004992 2.7368237e−07

G4 -30665.539 -30665.538 -30665.538 -30665.538 0.0e+00
G5 5126.498 5126.496858 5126.496728 5126.49671 4.5552e−05

G6 -6961.814 -6961.813875 -6961.813875 -6961.813875 1.9173e−12

G7 24.306 24.306209 24.306209 24.306209 4.706924e−13

G8 -0.095825 -0.095825 -0.095825 -0.095825 1.223905e−17

G9 680.630 680.630057 680.630057 680.630057 3.789561e−14

G10 7049.248 7049.248020 7049.248020 7049.248020 6.264592e−12

G11 0.75 0.749900 0.749900 0.749900 1.170277e−16

G12 -1.000 -1.000 -1.000 -1.000 0.0e+00
G13 0.053950 0.084356 0.372933 0.438802 0.139366

Fig. 1: The general performance of HGDESCOP algorithm.

domain and to reduce it progressively in order to bring
it as close as possible to null measure domain.

• Simple Multimembered Evolution Strategy (SMES)
[14].
This algorithm is based on a multimembered ES with
a feasibility comparison mechanism.

1) Comparison between HM, SR, ASCHEA, SMES and
HGDESCOP: The best, mean, worst results of the five
comparative algorithms are averaged over 30 runs and re-
ported in Table IV. The evaluation function values for
HM, SR, ASCHEA and SMES algorithms are 1,400,000,
350,000, 1,500,000 and 250,000 respectively. However the
maximum evaluation function value for HGDESCOP algo-
rithm is 120,000. We can observe from Table IV, that HGDE-
SCOP results are better than the other algorithms for all
functions G1 − G12 except the last function G13. In term of

evaluation function values, it is clear that HGDESCOP is faster
than the other algorithms.

V. CONCLUSION

In this paper, a new hybrid genetic differential evolu-
tion algorithm to solve constrained optimization problems is
presented. The proposed algorithm is called hybrid genetic
differential evolution algorithm for solving constrained op-
timization problems (HGDESCOP). The proposed algorithm
combines the differential evolution algorithm and the genetic
linear crossover operator in order to improve the exploration
ability of the DE algorithm and to avoid trapping in local
minima. To verify the efficiency of the proposed algorithm,
it has been compared with 4 Evolutionary based algorithm on
13 benchmark functions. The experimental results show that
the HGDESCOP algorithm is a robust and efficient algorithm

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,
Vol. 3, No.6, 2014

 

10 | P a g e
www.ijarai.thesai.org 



TABLE IV: Experimental results of HGDESCOP and other EA-based algorithms for problems G1 −G13

Function optimal HM SR ASCHEA SMES HGDESCOP
G1 -15.000 Best -14.7864 -15 -15 -15 -15

-15.000 Mean -14.7082 -15 -14.84 -15 -15
-15.000 Worst -14.6154 -15 N.A. -15 -15

G2 -0.803619 Best 0.79953 0.803515 0.785 0.803601 -0.8036187
-0.803619 Mean 0.79671 0.781975 0.59 0.751322 -0.7993549
-0.803619 Worst 0.79119 0.726288 N.A. 0.751322 -0.7861574

G3 -1.000 Best 0.9997 1.000 1.000 1.001038 1.000500
-1.000 Mean 0.9989 1.000 0.99989 1.000989 1.0005000
-1.000 Worst 0.9978 1.000 N.A. 1.000579 1.0004992

G4 -30665.539 Best -30664.5 -30665.539 -30665.5 -30665.539062 -30665.538
-30665.539 Mean -30655.3 -30665.539 -30665.5 -30665.539062 -30665.538
-30665.539 Worst -30645.9 -30665.539 N.A. -30665.539062 -30665.538

G5 5126.498 Best - 5126.497 5126.5 5126.599609 5126.496728
5126.498 Mean - 5128.881 5141.65 5174.492301 5126.496728
5126.498 Worst - 5142.472 N.A. 5304.166992 5126.49671

G6 -6961.814 Best -6952.1 -6961.814 -6961.81 -6961.813965 -6961.813875
-6961.814 Mean -6342.6 -6875.940 -6961.81 -6961.283984 -6961.813875
-6961.814 Worst -5473.9 -6350.262 N.A. -6961.481934 -6961.813875

G7 24.306 Best 24.620 24.307 24.3323 24.326715 24.306209
24.306 Mean 24.826 24.374 24.6636 24.474926 24.306209
24.306 Worst 25.069 24.642 N.A. 24.842829 24.306209

G8 0.095825 Best 0.0958250 0.095825 0.09582 0.095826 0.095825
0.095825 Mean 0.0891568 0.095825 0.09582 0.095826 0.095825
0.095825 Worst 0.0291438 0.095825 N.A. 0.095826 0.095825

G9 680.630 Best 680.91 680.630 680.630 680.631592 680.630057
680.630 Mean 681.16 680.656 680.641 680.643410 680.630057
680.630 Worst 683.18 680.763 N.A. 680.719299 680.630057

G10 7049.248 Best 7147.9 7054.316 7061.13 7051.902832 7049.248020
7049.248 Mean 8163.6 7559.192 7497.434 7253.047005 7049.248020
7049.248 Worst 9659.3 8835.655 N.A. 7638.366211 7049.248020

G11 0.75 Best 0.75 0.750 0.75 0.749090 0.749900
0.75 Mean 0.75 0.750 0.75 0.749358 0.749900
0.75 Worst 0.75 0.75 N.A. 0.749830 0.749900

G12 -1.000 Best -0.999999875 -1.00000 N.A -1.000000 -1.000000
-1.000 Mean -0.999134613 -1.00000 N.A. -1.00000 -1.00000
-1.000 Worst -0.991950498 -1.00000 N.A. -1.00000 -1.00000

G13 0.053950 Best N.A. 0.053957 N.A 0.053986 0.084356
0.053950 Mean N.A. 0.057006 N.A 0.166385 0.372933
0.053950 Worst N.A 0.216915 N.A 0.468294 0.438802

and can obtain the global minima or near global minima faster
than other algorithms. AS part of our future work, in this paper
we are using linear crossover to improve the performance of
DE, whether the HGDESCOP algorithm could be improved
by using more advanced GA crossover operators. Also we can
apply the proposed algorithm with many real-life applications
such as engineering design, finance, economics.

REFERENCES

[1] A.F. Ali, A. E. Hassanien, Minimizing molecular potential energy func-
tion using genetic Nelder-Mead algorithm, 8th International Conference
on Computer Engineering & Systems (ICCES), Cairo, pp. 177-183, 2013.

[2] M.M. Ali and W.X. Zhu. A penalty function-based differential evolution
algorithm for constrained global optimization, Computational Optimiza-
tion and Applications, Vol. 54, No. 3, pp. 707–739, April 2013.

[3] P. Caamano, F. Bellas, J. A. Becerra, and R. J. Duro, Evolutionary algo-
rithm characterization in real parameter optimization problems, Applied
Soft Computing, vol. 13, no. 4, pp. 1902-1921, 2013.

[4] C. Darwin, On the Origin of Species. London: John Murray, 1859.

[5] C.A. Floudas and P.M. Pardalos, A collection of test problems for
constrained global optimization algorithms. In P. M. Floudas (Ed.),
Lecture notes in computer science, Vol. 455. Berlin: Springer, 1987.

[6] S. B. Hamida and M. Schoenauer, ASCHEA: New rsults using adaptive
segregational constraint handling, in Proceedings of the Congress on
Evolutionary Computation (CEC2002), Piscataway, New Jersey, IEEE
Service Center, pp. 884-889, 2002.

[7] W. Hock, K.Schittkowski, Test examples for nonlinear programming
codes. In Lecture notes in economics and mathematical systems (Vol.
187). Berlin: Springer, 1981.

[8] J. H. Holland, Adaptation in Natural and Artficial Systems, University
of Michigan Press, Ann Arbor, MI, 1975.

[9] S. Koziel and Z. Michalewicz, Evolutionary algorithms, homomorphous
mappings, and constrained parameter optimization, Evolutionary Com-
putation 7(1), 19-44, 1999.

[10] T.S. Metcalfe, P. Charbonneau, Stellar structure modeling using a
parallel genetic algorithm for objective global optimization, Journal of
Computational Physics 185, 176-193, 2003.

[11] Z. Michalewicz, A Survey of Constraint Handling Techniques in Evo-
lutionary Computation Methods, Evolutionary Programming, Vol.4, pp.
135, 1995.

[12] Z. Michalewicz, Genetic algorithms + data structures = evolution

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,
Vol. 3, No.6, 2014

 

11 | P a g e
www.ijarai.thesai.org 



programs. Berlin: Springer, 1996.
[13] Z. Michalewicz and M. Schoenauer, Evolutionary algorithms for con-

strained parameter optimization problems, Evolutionary Computation
4(1), 132, 1996.

[14] E. M. Montes and C. A. Coello Coello, A simple multi-membered
evolution strategy to solve constrained optimization problems, IEEE
Transactions on Evolutionary Computation, vol. 9, no. 1, pp. 117, 2005.

[15] Y. F. Ren and Y. Wu, An efficient algorithm for high-dimensional
function optimization, Soft Computing, vol. 17, no. 6, pp. 995-1004,
2013.

[16] T.P. Runarsson and X. Yao, Stochastic Ranking for Constrained Evolu-
tionary Optimization, IEEE Transactions on Evolutionary Computation
4(3), 284-294, 2000.

[17] R. Storn, K. Price, Differential evolutiona simple and efficient heuristic
for global optimization over continuous spaces. J Glob Optim 11:341-
359, 1997.

[18] Y. Wang and C. Zixing, A hybrid multi-swarm particle swarm optimiza-
tion to solve constrained optimization problems, Frontiers of Computer
Science in China, Vol. 3, No. 1, pp. 38-52, March, 2009.

[19] Y. Wang, Zixing Cai and Yuren Zhou. Accelerating adaptive trade-off
model using shrinking space technique for constrained evolutionary op-
timization, International Journal for Numerical Methods in Engineering,
Vol. 77, No. 11, pp. 1501-1534, March 2009.

[20] A. Wright, Genetic Algorithms for Real Parameter Optimization, Foun-
dations of Genetic Algorithms 1, G.J.E Rawlin (Ed.) (Morgan Kaufmann,
San Mateo), 205-218, 1991.

[21] J.M. Yang, Y.P. Chen, J.T. Horng and C.Y. Kao. Applying family com-
petition to evolution strategies for constrained optimization. In Lecture
Notes in Mathematics Vol. 1213, pp. 201-211, New York, Springer, 1997.

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,
Vol. 3, No.6, 2014

 

12 | P a g e
www.ijarai.thesai.org 


