
Differential Evolution Enhanced with Eager Random
Search for Solving Real-Parameter Optimization

Problems

Miguel Leon
School of Innovation, Design and Egineering

Malardalen University
Vasteras, Sweden

Ning Xiong
School of Innovation, Design and Egineering

Malardalen University
Vasteras, Sweden

Abstract—Differential evolution (DE) presents a class of evo-
lutionary computing techniques that appear effective to handle
real parameter optimization tasks in many practical applications.
However, the performance of DE is not always perfect to
ensure fast convergence to the global optimum. It can easily
get stagnation resulting in low precision of acquired results or
even failure. This paper proposes a new memetic DE algorithm
by incorporating Eager Random Search (ERS) to enhance the
performance of a basic DE algorithm. ERS is a local search
method that is eager to replace the current solution by a better
candidate in the neighborhood. Three concrete local search
strategies for ERS are further introduced and discussed, leading
to variants of the proposed memetic DE algorithm. In addition,
only a small subset of randomly selected variables is used in
each step of the local search for randomly deciding the next trial
solution. The results of tests on a set of benchmark problems have
demonstrated that the hybridization of DE with Eager Random
Search can substantially augment DE algorithms to find better
or more precise solutions while not requiring extra computing
resources.

Keywords—Evolutionary Algorithm, Differential Evolution, Ea-
ger Random Search, Memetic Algorithm, Optimization

I. INTRODUCTION

Evolutionary algorithms (EAs) are stochastic and bio-
logically inspired techniques that provide powerful and ro-
bust means to solve many real-world optimization problems.
They are population-based optimization approaches [1] which
perform parallel and beam search, thereby exhibiting strong
global search ability in complex and high dimensional spaces.
Another merit of EAs is that they dont need the derivative
information of objective functions. This is very attractive for
wide applications of EAs in various situations without requir-
ing the problem space to be continuous and differentiable.
Many variants of EAs have been developed to deal with
real-parameter continuous optimization problems, including
evolution strategies [2], real-coded genetic algorithms [3],
[4], differential evolution (DE) [5], [6], and particle swarm
optimization [7] and [8].

Differential evolution presents a class of evolutionary
techniques to solve real parameter optimization tasks with
nonlinear and multimodal objective functions. Despite sharing
common concepts of EAs, DE differs from many other EAs
in that mutation in DE is based on differences of pair(s)

of individuals randomly selected from the population. Thus,
the direction and magnitude of the search is decided by the
distribution of solutions instead of a pre-specified probability
density function. DE has been used as very competitive al-
ternative in many practical applications due to its simple and
compact structure, easy use with fewer control parameters, as
well as high convergence in large problem spaces. However,
the performance of DE is not always excellent to ensure fast
convergence to the global optimum. It can easily get stagnation
resulting in low precision of acquired results or even failure
[9].

Recent researches have shown that hybridization of EAs
with other techniques such as metaheuristics or local search
techniques can greatly improve the efficiency of the search.
EAs that are augmented with local search for self-refinement
are called Memetic Algorithms (MAs) [[10], [11]]. In MAs,
a local search mechanism is applied to members of the
population in order to exploit the most promising regions gath-
ered from global sampling done in the evolutionary process.
Memetic computing has been used with DE to refine individ-
uals in their neighborhood. Norman and Iba [12] proposed
a crossover-based adaptive method to generate offspring in
the vicinity of parents. Many other works apply local search
mechanisms to certain individuals of every generation to obtain
possibly even better solutions, see examples in ([13], [14], [15],
[16]), [17]).

This paper proposes a new memetic DE algorithm by
incorporating Eager Random Search (ERS) to enhance the
performance of a conventional DE algorithm. ERS is a local
search method that is eager to move to a position that is
identified as better than the current one without considering
other opportunities in the neighborhood. This is different from
common local search methods such as gradient descent [18] or
hill climbing [19] which seek local optimal actions during the
search. Forsaking optimality of moves in ERS is advantageous
to increase randomness and diversity of search for avoiding
premature convergence. Three concrete local search strategies
within ERS are introduced and discussed, leading to variants
of the proposed memetic DE algorithm. In addition, only
a small subset of randomly selected variables is used in
every step of the local search for randomly deciding the
next trial point. The results of tests on a set of benchmark
problems have demonstrated that the hybridization of DE with

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 4, No.12, 2015

49 | P a g e
www.ijarai.thesai.org

Eager Random Search can bring improvement of performance
compared to pure DE algorithms while not incurring extra
computing expenses.

The rest of the paper is organized as follows. Section 2
briefly presents the related works. Section 3 introduces the
basic DE algorithm. Then, the proposed memetic DE algorithm
in combination with Eager Random Search is presented in
details in Section 4. Section 5 gives the results of tests for
evaluation. Finally, concluding remarks are given in Section 6.

II. RELATED WORK

Since the first proposal of DE in 1997 [20], a lot of works
have been done to improve the search ability of this algorithm,
resulting in many variants of DE. A brief overview on some
of them is given in this section.

Ali, Pant and Nagar [13] proposed two different local
search algorithms, namely Trigonometric Local Search and
Interpolated Local Search, which were applied to refine the
best solution and two random solutions in every generation
respectively.

Local search differential evolution was developed in [14]
where a new local search operator was used on every individual
in the population with a probability. The search strategy
attempted to find a random better solution between trial vector
and the best solution in the generation.

Dai, Zhou, Zhang and Jiang [15] combined Orthogonal
Local Search with DE in the so-called OLSDE (Orthogonal
Local Search Differential Evolution) algorithm. Therein two
individuals were randomly selected from the population in
each generation and they were used to generate a group of trial
solutions with the orthogonal method. Then the best solution
from the group of trial solutions replaced the worst individual
in the population.

Jia, Zheng and Khan [9] proposed a memetic DE algorithm
in combination with chaotic local search (CLS). The adaptive
shrinking strategy embedded within CLS enabled the DE
optimizer to explore large space in the early search phase
and to exploit small regions in the later phase. Moreover, the
chaotic iteration produced a higher probability to move into a
boundary field, which appeared helpful for avoiding premature
convergence to some extent. A similar work of utilizing chaotic
principle based local search in DE was presented in [21].

Poikolainen and Neri [22] proposed a DE algorithm em-
ploying concurrent fitness based local search (DEcfbLS). The
local search was applied to multiple promising solutions in
the population, and the selection of individuals for local
improvement was based on a fitness-based adaptation rule.
Further, the local search operator was realized by making trial
moves successively on single dimensions. But there was not
much variation in the step sizes of the moves for different
variables within an iteration of the search.

III. BASIC DE

DE is a stochastic and population based algorithm with
Np individuals in the population. Every individual in the
population stands for a possible solution to the problem. One
of the Np individuals is represented by Xi,g with i = 1, 2, ., Np

and g is the index of the generation. DE has three consecutive
steps in every iteration: mutation, recombination and selection.
The explanation of these steps is given below:

MUTATION. Np mutated individuals are generated using
some individuals of the population. The vector for the mutated
solution is called mutant vector and it is represented by Vi,g .
There are some ways to mutate the current population, but
only three will be explained in this paper. The notation to
name them is DE/x/y/z, where x stands for the vector to be
mutated, y represents the number of difference vectors used
in the mutation and z stands for the crossover used in the
algorithm. We will not include z in the notation because only
the binomial crossover method is used here. The three mutation
strategies (random, current to best and current to rand) will
be explained below. The other mutation strategies and their
performance are given in [23].

- Random Mutation Strategy:

Random mutation strategy attempts to mutate three indi-
vidual in the population. When only one difference vector
is employed in mutation, the approach is represented by
DE/rand/1. A new, mutated vector is created according to Eq.
1

Vi,g = Xr1,g + F × (Xr2,g −Xr3,g) (1)

where Vi,g represents the mutant vector, i stands for the
index of the vector, g stands for the generation, r1, r2, r3 ∈ {
1,2,. . . ,Np} are random integers and F is the scaling factor in
the interval [0, 2].

Fig. 1 shows how this mutation strategy works. All the
variables in the figure appear in Eq. 1 with the same meaning,
and d is the difference vector between Xr2,g and Xr3,g .

Fig. 1: Random mutation strategy

- Current to Best Mutation Strategy:

The current to best mutation strategy is referred as
DE/current-to-best/1. It moves the current individual towards
the best individual in the population before being disturbed

50 | P a g e
www.ijarai.thesai.org

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 4, No.12, 2015

with a scaled difference of two randomly selected vectors.
Hence the mutant vector is created by

Vi,g = Xi,g+F1×(Xbest,g−Xi,g)+F2×(Xr1,g−Xr2,g) (2)

where Vi,g stands for the mutant vector, Xi,g and Xbest,g

represent the current individual and the best individual in the
population respectively, F1 and F2 are the scaling factors in
the interval [0, 2] and r1, r2 ∈ { 1,2,. . . ,Np} are randomly
created integers.

Fig. 2 shows how the DE/current-to-best/1 strategy works
to produce a mutant vector, where d1 denotes the difference
vector between the current individual Xi,g , and Xbest,g, d2 is
the difference vector between Xr1,g and Xr2,g .

Fig. 2: Current to best mutation strategy

- Current to Rand Mutation Strategy:

The current to rand mutation strategy is referred to as
DE/current-to-rand/1. It moves the current individual towards a
random vector before being disturbed with a scaled difference
of two randomly selected individuals. Thus the mutant vector
is created according to Eq. 3 as follows

Vi,g = Xi,g+F1×(Xr1,g−Xi,g)+F2×(Xr2,g−Xr3,g) (3)

where Xi,g represents the current individual, Vi,g stands for the
mutant vector, g stands for the generation, i is the index of the
vector, F1 and F2 are the scaling factors in the interval [0, 2]
and r1, r2, r3 ∈ { 1,2,. . . ,Np} are randomly created integers.

Fig. 3 explains how the DE/current-to-rand/1 strategy
works to produce a mutant vector, where d1 is the difference
vector between the current individual, Xi,g , and Xr1,g , and d2
is the difference vector between Xr3,g and Xr2,g .

CROSSOVER. In step two we recombine the set of mutated
solutions created in step 1 (mutation) with the original popu-
lation members to produce trial solutions. A new trial vector
is denoted by Ti,g where i is the index and g is the generation.

Fig. 3: Current to rand mutation strategy

Every parameter in the trial vector is calculated with equation
3

Ti,g[j] =

{
Vi,g[j] if rand[0, 1] < CR or j = jrand
Xi,g[j] otherwise

(4)

where j stands for the index of every parameter in a vector, CR
is the probability of the recombination and jrand is a randomly
selected integer in [1, Np] to ensure that at least one parameter
from the mutant vector is selected.

SELECTION. In this last step we compare a trial vector
with its parent in the population with the same index i to
choose the stronger one to enter the next generation Therefore,
if the problem to solve is a minimization problem, the next
generation is created according to equation 4

Xi,g+1 =

{
Ti,g if f(Ti,g) < f(Xi,g)

Xi,g otherwise
(5)

where Xi,g is an individual in the population, Xi,g+1 is the
individual in the next generation, Ti,g is the trial vector, f(Ti,g)
stands for the fitness value of trial solution and f(Xi,g) is the
fitness value of the individual in the population.

The pseudocode for basic DE is given in Alg. 1. First of
all we create the initial population with randomly generated
individuals. Then we evaluate every individual in the popula-
tion with a fitness function. Afterward we perform the three
main steps: mutation, recombination and selection. First we
mutate the population according Eq. 1, Eq. 2 or Eq. 3, then
we recombine mutant vectors and their parents to get trial
vectors according to Eq. 4, which are also called offspring.
Finally we compare the offspring with their parents and the
better individuals get into the updated population. From step
3 to step 7 we need to repeat it until the termination condition
is satisfied.

51 | P a g e
www.ijarai.thesai.org

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 4, No.12, 2015

Algorithm 1 Differential Evolution
1: Initialize the population with ramdomly created individu-

als
2: Calculate the fitness values of all individuals in the popu-

lation
3: while The termination condition is not satisfied do
4: Create mutant vectors using a mutation strategy in Eq.

1, Eq. 2 or Eq. 3
5: Create trial vectors by recombining mutant vectors with

parents vector according to Eq. 4
6: Evaluate trial vectors with their fitness function
7: Select winning vectors according to Eq. 5 as individuals

in the next generation
8: end while

IV. DE INTEGRATED WITH ERS

This section is devoted to the proposal of the memetic
DE algorithm with integrated ERS for local search. We will
first introduce ERS as a general local search method together
with its three concrete (search) strategies, and then we shall
outline how ERS can be incorporated into DE to enable self-
refinement of individuals inside a DE process.

A. Eager Random Local Search (ERS)

The main idea of ERS is to immediately move to a
randomly created new position in the neighborhood without
considering other opportunities as long as this new position
receives a better fitness score than the current position. This is
different from some other conventional local search methods
such as Hill Climbing in which the next move is always to
the best position in the surroundings. Forsaking optimality
of moves in ERS is beneficial to achieve more randomness
and diversity of search for avoiding local optima. Further, in
exploiting the neighborhood, only a small subset of randomly
selected variables undergoes changes to randomly create a
trial solution. If this trial solution is better, it simply replaces
the current one. Otherwise a new trial solution is generated
with other randomly selected variables. This procedure is
terminated when a given number of trial solutions have been
created without finding improved ones. The formal procedure
of ERS is given in Algorithm 2, where α denotes the portion
of variables that are subject to local changes and M is the
maximum number of times a trial solution can be created in
order to find a better position than the current one.

The next more detailed issue with ERS is how to change
a selected variable in making a trial solution in the neighbor-
hood. This corresponds to the way to assign a possible value
for parameter k in line 7 of Algorithm 2. Our idea is to solve
this issue using a suitable probability function. We consider
three probability distributions (uniform, normal, and Cauchy)
as alternatives for usage when generating a new value for a
selected parameter/variable. The use of different probability
distributions lead to different local search strategies within the
ERS family, which will be explained in the sequel.

1) Random Local Search (RLS): In Random Local Search
(RLS), we simply use a uniform probability distribution when
new trial solutions are created given a current solution. To be
more specific, when dimension k is selected for change, the

Algorithm 2 Eager Random Local Search
1: Set i = 1;
2: while i <=M do
3: candidates = 1,2,. . . ,dimension;
4: Set j = 1;
5: while j < α ∗ dimension do
6: Randomly select k from candidates;
7: Assign a random possible value to parameter k of the

vector;
8: Remove k from candidates;
9: Set j = j + 1;

10: end while
11: if This new solution is better than the parent then
12: Replace the parent solution with the new one;
13: Set i = 1;
14: else
15: Set i = i + 1;
16: end if
17: end while

trial solution X ′ will get the following value on this dimension
regardless of its initial value in the current solution:

X ′[k] = rand(ai, bi) (6)

where rand(ai, bi) is a uniform random number between ai
and bi , and ai and bi are the minimum and maximum values
respectively on dimension k.

As equal chance is given to the whole range of a variable
when changing a solution, RLS is more likely to create new
points with large variation, thus increasing the opportunity to
jump out from a local optimum. The disadvantage of RLS lies
on its fine tuning ability to reach the exact optimum.

2) Normal Local Search (NLS): In Normal Local Search
(NLS), we create a new trial solution by disturbing the current
solution in terms of a normal probability distribution. This
means that, if dimension k is selected for change, the value
on this dimension for trial solution X ′ will be given by

X ′[k] = X[k] +N(0, δ) (7)

where N(0, δ) represents a random number generated accord-
ing to a normal density function with its mean being zero.

Owing to the use of the normal probability distribution,
NLS usually creates new trial solutions that are quite close
to the current one. This may, on one hand, bring benefit for
the fine-tuning ability to reach the exact optimum. But, on the
other hand, it will make it more difficult for the local search
to escape from a local optimum.

3) Cauchy Local Search (CLS): In this third local search
strategy, we apply the Cauchy density function in creating trial
solutions in the neighborhood. It is called Cauchy Local search
(CLS). A nice property of the Cauchy function is that it is
centered around its mean value whereas exhibiting a wider
distribution than the normal probability function, as is shown in
Fig. 3. Hence CLS will have more chances to make big moves
in attempts to find possibly better positions and to leave away

52 | P a g e
www.ijarai.thesai.org

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 4, No.12, 2015

from local minima. Regarding the fine-search ability, CLS will
be better than RLS though it is not expected as good as NLS.

More concretely, a Cauchy probability density function is
defined by

f(x) =
1

π
× t

t2 + x2
, t > 0 (8)

Its corresponding cumulative probability function is given
by

F (x) =
1

2
+

1

π
× arctan(x

t
) (9)

It follows that, on a selected dimension k, the value of trial
solution X ′ will be generated as follows:

X ′[k] = X[k] + t× tan(π × (rand(0, 1)− 0.5)) (10)

where rand(0, 1) is a random uniform number between 0 and
1.

Fig. 4: Distribution probability

B. The Proposed Memetic DE Algorithm

Here with we propose a new memetic DE algorithm by
combining basic DE with Eager Random Search (ERS). ERS
is applied in each generation after completing the mutation,
crossover and selection operators. The best individual in the
population is used as the starting point when ERS is executed.
If ERS terminates with a better solution, it is inserted into the
population and the current best member in the population is
discarded. The general procedure of the proposed memetic DE
algorithm is outlined in Algorithm 3.

Finally, different strategies within ERS can be used for
local search in line 9 of Algorithm 3. We use DERLS, DENLS,
and DECLS to refer to the variants of the proposed memetic
DE algorithm that adopt RLS, NLS, and CLS respectively as
local search strategies.

Algorithm 3 Memetic Differential Evolution
1: Initialize the population with randomly created individuals
2: Calculate the fitness values of all individuals in the popu-

lation
3: while The termination condition is not satisfied do
4: Create mutant vectors using a mutation strategy in Eq.

1, Eq. 2 or Eq. 3
5: Create trial vectors by recombining mutant vectors with

parents vector according to Eq. 4
6: Evaluate trial vectors with their fitness function
7: Select winning vectors according to Eq. 5 as individuals

in the next generation
8: Identify the best individual Xbest in the population
9: Perform local search from Xbest using a ERS strategy

10: if the result from local search Xr is better than Xbest

then
11: replace Xbest by Xr in the population
12: end if
13: end while

V. EXPERIMENTS AND RESULTS

To examine the merit our proposed memetic DE algorithm
compared to basic DE, we tested the algorithms in thirteen
benchmark functions [24] listed in Table 1. Functions 1 to 7
are unimodal and functions 8 to 13 are multimodal functions
that contain many local optima. Table 1 gives the definition of
every function. The most difficult functions are 8, 9 and 10,
which are shown in Figs. 5, 6 and 7 respectively.

Fig. 5: Function 8 with two dimensions

A. Experimental Settings

DE has three main control parameters: population size
(Np), crossover rate (CR) and the scaling factor (F) for
mutation. The following specification of these parameters
was used in the experiments: Np = 60, CR = 0.85 and
F, F1, F2 = 0.9. All the algorithms were applied to the
benchmark problems with the aim to find the best solution
for each of them. Every algorithm was executed 30 times on
every function to acquire a fair result for the comparison. The
condition to finish the execution of DE programs is that the
error of the best result found is below 10e-8 with respect to
the true minimum or the number of evaluations has exceeded

53 | P a g e
www.ijarai.thesai.org

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 4, No.12, 2015

TABLE I: The thirteen functions used in the experiments

FUNCTION

f1(x) =
∑n

i=1
x2
i

f2(x) =
∑n

i=1
|xi|+

∏n

i=1
|xi|

f3(x) =
∑n

i=1
(
∑i

j=1
xj)

2

f4(x) = maxi{|xi|, 1 ≤ i ≤ n}
f5(x) =

∑n−1

i=1
[100× (xi+1 − x2

i)
2 + (xi − 1)2]

f6(x) =
∑n

i=1

⌊
(xi + 0.5)2

⌋
f7(x) =

∑n

i=1
i× x4

i + random[0, 1)

f8(x) =
∑n

i=1
−xi × sin(

√
|xi|)

f9(x) =
∑n

i=1
[x2
i − 10× cos(2× π × xi) + 10]

f10(x) = −20× exp(−0.2×
√

1
n ×
∑n

i=1
x2
i
)− exp(1

n ×
∑n

i=1
cos(2πxi)) + 20 + e

f11(x) = 1
4000 ×

∑n

i=1
x2
i −
∏n

i=1
cos(

xi√
i
) + 1

f12(x) = π
n × {10sin

2(πyi) +
∑n−1

i=1
((yi − 1)2[1 + 10sin2(πyi+1)]) + (yn − 1)2}+

+
∑n

i=1
u(xi, 10, 100, 4), where yi = 1 + 1

4 (xi + 1)

u(xi, a, k,m) =

{
k(xi − a)m, xi > a

0, −a ≤ xi ≤ a
k(xi − a)m, xi < −a

f13(x) = 0.1× {sin2(3πx1) +
∑n−1

i=1
((xi − 1)2[1 + sin2(3πxi+1)])+

+(xn − 1)[1 + sin(2πxn)
2]}+

∑n

i=1
u(xi, 5, 100, 4)

Fig. 6: Function 9 with two dimensions

Fig. 7: Function 10 with two dimensions

300,000. The parameters in DECLS are t = 0.2, M = 5 and
α = 0.1.

The results of experiments will be presented as follows:
First we will compare the performance (the quality of acquired
solutions) of the various DE approaches with random mutation
strategy, secondly we will compare the performance of the
same approaches using the current to rand mutation strategy
and third we will compare the performance of the same
approaches using the current to best mutation strategy.

B. Performance of the Memetic DE with random mutation
strategy

First, random mutation strategy (DE/rand/1) was used in
all DE approaches to study the effect of the ERS local search
strategies in the memetic DE algorithm. The results can be
observed in Table 2 and the values in boldface represent the
lowest average error found by the approaches.

In Table 3 there is a ranking among all the approaches
for every function. The last row represents the average of the
rankings.

We can see in Table 2 and Table 3 that DECLS is the
best in all the unimodal functions except on Function 4 that
is the second best. In multimodal functions, DERLS is the
best on Functions 8, 10 and 11. DECLS found the exact
optimum all the times in Functions 12 and 13. The basic, DE
performed the worst in multimodal functions. According to
the above analysis, we can say that DECLS improve a lot the
performance of basic DE with random mutation strategy and
also we found out that DERLS is really good in multimodal
functions particularly on Function 8, which is the most difficult
function. Considering all the functions and the average ranking
in Table 3, the best algorithm is DECLS and the weakest one
is the basic DE.

54 | P a g e
www.ijarai.thesai.org

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 4, No.12, 2015

TABLE II: Average error of the found solutions on the test
problems with random mutation strategy

FUNC. DE DERLS DENLS DECLS
f1 0,00E+00 0,00E+00 0,00E+00 0,00E+00

(4,56E-14) (6,80E-13) (1,21E-13) (1,33E-14)
f2 1,82E-08 5,30E-08 2,26E-08 1,42E-08

(1,13E-08) (2,39E-08) (1,32E-08) (1,07E-08)
f3 6,55E+01 8,01E+01 1,11E+00 6,54E-01

(3,92E+01) (4,88E+01) (1,10E+00) (1,47E+01)
f4 6,22E+00 2,37E+00 1,80E-02 5,66E-01

(5,07E+00) (1,87E+00) (7,28E-01) (3,68E-01)
f5 2,31E+01 2,27E+01 2,65E+01 2,03E+01

(2,00E+01) (1,81E+01) (2,41E+01) (2,62E+01)
f6 0,00E+00 0,00E+00 0,00E+00 0,00E+00

(0,00E+00) (0,00E+00) (0,00E+00) (0,00E+00)
f7 1,20E-01 1,15E-02 1,23E-02 1,05E-02

(3,79E-03) (3,16E-03) (3,29E-03) (3,61E-03)
f8 2,72E+03 2,31E+02 1,86E+03 1,58E+03

(8,15E+02) (1,50E+02) (5,46E+02) (5,16E+02)
f9 1,30E+01 1,28E+01 6,17E+00 7,72E+00

(3,70E+00) (3,72E+00) (2,06E+00) (2,43E+00)
f10 1,88E+01 1,87E+00 4,94E+00 5,50E+00

(4,28E+00) (4,76E+00) (8,11E+00) (7,53E+00)
f11 8,22E-04 8,22E-04 1,49E-02 1,44E-02

(2,49E-03) (2,49E-03) (2,44E-02) (2,70E-02)
f12 3,46E-03 3,46E-03 1,04E-02 0,00E+00

(1,86E-02) (1,86E-02) (3,11E-02) (8,49E-15)
f13 3,66E-04 0,00E+00 0,00E+00 0,00E+00

(1,97E-03) (2,14E-13) (1,31E-14) (3,37E-15)

TABLE III: Ranking of all DE approaches with random
mutation strategy

FUNCTION DE DERLS DENLS DECLS
f1 2,5 2,5 2,5 2,5
f2 2 4 3 1
f3 3 4 2 1
f4 4 3 1 2
f5 3 2 4 1
f6 2,5 2,5 2,5 2,5
f7 3 2 4 1
f8 4 1 3 2
f9 4 3 1 2

f10 4 1 2 3
f11 1,5 1,5 4 3
f12 2,5 2,5 4 1
f13 4 2 2 2

average 3,076923 2,384615 2,692308 1,846154

C. Performance of the Memetic DE with Current to Rand
Mutation Strategy

The next mutation strategy used in our experiments was
current to rand mutation strategy (DE/current-to-rand/1) and
the results are illustrated in Table 4. The first column of this
table shows the functions that we used for testing and the
results for every algorithm are given in Columns 2-5.

Table 5 shows the ranking of all the approaches for every
test function with current to rand mutation strategy.

We can see in Table 4 and Table 5 that in unimodal
functions the best algorithm is DECLS except in Function 3
DENLS is the best. In multimodal functions, basic DE is the
worst, because it has the worst results in Functions 8 and 10,
two of the most difficult functions and basic DE did not find
good result in Function 9. The best algorithms in multimodal
functions are DECLS and DERLS. According to this analysis
we can say that DECLS is most desirable as it appeared to be
competent in all functions, also in the average ranking DECLS
gets the best result.

TABLE IV: Average error of the found solutions on the test
problems with current to rand mutation strategy

FUNC. DE DERLS DENLS DECLS
f1 0,00E+00 0,00E+00 0,00E+00 0,00E+00

(1,20E-16) (5,50E-15) (2,53E-16) (5,23E-17)
f2 0,00E+00 0,00E+00 0,00E+00 0,00E+00

(6,79E-10) (2,68E-09) (1,65E-09) (8,09E-10)
f3 1,96E+01 1,99E+01 3,89E-01 4,46E-01

(9,93E+00) (1,16E+01) (2,94E-01) (3,29E-01)
f4 3,30E+00 1,39E+00 6,19E-01 9,44E-02

(2,81E+00) (1,66E+00) (1,64E+00) (2,14E-01)
f5 1,57E+01 1,91E+01 2,70E+01 1,49E+01

(1,48E+01) (1,82E+01) (2,70E+01) (1,94E+01)
f6 0,00E+00 0,00E+00 0,00E+00 0,00E+00

(0,00E+00) (0,00E+00) (0,00E+00) (0,00E+00)
f7 9,64E-03 9,36E-03 9,57E-03 9,04E-03

(9,93E-03) (2,63E-03) (2,21E-03) (3,22E-03)
f8 6,71E+03 1,20E+03 5,17E+03 4,02E+03

(2,93E+02) (2,78E+02) (6,33E+02) (6,01E+02)
f9 1,08E+01 1,37E+01 1,04E+01 1,01E+01

(2,39E+00) (4,45E+00) (3,72E+00) (3,41E+00)
f10 1,93E+01 4,62E-01 6,92E+00 1,59E+00

(3,58E+00) (2,49E+00) (9,22E+00) (4,86E+00)
f11 2,47E-04 4,93E-04 9,04E-03 3,77E-03

(1,33E-03) (1,84E-03) (2,09E-02) (7,87E-03)
f12 0,00E+00 0,00E+00 3,46E-03 0,00E+00

(1,61E-17) (5,02E-17) (1,86E-02) (9,99E-18)
f13 0,00E+00 0,00E+00 0,00E+00 0,00E+00

(1,85E-13) (1,68E-11) (2,48E-12) (6,99E-15)

TABLE V: Ranking of all approaches with current to rand
mutation strategy

FUNCTION DE DERLS DENLS DECLS
f1 2,5 2,5 2,5 2,5
f2 2,5 2,5 2,5 2,5
f3 3 4 1 2
f4 4 3 2 1
f5 2 3 4 1
f6 3 4 2 1
f7 2 4 3 1
f8 3,5 1 3,5 2
f9 4 3 2 1
f10 4 1 3 2
f11 1 2 4 3
f12 2 2 4 2
f13 2,5 2,5 2,5 2,5

average 2,846152 2,461538 2,769231 1,923077

D. Performance of the Memetic DE with Current to Best
Mutation Strategy

The last experiments were related with current to best mu-
tation strategy (DE/current-to-best/1). This mutation strategy
was used in all DE approaches to study the effect of our
proposed ERS strategies in the memetic DE algorithm. The
results can be observed in Table 6 and the values in boldface
represent the lowest average error found by the approaches.

In Table 7 there is a ranking among all the approaches
for every function. The last row represents the average of the
rankings.

We can see in Table 6 and Table 7 that DECLS got the
best results in most unimodal functions. DERLS is the best
on Functions 8 and 10, always finding the true optimum in
Function 10. DECLS is the best algorithm in Function 9
and only this algorithm always found the true optimum in
Functions 12 and 13. According to the above analysis, we can
say that DECLS is the best algorithm, because it is competitive
in almost all unimodal and multimodal functions. DECLS also

55 | P a g e
www.ijarai.thesai.org

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 4, No.12, 2015

TABLE VI: Average error of the found solutions on the test
problems with current to best mutation strategy

FUNC. DE DERLS DENLS DECLS
f1 0,00E+00 0,00E+00 0,00E+00 0,00E+00

(1,81E-34) (8,64E-32) (1,14E-33) (1,04E-33)
f2 0,00E+00 0,00E+00 0,00E+00 0,00E+00

(9,16E-20) (5,69E-19) (7,19E-19) (3,02E-19)
f3 2,73E-03 7,27E-03 5,97E-02 5,09E-03

(2,57E-03) (8,06E-03) (3,21E-01) (2,64E-02)
f4 6,42E-04 2,69E-03 2,98E-04 1,86E-04

(5,95E-04) (4,72E-03) (2,47E-04) (1,93E-04)
f5 4,10E-01 4,34E-01 1,97E+00 1,07E+00

(1,19E+00) (1,23E+00) (3,64E+00) (1,75E+00)
f6 2,33E-01 2,67E-01 6,67E-02 0,00E+00

(4,23E-01) (5,12E-01) (2,49E-01) (0,00E+00)
f7 7,94E-03 8,54E-03 8,33E-03 7,77E-03

(2,45E-03) (2,21E-03) (3,40E-03) (2,40E-03)
f8 2,35E+03 3,10E+02 2,35E+03 2,10E+03

(8,66E+02) (1,86E+02) (5,85E+02) (5,75E+02)
f9 2,18E+01 2,02E+01 1,23E+01 1,08E+01

(4,47E+00) (5,13E+00) (6,08E+00) (3,72E+00)
f10 1,06E+01 0,00E+00 2,78E+00 1,99E+00

(9,89E+00) (1,28E-15) (6,44E+00) (5,87E+00)
f11 4,76E-03 9,52E-03 1,16E-01 1,01E-01

(5,28E-03) (8,59E-03) (8,04E-02) (6,79E-02)
f12 2,76E-02 1,04E-02 1,42E-01 0,00E+00

(5,31E-02) (3,11E-02) (3,21E-01) (8,22E-33)
f13 1,83E-03 3,66E-04 4,36E-04 0,00E+00

(4,09E-03) (1,97E-03) (1,64E-03) (2,57E-09)

TABLE VII: Ranking of all DE approaches with random
mutation strategy

FUNCTION DE DERLS DENLS DECLS
f1 2,5 2,5 2,5 2,5
f2 2,5 2,5 2,5 2,5
f3 1 3 4 2
f4 3 4 2 1
f5 1 2 4 3
f6 3 4 2 1
f7 2 4 3 1
f8 3,5 1 3,5 2
f9 4 3 2 1

f10 4 1 3 2
f11 1 2 4 3
f12 3 2 4 1
f13 4 3 3 1

average 2,653846 2,538462 3,038462 1,769231

gets the best ranking among others. Besides, DERLS is shown
to be competitive in multimodal functions.

VI. CONCLUSIONS

In this paper we propose a memetic DE algorithm by
incorporating Eager Random Search (ERS) as a local search
method to enhance the search ability of a pure DE algorithm.
Three concrete local search strategies (RLS, NLS, and CLS)
are introduced and explained as instances of the general ERS
method. The use of different local search strategies from the
ERS family leads to variants of the proposed memetic DE algo-
rithm, which are abbreviated as DERLS, DENLS and DECLS
respectively. The results of the experiments have demonstrated
that the overall ranking of DECLS is superior to the ranking
of basic DE and other memetic DE variants considering all
the test functions and various mutation strategies used. In
addition, we found out that DERLS is much better than the
other counterparts in very difficult multimodal functions.

In future work, we intend to improve our proposed algo-
rithms with adaptive parameters in mutation, crossover and

local search and attempting to hybridize both alternatives
to take advantage of the best features from each of them.
Moreover, we will also apply and test our new computing
algorithms in real industrial scenarios.

ACKNOWLEDGMENT

The work is funded by the Swedish Knowledge Foundation
(KKS) grant (project no 16317). The authors are also grateful
to ABB FACTS, Prevas and VOITH for their co-financing of
the project. The work is also partly supported by ESS-H profile
funded by the Swedish Knowledge Foundation.

REFERENCES

[1] N. Xiong, D. Molina, M. Leon, and F. Herrera, “A walk into meta-
heuristics for engineering optimization: Principles, methods, and recent
trends,” International Journal of Computational Intelligence Systems,
vol. 8, no. 4, pp. 606–636, 2015.

[2] N. Hansen and A. Ostermeier, “Completely derandomized self-
adaptation in evolution strategies,” Evolutionary Computation, vol. 9,
no. 2, pp. 159–195, 2001.

[3] F. Herrera and M. Lozano, “Two-loop real-coded genetic algorithms
with adaptive control of mutation step size,” Applied Intelligence,
vol. 13, pp. 187–204, 2000.

[4] E. Falkenauer, “Applying genetic algorithms to real-world problems,”
Evolutionary Algorithms, vol. 111, pp. 65–88, 1999.

[5] R. Storn and K. Price, “Differential evolution - a simple and efficient
heuristic for global optimization over continuous spaces,” Journal of
Global Optimization, vol. 11, no. 4, pp. 341 – 359, 1997.

[6] J. Brest, S. Greiner, B. Boskovic, M. Mernik, and V. Zumer, “Self-
adapting control parameters in differential evolution: A comparative
study on numerical benchmark problems,” in IEEE Transaction on
Evolutionary Computation, vol. 10, 2006, pp. 646–657.

[7] J. Kenedy and R. C. Eberhart, “Particle swarm optimization,” in In Proc.
IEEE Conference on Neural Networks, 1995, pp. 1942–1948.

[8] G. Venter and J. Sobieszczanski-Sobieski, “Particle swarm optimiza-
tion,” AIAA Journal, vol. 41, pp. 1583–1589, 2003.

[9] D. Jia, G. Zheng, and M. K. Khan, “An effective memetic differential
evolution algorithm based on chaotical search,” Information Sciences,
vol. 181, pp. 3175–3187, 2011.

[10] D. Molina, M. Lozano, A. M. Sanchez, and F. Herrera, “Memetic
algorithms based on local search chains for large scale continuous
optimization problems: Ma-ssw-chains,” Soft Computing, vol. 15, pp.
2201–2220, 2011.

[11] N. Krasnogor and J. Smith, “A tutorial for competent memetic algo-
rithms: Model, taxonomy, and design issue,” IEEE Transactions on
Evolutionary Computation, vol. 9, no. 5, pp. 474–488, 2005.

[12] N. Norman and H. Ibai, “Accelerating differential evolution using
an adaptative local search,” in IEEE Transactions on Evolutionary
Computation, vol. 12, no. 1, 2008, pp. 107 – 125.

[13] M. Ali, M. Pant, and A. Nagar, “Two local search strategies for
differential evolution,” in Proc. Bio-Inspired Computing: Theories and
Applications (BIC-TA), 2010 IEEE Fifth International Conference,
Changsha, China, 2010, pp. 1429 – 1435.

[14] G. Jirong and G. Guojun, “Differential evolution with a local search
operator,” in Proc. 2010 2nd International Asia Conference on Informat-
ics in Control, Automation and Robotics (CAR), Wuhan, China, vol. 2,
2010, pp. 480 – 483.

[15] Z. Dai and A. Zhou, “A diferential ecolution with an orthogonal local
search,” in Proc. 2013 IEEE congress on Evolutionary Computation
(CEC), Cancun, Mexico, 2013, pp. 2329 – 2336.

[16] X. Weixeng, Y. Wei, and Z. Xiufen, “Diversity-maintained differential
evolution embedded with gradient-based local search,” soft computing,
vol. 17, pp. 1511–1535, 2013.

[17] K. Bandurski and W. Kwedlo, “A lamarckian hybrid of differential
evolution and conjugate gradients for neural networks training,” Neural
Process Lett, vol. 32, pp. 31–44, 2010.

56 | P a g e
www.ijarai.thesai.org

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 4, No.12, 2015

[18] M. Avriel, “Nolinear programming: Analysis and methods,” in Dover
Publishing, 2003.

[19] S. Russel and P. Norvig, “Artificial intelligence: A moder approach,” in
New Yersey: Prentice Hall, 2003, pp. 111–114.

[20] R. Storn and K. Price, “Differential evolution - a simple and efficient
adaptive scheme for global optimization over continuous spaces,” Com-
put. Sci. Inst., Berkeley, CA, USA, Tech Rep. TR-95-012, 1995.

[21] W. Pei-chong, Q. Xu, and H. Xiao-hong, “A novel differential evolution
algorithm based on chaos local search,” in Proc. International confer-
ence on information Engineering and Computer Science, 2009. ICIECS
2009. Wuhan, China, 2009, pp. 1–4.

[22] I. Poikolainen and F. Neri, “Differential evolution with concurrent fit-
ness based local search,” in Proc. 2013 IEEE Congress on Evolutionary
Computation (CEC), Cancun, Mexico, 2013, pp. 384–391.

[23] M. Leon and N. Xiong, “Investigation of mutation strategies in differ-
ential evolution for solving global optimization problems,” in Artificial
Intelligence and Soft Computing. springer, June 2014, pp. 372–383.

[24] X. Yao, Y. Liu, and G. Lin, “Evolutionary programming made faster,”
in Proc. IEEE Transactions on Evolutionary Computation, vol. 3, no. 2,
1999, pp. 82–102.

57 | P a g e
www.ijarai.thesai.org

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 4, No.12, 2015

