
(IJARAI) International Journal of Advanced Research in Artificial Intelligence, 

Vol. 4, No.4, 2015 

69 | P a g e  

www.ijarai.thesai.org 

Density Based Support Vector Machines for 

Classification

Zahra Nazari 

Department of Information Engineering 

University of the Ryukyus 

Okinawa, Japan 

Dongshik Kang 

Department of Information Engineering 

University of the Ryukyus 

Okinawa, Japan

 

 
Abstract—Support Vector Machines (SVM) is the most 

successful algorithm for classification problems. SVM learns the 

decision boundary from two classes (for Binary Classification) of 

training points. However, sometimes there are some less 

meaningful samples amongst training points, which are 

corrupted by noises or misplaced in wrong side, called outliers. 

These outliers are affecting on margin and classification 

performance, and machine should better to discard them. SVM 

as a popular and widely used classification algorithm is very 

sensitive to these outliers and lacks the ability to discard them. 

Many research results prove this sensitivity which is a weak point 

for SVM. Different approaches are proposed to reduce the effect 

of outliers but no method is suitable for all types of data sets. In 

this paper, the new method of Density Based SVM (DBSVM) is 

introduced. Population Density is the basic concept which is used 

in this method for both linear and non-linear SVM to detect 

outliers.  Experiments on artificial data sets, real high-

dimensional benchmark data sets of Liver disorder and Heart 

disease, and data sets of new and fatigued banknotes’ acoustic 

signals can prove the efficiency of this method on noisy data 

classification and the better generalization that it can provide 

compared to the standard SVM. 

Keywords—SVM; Density Based SVM; Classification; Pattern 

Recognition; Outlier removal 

I. INTRODUCTION 

Support Vector Machines is an important example of 
kernel methods, one of the key areas in machine learning. It is 
originated from the theoretical foundations of the Statistical 
Learning Theory and Structural Risk Minimization (SRM) [1, 
2]. SVM was introduced by Vapnik and colleagues in 1970’s, 
but its major developments were formed in 1990’s. The main 
idea behind SVM is to find an optimal separating hyperplane 
with maximized margin. The maximum margin reduces the 
empirical risks (training errors) and causes a very good 
generalization performance. SVM became very famous 
because of its high ability in generalization and good 
performance in pattern recognition (digit recognition, 
computer vision, and text & speech categorization, etc.) and 
have found application in a wide variety of areas [2]. 

Classification with SVM is formulated as a quadratic 
programming which can be solved by using optimization 
algorithms. In binary classification problems the standard 
SVM can be used and data points will be classified without 
any misclassification. However in real world problems, 
sometimes there are many data points which are corrupted by 
noises or misplaced on the wrong side. These data points are 

called outliers and sensitivity of SVM to these outliers is a 
weak point for this algorithm. There are many approaches 
proposed to reduce this sensitivity; the Central SVM method 
(CSVM) which is using class center vectors [3], Adaptive 
Margin SVM for classification which propose a reformulation 
of the minimization problem [4], Mapping original input space 
to normalized feature space for increasing the stability to noise 
[5], Robust SVM for solving the over fitting problem [6], and 
Fuzzy SVM [7] are some examples of proposed approaches to 
reduce the effects of outliers and noises. 

Fuzzy SVM is developed on the theory of the SVM and 
fuzzy membership for each data point shows the attitude of the 
corresponding point toward one class and also represents the 
importance of the data points to the decision boundary. The 
data points with a bigger fuzzy membership will be treated 
more important and will contribute more to the learning of 
decision boundary [7]. 

This paper is organized as follows. The theory of Support 
Vector Machines will be explained in section II. The Basic 
concept which is used to develop DBSVM will be explained 
in section III.  Density Based SVM will be introduced in 
section IV. Experiments and comparison of standard SVM 
performance to DBSVM performance will be discussed in 
section V. 

II. SUPPORT VECTOR MACHINES 

Data classification process using SVM includes two 
stages: learning is the first stage, the aim of which is to 
analyze labeled data and learn a mapping from   to   where 
  *     +  (with   being the number of classes) and to 
build a classifier. The second stage is predicting which is 
using the established model for predicting on novel inputs. 
SVM is one of the most successful classification algorithms 
and its important property is that the determination of the 
model parameters corresponds to a convex optimization 
problem, and so any local solution is also a global optimum 
[8]. The basis of the theory of SVM for classification 
problems will be reviewed in the following. 

A. Hard Margin (Linear) SVM 

The linearly separable case is the easiest classification 
problem which is rare in practice. In this case data pairs can be 
classified perfectly and the empirical risk can be set to zero. In 
linearly separable cases, among all the separating hyperplanes 
which minimize the empirical risk, the one with the largest 
margin is required. This can be expressed as the idea that a 
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classifier with a smaller margin will have a higher expected 
risk [2]. Suppose that a set of 2-dimensional labeled training 
points *(     ) (     )   (     )+  is given and each of 
them has a class label   *    +  which denotes the two 
classes separately. During the learning stage the machine finds 
parameters w and b of the decision function  ( ) given as: 

 ( )     (      ) (1) 

 

where w is the weight vector and b is the bias. SVM, after 
learning by training points can produce an output for unknown 
data point according to above decision function (1). The 
linearly separable data points can be classified by solving the 
following quadratic program: 
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B. Soft Margin SVM 

In previous section the training points were assumed that 
are linearly separable and the resulting support vector machine 
will give exact separation of the training points which is not 
very realistic. Sometimes in real-world problems the training 
points are overlapped (slightly nonlinear) and some samples 
cannot be classified correctly and the constraint in (2) will not 
be satisfied. Therefore classification violation must be allowed 
in the SVM. In practice the soft margin will be allowed. This 
approach allows some training points to be on the wrong side 
of the separating hyperplane, but with a penalty that increases 
with the distance from hyperplane [2, 9]. To do this, the 
nonnegative variable     will be used to measure the 
amount of this violation and (2) will be modified to (3): 
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where   ∑    is the distance of error samples to their correct 
places. Parameter C>0 (the only free parameter in SVM) 
controls the trade-off between slack variable penalty and the 
margin [8]. 

C. Non-linear SVM 

In case of considerable class overlapping (seriously 
nonlinear) of the training points, soft margin SVM classifiers 
are unable to separate the samples into classes appropriately. 
Therefore SVM transforms samples   from original input 
space to a higher dimensional feature space by a non-linear 
vector mapping function   ( )      . However the vector 
mapping function ( ) leads to high computational expenses. 
Thus, this transformation can be performed by kernel function 

which allows more simplified representation of the data. 
Polynomial, Sigmoidal, and Gaussian (RBF) are some popular 
kernel functions for this kind of transformation [2, 8, 10, 11]. 

The different distribution in the feature space enables the 
fitting of a linear hypersurface in order to separate all samples 
into the classes. Classification is easier in higher dimensions, 
but computation is costly. The resulting separating 
hypersurface in feature space will be optimal in the sense of 
being a maximal margin classifier with respect to training 
points [2]. The vector   (  ) in the feature space corresponds 
to vector    in the original space. The solution in the SVM 
does not depend directly to input vectors, rather to dot product 
between input vectors, and so the dot product of  (  )  (  ) is 

needed. It would be preferable to be able to define the dot 
product directly rather than defining the mapping   explicitly. 
The kernel function computes the dot product of training 
points in feature space and there will be no need to define   
explicitly [12]. By using Lagrange multiplier and kernel 
method, the QP for nonlinear cases is as below: 
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Fig. 1. Transforming non-separable data from original input space to higher   

dimensional feature space. 

 

III. BASIC CONCEPT 

Population Density is the basic concept which is used to 
develop Density Based SVM. Population density is the way of 
measuring the population per unit of area or volume. The term 
of population density was used by Henry Drury Hamess in 
1937 for the first time, then widely used to measure the 
decrement and increment of densities and finally applied as an 
indicator to compare the area’s population density. The 
concept of population density indicates the relationship 
between number of population and the occupied space by 
them. 
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By using this concept, the densely populated and less 
populated areas can be determined. Considering the training 
points as the population, those samples placed in less 
populated areas or the areas with low population densities can 
be treated as outliers. These outliers are not very important, 
but dramatically are affecting on performance of SVM 
algorithm. 

Outliers are unusual data points that are inconsistent with 
other observations. In statistics an outlier is an observation 
with an abnormal distance from most other observations. 
Generally presence of an outlier may cause some sort of 
problems. An outlier may be due to gross measurement error, 
coding/recording error, and abnormal cases, but a frequent 
cause of outliers is a mixture of two distributions and they can 
be occurred by chance in any distribution [13, 14, 15]. There 
are two strategies to deal with outliers: first, outlier detection 
or removal as a part of preprocessing; second, developing a 
robust modeling method to be insensitive to outliers [14, 15]. 
Density Based SVM is based on the first strategy. 

IV. DENSITY BASED SVM 

The main goals of Density Based SVM is reducing effects 
of outliers, maximizing margin, providing better 
generalization, and adjusting the decision boundary according 
to the density of data sets. Meanwhile Density Based SVM 
reduces the number of support vectors which decreases 
computational complexity. It is noteworthy that in Density 
Based SVM, input vectors are those which are in highest-
confidence area of data set and they are more informative than 
other input vectors. 

Density Based SVM can detect outliers or data points 
which are out of the densely populated area. To detect these 
outliers, first the densely populated area of a data set should be 
determined. The data points which are located in the densely 
populated area will be considered as important (meaningful) 
points and other as less important (meaningless) which can be 
misclassified or ignored. Although the concept of population 
density is used to develop Density Based SVM, the formula is 
different with (5). In this method the distance (Euclidean & 
Mahalanobis) between data points of one data set plays the 
main role to determine the area with high population density. 

A. Density Based SVM with Euclidean Distance 

Euclidean distance measures the distance between two 
points by formula (6) in Euclidean space [16]. Suppose that a 
set of 2-dimensional data *(     ) (     )   (     )+  is 
given. First the Euclidean distance between all data points of 
one class should be calculated. For example the Euclidean 
distance between point 1 and 2, 3, … , n and the Euclidean 
distance between point 2 to 1, 3, …, n and so on. 

 

 (   )  √(     )
  (     )

  (6) 

 

The next step is summing up all distances for each point. 
For example the total distance for point 1 is    ,  (   )   
   (   )          (   )-  where n is the number of data points 
in one data set. The total distances for all data points of one 
data set is needed to calculate the average distance which will 
be used to determine data points which are inside and outside 
of densely populated area. The average distance can be 
calculated as follows: 
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After calculating the           by (7), those data points 
with (             ) should go to group 1 which is the new 
training set and others to group 2. The space which is 
occupied by group 1 is the area with high population density 
and data points inside this group will be considered as 
important data points.  Those data points in group 2 will be 
considered as less important or outliers and they will not 
contribute in training phase [17]. 

 

Algorithm 1: 

1- For each data point   : 

- Calculate the Euclidean distance between    and all other 
data points by (6) 

- Sum up all the distances calculated for one point as   

2- Sum up all   values as        . 

3- Divide         by number of data points of one set as 
          by (7) 

4- Set all data points with (           ) in one group 

5- New group contains the most important data points and others 
will be considered as outliers. 

 

 

Fig. 2. Result of standard SVM; Outliers exist and margin is small. 



(IJARAI) International Journal of Advanced Research in Artificial Intelligence, 

Vol. 4, No.4, 2015 

72 | P a g e  

www.ijarai.thesai.org 

 

Fig. 3. Result of DBSVM; outliers are removed and margin is bigger. 

Applying algorithm 1 as preprocessing on both data sets of 
the classification problem in Fig .2, can help to detect outliers, 
reducing the number of support vectors, and maximizing the 
margin. The difference of margin with and without outliers is 
shown in Fig .2 and Fig. 3 respectively. 

The described algorithm can be applied on both linear and 
non-linear SVM. In non-linear cases it can be done either in 
original input space or feature space and there will be no 
difference in result. In case of applying algorithm in input 
space, removing outliers from data set will also reduce the 
dimensionality of data points in feature space and there will be  
no need to change the algorithm and all should be done like as 
previous description. However in case of applying mentioned 
algorithm in feature space, there will be a small difference. 
Since the kernel matrix should be positive semi-definite and 
symmetric, after removing outliers it will become asymmetic. 
In this case by removing each data point, the corresponding 
column also should be removed. For example point    in 
below matrix is an outlier, consequently in addition to the 3

rd
 

row, the 3
rd

 column also should be removed from kernel 
matrix. 
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B. Density Based SVM  with Mahalanobis Distance 

In this section the Mahalanobis distance will be used 
instead of Euclidean distance. Euclidean distance measures the 
distance between two points by formula (6) in Euclidean 
space. The Mahalanobis distance is the distance from   to the 
quantity μ. This distance is based on the correlation between 
variables or the variance-covariance matrix. Mahalanobis 
distance is unit less and it takes into accounts the correlation 

of the data set and does not depend on the scale of 
measurement [16]. The Mahalanobis distance of point   to the 
mean of distribution can be calculated by formula (8) and 
Mahalanobis distance of point   to point   can be calculated 
by formula (9): 

  ( )  √(   )
    (   ) (8) 

  (   )  √(   )
     (   ) (9) 

 

 

where μ is the mean of the distribution and     is the inverse 
covariance matrix. Here, to determine the densely populated 
area, the Mahalanobis distance of each point to the mean μ of 
the data set is used. Same as the previous section, the average 
distance should be calculated and then, those data points with 
(  )             should go to group 1 as important points 
and others to group 2 as outliers. 
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Algorithm 2: 

1- For each data point   : 

- Calculate the Mahalanobis distance of    to the mean   of 
data set as   by (8) 

2- Sum up all   values as        . 

3- Divide         by number of data points of one set as 
          by (10) 

4- Set all data points with             in one group 

5- New group contains the most important data points and others 
will be considered as outliers. 

 

 

C. Density Based SVM for Special Cases 

So far, the considered data sets had one center and the 
distribution of data points were around that center. However 
sometimes data points are distributed very widely and it seems 
they have more than one center. To deal with this problem, 
before applying algorithm 1 or 2, the method of K-means 
clustering should be used to cluster data points and then 
algorithm 1 or 2 can be applied for each cluster separately. 

 -means is one of the most popular clustering algorithms, 
and it is an iterative descent clustering method.  -means finds 
  clusters in a given data set and number of   should be 
defined by user. Each cluster is described by a single point 
called centroid. Centroid means it’s at the center of all the data 
points in a cluster.  -means is a simple algorithm based on 
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similarity and the measure of similarity plays an important 
role in the process of clustering [18, 19, 20]. 

The  -means algorithm works like this: First     randomly 
centroids will be placed, next, each point in the data set will be 
assigned to the nearest centroid by measuring the Euclidean 
distance between point and all centroids. After this step, the 
centroids will be updated by taking the mean value   of all the 
points assigned to them. This process will be repeated until the 
assignments stop changing. The result of  -means depends to 
two factors: first the value of  ; second the initial selection of 
centroids [21, 22, 23]. 

 

 

Fig. 4. Result of applying k-means clustering method on one data set. 

 
Fig. 5. Result of DBSVM after clustering the widely distributed data set. 

 

V. EXPERIMENTS & RESULTS 

In order to validate the performance of Density Based 
SVM, two types of Experiments were performed with 
different data sets of binary classification problems. The first 
type of experiment was performed using 2 and 3 dimensional 
artificial data sets and the second type was performed using 
two high dimensional benchmark data sets and one set of high 

dimensional banknote data. The K-fold Cross Validation 
method is used for all data sets. 

A. Artificial data classification 

The artificial data sets which are used for this experiment 
are generated at random with normal distribution.  These data 
sets are used with different standard deviations, and below 
tables represent the results of applying standard SVM and 
Density Based SVM on them by 2-fold cross validation. 

TABLE I.  CHARACTERISTICS OF ARTIFICIAL DATA SETS 

Linearly separable data sets # of instances 

set1_a  &  set1_b      ( =8 & 12, SD=1) tr=200, ts=200 

set1_c  &  set1_d      (  =8 & 12, SD=2) tr=200, ts=200 

Non-linear data sets # of data 

set2_a  & set2_b        ( =8 &12,  SD=3) tr=200, ts=200 

set2_c  & set2_d        ( =8 &12,  SD=4) tr=200, ts=200 

TABLE II.  LINEAR ARTIFICIAL DATA CLASSIFICATION 

Data sets 
SVM 

(Linear) 

DBSVM 

(Linear+Euc) 

DBSVM 

(Linear+Mah
a) 

set1_a  &  set1_b 99% 99% 99% 

#SV 35 30 30 

set1_c  &  set1_d 80% 83% 83% 

#SV 47 36 37 

TABLE III.  NON-LINEAR ARTIFICIAL DATA CLASSIFICATION 

Data sets 
SVM 

(RBF) 

DBSVM 

(RBF+Euc) 

DBSVM 

(RBF+Maha) 

set2_a  &  set2_b 76% 82% 82% 

#SV 70 45 48 

set2_c  &  set2_d 62% 68% 70% 

#SV 86 50 56 

 

According to above results, Density Based SVM with 
Euclidean distance can perform better than with Mahalanobis 
distance on data sets which have smaller standard deviations 
and are linearly separable or slightly non-linear. However 
Density Based SVM with Mahalanobis distance performs 
better on data sets with bigger standard deviation values that 
are seriously nonlinear. 

B. Benchmark data classification 

Two benchmark data sets are used. They are medical data 
of Liver Disorder and Heart Disease which are obtained from 
real life and can be downloaded from the Repository of 
machine learning databases of the well-known University of 
California at Irvine (UCI) [25]. These data sets are used by 2-
fold and 5-fold cross validations. 
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a) Liver Disorder Data 

TABLE IV.  CHARACTERISTICS OF LIVER DISORDER  DATA  SET 

Data set characteristics: Multivariate 

Attribute characteristics: Categorical, Integer, Real 

Number of instances: 345 

Number of attributes: 7 

TABLE V.  LIVER DISORDER  CLASSIFICATION BY LINEAR KERNEL 

Data sets  
SVM 

(Linear) 

DBSVM 

(Linear+Eu

c) 

DBSVM 

(Linear+Maha

) 

Liver Disorder (2-fold) 66.9% 70.8% 69.7% 

#SV 127 83 70 

Liver Disorder (5-fold) 68.5% 70.5% 71.6% 

#SV 200 125 122 

TABLE VI.  LIVER DISORDER  CLASSIFICATION BY POLYNOMIAL KERNEL   

Data sets  
SVM 

(Poly) 
DBSVM 

(Poly+Euc) 
DBSVM 

(Poly+Maha) 

Liver Disorder (2-fold) 57.5% 59.12% 57.7% 

#SV 120 85 90 

Liver Disorder (5-fold) 63.69 % 63.69% 67.73% 

#SV 210 135 124 

TABLE VII.  LIVER DISORDER  CLASSIFICATION BY RBF KERNEL 

Data sets 
SVM 

(RBF) 
DBSVM 

(RBF+Euc) 
DBSVM 

(RBF+Maha) 

Liver Disorder (2-fold) 60.3% 60.3% 60.3% 

#SV 172 131 115 

Liver Disorder (5-fold) 57.5% 58% 58% 

#SV 225 160 150 

 

b) Heart Disease Data 

TABLE VIII.  CHARACTERISTICS OF HEART DISEASE  DATA SET 

Data set characteristics: Multivariate 

Attribute characteristics: Categorical, Real 

Number of instances: 270 

Number of attributes: 13 

TABLE IX.  HEART DISEASE  CLASSIFICATION BY POLYNOMIAL KERNEL 

Data sets  
SVM 

(Poly) 
DBSVM 

(Poly+Euc) 
DBSVM 

(Poly+Maha) 

Heart Disease (2-fold) 72 % 71% 79.99% 

#SV 86 50 30 

Heart Disease (5-fold) 70.36 % 70.36% 79.99% 

#SV 86 45 30 

TABLE X.  HEART DISEASE  CLASSIFICATION BY RBF KERNEL 

Data sets  
SVM 

(RBF) 

DBSVM 

(RBF+Euc) 

DBSVM 

(RBF+Maha) 

Heart Disease (2-fold) 60.6 % 60.6% 60.6% 

#SV 135 85 75 

Heart Disease (5-fold) 60% 60% 60% 

#SV 96 50 58 

 

C. New and Fatigued Banknote classification 

To classify the new and fatigued banknotes, two sets of 
acoustic signals of new and fatigued U.S. one dollar banknote 
which are recorded by measurement system of acoustic signal 
are used for both training and testing. In this case the 
amplitude differences are considered as the characteristic 
value. The acoustic signal sets are mapped from very high-
dimensional to four-dimensional data. Steps for converting 
data to four-dimensional are as follows [26]: 

Step 1. Calculating the amplitude difference from the 
sample data of forward and backward (see Fig.6). 

Step 2. Assigning each calculated data to the horizontal 
and vertical axes. 

Step 3. Converting from Cartesian coordinate into the 
polar coordinate; all elements are divided by the fan-shaped 
domain. 

Step 4. Number of elements which are distributed over 
each domain gives a four-dimensional data for each banknote 
acoustic signal (see Fig. 7). 

 

 

Fig. 6. Calculating amplitude difference from sample data of forward and 

backward. 

 

Fig. 7. Sample of data in polar coordinate 4-dim    (                   ) 
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The data set which is used for this experiment contains 48 
four-dimensional data of new banknotes and 128 four-
dimensional data of fatigued banknotes in four different 
levels. The data set is divided at random into two disjoint 
subset of the same size for 2-fold cross validation. Results of 
experiments with standard SVM with different kernels and 
Density Based SVM (Euclidean distance & Mahalanobis 
distance) are shown in following tables. 

TABLE XI.  CHARACTERISTICS OF BANKNOTE DATA  SETS 

Banknote Data Sets # of instances # of attributes 

S00. New banknote  48 4 

S01. Fatigued banknote (level 1) 32 4 

S02. Fatigued banknote (level 2) 32 4 

S03. Fatigued banknote (level 3) 32 4 

S04. Fatigued banknote (level 4) 32 4 

TABLE XII.  BANKNOTE DATA CLASSIFICATION BY LINEAR KERNEL 

Banknote Data  
SVM 

(Linear) 

DBSVM 

(Linear+Eu
c) 

DBSVM 

(Linear+Maha
) 

Average Result of 

Binary Classification 
66.77% 72.55% 69% 

#SV 17 9 12 

 

Multiclass 

Classification 

39.56% 45% 42% 

#SV 55 30 45 

TABLE XIII.  BANKNOTE DATA CLASSIFICATION BY POLYNOMIAL KERNEL 

Banknote Data  

SVM 

(Polynomia

l) 

DBSVM 

(Poly+Euc) 
DBSVM 

(Poly+Maha) 

Average Result of 

Binary Classification 
63.68% 68.85% 65% 

#SV 13 8 10 

 

Multiclass 

Classification 

38% 43% 37.5% 

#SV 50 32 36 

TABLE XIV.  BANKNOTE DATA CLASSIFICATION BY SPLINE KERNEL 

Banknote Data  
SVM 

(Spline) 

DBSVM 

(Spline+Eu

c) 

DBSVM 

(Spline+Maha

) 

Average Result of 

Binary Classification 
62.24% 65% 63.83% 

#SV 17 10 11 

TABLE XV.  BANKNOTE DATA CLASSIFICATION BY RBF KERNEL 

Banknote Data  
SVM 

(RBF) 
DBSVM 

(RBF+Euc) 
DBSVM 

(RBF+Maha) 

Average Result of 

Binary Classification 
69% 70.5% 69% 

#SV 32 20 20 

Banknote Data  
SVM 

(RBF) 
DBSVM 

(RBF+Euc) 
DBSVM 

(RBF+Maha) 

 

Multiclass 

Classification 

35% 35% 35% 

#SV 75 45 48 

 

According to the results of different types of experiments 
on artificial data sets, benchmark data sets and banknote data 
sets, it can be claimed that Density Based SVM can provide 
better generalization ability, reduces the effects of outliers, 
and it can decrease the number of support vectors. Number of 
support vectors has a direct influence on the time required to 
evaluate the SVM decision function and also on the time 
required to train the SVM. 

Considering the results presented in previous tables, 
algorithm 1 can be useful for linearly separable and slightly 
overlapping classes, and algorithm 2 can be useful for those 
classes with considerable overlapping (seriously nonlinear). 

VI. CONCLUSION 

In this paper, the new method of Density Based Support 
Vector Machines is introduced. Density Based SVM tries to 
decrease the effects of outliers on SVM performance.  The 
basic concept which is used in this method is population 
density. By using this concept, the densely populated area of 
each data set can be found. Those data points which are inside 
this area are located in highest confidence area of data set and 
will be considered as most important points and others as 
outliers. To find this area, two algorithms are proposed; 
algorithm 1 uses Euclidean distance and algorithm 2 uses 
Mahalanobis distance. 

SVM finds the optimal separating hyperplane under the 
effects of outliers, but this method first removes outliers as a 
preprocessing and adjusts the separating hyperplane/decision 
boundary according to the density of data sets. Support vectors 
in Density Based SVM are from high confidence area of data 
set. Although the main goal of Density Based SVM is 
removing outliers, it is also maximizing margin, reducing 
number of support vectors which results reducing 
computational complexity and gives better generalization 
ability. Different experiments on artificial data sets and real 
high dimensional data sets are performed to prove the validity 
of this method. Considering the results of experiments, the 
Density Based SVM can be useful on different types of noisy 
data sets. It increases the SVM performance and considerably 
reduces number of support vectors. 

The future work to be done is to make some changes in 
this method to become more effective on RBF kernels. 
Because according to the results of experiments, Density 
Based SVM only reduces the number of support vectors and 
computational complexity, but does not increase the 
generalization ability while using RBF kernel. 
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