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Abstract—Compositions measurement is a vitally critical issue
for the modelling and control of distillation process. The product
compositions of distillation columns are traditionally measured
using indirect techniques via inferring tray compositions from its
temperature or by using an online analyser. These techniques
were reported as inefficient and relatively slow methods. In
this paper, an alternative procedure is presented to predict the
compositions of a binary distillation column. Particle swarm opti-
misation based artificial neural network PSO-ANN is trained by
different algorithms and tested by new unseen data to check the
generality of the proposed method. Particle swarm optimisation
is utilised, here, to choose the optimal topology of the network.
The simulation results have indicated a reasonable accuracy
of prediction with a minimal error between the predicted and
simulated data of the column.

Keywords—Hybrid Intelligence; Prediction; Distillation Col-
umn; Neural network; Particle swarm optimisation

I. INTRODUCTION

Over the past few decades, great developments in online
analysis, monitoring and measurement of dynamic processes
were made in various applications [1]–[5]. This development
is partially motivated by the desire to improve quality. Un-
ambiguously, quality is a significant indication that has a
substantial impact on productivity and economy of manufac-
ture, particularly in the field of mass production [2]. Direct
measurement of the product compositions of the distillation
column is a crucial issue. However, its disadvantages at stream
process lie in difficulty, unreliability and high capital and
operational cost. These disadvantages will have an exponen-
tially negative effect when more than one analysis are needed
to obtain a clearer picture of the different streams involved.
Consequently, indirect and inferential measurement techniques
are being used to design and run many distillation columns.
These columns operate widely in chemical and petrochemical
plants as well as refineries to separate mixtures into their
individual components.

Not only non-linearity and transit behaviour make distil-
lation, as a process, complicated to control, but the product
compositions also cannot be promptly measured, nor reliable.
The delay caused by the measurement and analysis of compo-
sitions will negatively affect the effectiveness and robustness
of control [6]. An indirect method is proposed to monitor the
products compositions of the column by using tray temperature
inside the column, albeit this feature is an unreliable indicator

of product compositions [7], [8]. Moreover, other consider-
ations like consistent maintenance, regular calibrations, and
high-cost equipment make composition analysers an ineffective
solution for precise online measurements. Consequently, soft
sensing or inferential systems have been proposed recently as
practical options to replace hardware measurement systems [9].

Artificial neural networks (ANNs) is one of the most
attention-grabbing branches of artificial intelligence, which
has grown rapidly in the recent years as an optimal solu-
tion for the modelling, and prediction of dynamic systems.
ANNs have shown outstanding performance to learn the input-
output relationship of nonlinear and complex systems. This
relationship could be easily, quickly and efficiently found out
via reducing the error between the network output(s) and
the actual output(s). After the network is trained, the output
can be predicted within few seconds. ANN-based models
are still being applied successfully to overcome engineering
problems in different fields such as adaptive control, pattern
recognition, robotics, image processing, medical diagnostics,
fault detection, process monitoring, renewable and sustainable
energy, laser applications and nonlinear system identification
[10]–[17].

The most crucial task which faces the neural network
constructer is the proper selection of the network topology
to solve a particular problem. The topology means, here, the
number of nodes (neurones) and the number of layers in the
hidden zone. Therefore, one of the most efficient methods
to determine the optimal network structure is evolutionary
algorithm EA methods such as genetic algorithm GA [18] and
practical swarm optimisation PSO [19] and so on.

This paper proposed a PSO-based neural network as a
predictor model for estimating the product compositions of
a binary distillation column.

II. DISTILLATION COLUMN MODELLING AND
DESCRIPTION

Distillation is, undoubtedly, one of the most important
processes in chemical and petrochemical plants. Distillation
columns are used as separators of chemical compounds in
petroleum, natural gas, liquid and chemical industries [20].
The major disadvantage of using those columns is that they are
considered as an intensive energy process. A report from the
US Department of Energy has indicated that distillation is the
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largest consumer of energy in the chemical industry; typically,
it accounts 40% of the energy consumed by petrochemical
plants. Despite its “thirst” for energy, distillation persists to be
a widely utilised method for separations [21], [22].

Figure 1 is a schematic diagram of a binary distillation
column, in which a feed mixture is separated into a distil-
late product (overhead) and a bottom product. Also, heat is
transferred into the column via a reboiler (heat exchanger) to
vaporise some of the liquid from the base of the column. The
vapour travels up through trays inside the column to reach the
top and, then, comes out to be liquefied in a condenser. Liquid
from the condenser, at that point, drops into the reflux drum.
Finally, the distillate is removed from this drum as a pure
product. additionally, some liquid (reflux) is fed back near the
top of the column while the impure product is produced at the
bottom outlet.

Fig. 1: Schematic diagram of a binary distillation column

The dynamic model can be simplified under the following
assumptions:

• No chemical reactions occur in all stages of the
column

• Constant pressure (open to atmosphere pressure)

• Binary mixture

• Constant relative volatility

• No vapour hold-up occurs

• Perfect mixing and equilibrium for vapour-liquid on
all stages

While the operating conditions and technical aspects of the
distillation column are detailed in the appendix at the end of
this paper.

Accordingly, the mathematical expression of the model can
be represented with the assumptions by the following equa-
tions: On each tray (excluding reboiler, feed and condenser
stages):

• On each tray (excluding reboiler, feed and condenser
stages):

Mi
dxi
t

= Li+1xi+1 + Vi−1yi−1 − Lixi − Viyi (1)

• Above the feed stage i = NF + 1:

Mi
dxi
t

= Li+1xi+1+Vi−1yi−1−Lixi−Viyi+FV yF
(2)

• Below the feed stage i = NF :

Mi
dxi
t

= Li+1xi+1+Vi−1yi−1−Lixi−Viyi+FLXF

(3)

• In the reboiler and column base i = 1, xi = xB:

MB
dxi
t

= Li+1xi+1 − Viyi +BxB (4)

• In the condenser, i = N + 1, xD = xN + 1:

MD
dxi
t

= Vi−1yi−1 − LixD −DxD (5)

• Vapour-liquid equilibrium relationship for each tray
[23]:

yi =
αxi

1 + (α− 1)xi
(6)

• The flow rate at constant molar flow:

Li = L, V i = V + FV (7)

since
FL = qF × F (8)

Fv = F + FL (9)

• The flowrate of both condenser and reboiler as: Re-
boiler:

B = L+ FL − V (10)

Condenser:
D = V + FV − L (11)

• The feed compositions xF and yF are found from the
flash equation as:

FzF = FL × xF − FV × yF (12)
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III. HYBRID MODEL DEVELOPMENT AND OPTIMISATION

Recently, hybridization or combination of different learning
and adaptation techniques has been employed to a large
number of new intelligent system designs. The main aim of
integrating these techniques is to overcome individual limita-
tions and to achieve synergetic effects [24].

Therefore, a PSO-based artificial neural network is pro-
posed as an estimator tool of a binary distillation column.

A. Artificial Neural Networks

Artificial neural network (ANNs) is a complicated system,
which is composed of numerous neural nets. These nets funda-
mentally based on the principal understanding of the function,
structure, and the mechanism of the brain of humankind [25].
In the last two decades or so, ANNs have been applied to
a widespread range of applications due to their ability to
analyse and capture the complexity and nonlinearity features
of dynamic processes. One of the major applications of ANNs
is a modelling or identification process of complex systems
[26].

It is worth mentioning that the topology of the network is
a crucial matter where as choosing the number of the neurones
and layers in the hidden zone is not an easy task. So far, no
systematic approach or automatic methods have been used to
tackle this issue. Because the network structure depends on
the nature and features of the process that would be modelled.
Therefore, there are, probably, only two research methods to
select from, a blind or heuristic. The blind approach, or trial
and error, is an unguided and arbitrary search method, to which
all possible alternatives are applied to find the optimal solution.
Although this technique can eventually find the optimal ANN
topology with limited search space, this method is not practical
because it is considered highly expensive in terms of time and
computations.

B. Particle Swarm Optimisation

Ever since particle swarm optimisation (PSO) has been
proposed by Kennedy and Eberhart in 1995 [27] and 2001
[28], PSO algorithm turned to be vastly successful. The several
of researchers have presented the merit of the implementation
of PSO as an optimiser for various applications [29]. In PSO
procedure, all individuals or particles (commonly between 10
and 100) are located at a random position and are supposed to
move randomly in a defined direction in the search space. Each
particle direction is then changed steadily to move assuredly
along the direction of its best previous positions to discover
even a new better position according to certain criteria or an
objective function (fitness). The initial particle velocity and
position are selected arbitrarily, and the following velocity
equation can update them as

V ci+1 = wVi+C1R1×(Pbi−xi)+C2R2×(Gb−xi) (13)

Whereas the new particle is calculated by adding the previous
one to the new velocity as shown in the following equation:

xi+1 = xi + V ci+1 (14)

where: V c: velocity of the particle, X: position of the particle,
R1, R2: independent random variables uniformly distributed in

[0, 1], C1, C2: acceleration coefficients as well as w: inertia
weight. Eq. 13 is used to compute the new velocity of the
particle according to its preceding velocity and the distances
of its current position from its own best position (Pb) and
the global best position (GB). Then, the particle moves to
a new place in the search space, according to Eq. 14. The
performance of each particle is measured according to a pre-
defined objective function (performance index).

C. Hybrid System Design

Evolutionary-based optimisation, like PSO, can be applied
by only simple mathematical operations with a few lines of
code [30]. This feature provides a low-cost method concerning
both memory and speed requirements. Thus, in this study, PSO
is chosen to find the optimal network topology of the prediction
model as depicted in Figure 2.

Fig. 2: Schematic diagram of the proposed hybrid system

IV. SIMULATION AND RESULTS

In this study, the reflux (L) and the boil-up (V) flow rates
had been used as inputs to the network while distillate and bot-
tom composition chosen as outputs. The dataset implemented
for the training, validation and testing of ANN was generated
by applying 40 distributed random values, each lasting 50
sampling time for (L) and (V) as shown in Figure 3. The
distillate composition was approximately between 0.95 and
1 (mole fraction), while the bottom composition was around
0.005 to 0.12 (mole fraction) and a total of 2000 datasets were
collected for identification, Figure 4 presents the simulated
data of the column.

The dataset obtained by the simulation was randomly
divided into 70%, 15% and 15% for training, validation
and testing respectively. Feedforward multilayer network had
been implemented to predict the product compositions of
the distillation column. In addition, various backpropagation
training algorithms, namely; Gradient Descent (GD), Scaled
Conjugate Gradient (SCG) and LevenbergMarquardt (LM)
were separately applied to decide which one performs better

(IJARAI) International Journal of Advanced Research in Artificial Intelligence, 

Vol. 5, No.4, 2016 

30 | P a g e
www.ijarai.thesai.org 



Fig. 3: MATLAB/Simulink model of the distillation column
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than the others. Moreover, Log-sigmoid activation function
was embedded in the neurones of the hidden layer(s) because
of its differentiability. PSO was employed to find the optimal
structure of the network, the best operational parameters of
PSO algorithm were chosen after extensive simulations and
were set as following: For each of the network architecture,

No. of variables (dimensions) 2
Size of the swarm (no. of particles) 50
Maximum iterations (max) 100
Cognitive acceleration (C1) 1.2
Social acceleration (C2) 0.12
Momentum or inertia (w) 0.9
Minimum search space 1
Maximum search space 25

the training algorithms had been run ten times with different
random initial weights and biases. After investigating the per-
formance of different architectures using the PSO technique,
a network with two hidden layers (including 23 neurons in
the first and 25 in the second) trained by LM algorithm have
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Fig. 4: Inputs/outputs of the simulation of the distillation
column

indicated reasonably good results. Figures 5 and 6 show the
performance of the network as a mean square error (MSE)
versus the network architecture of the single and double hidden
layer respectively. Table I demonstrates the training, testing
and validation performances of different training approaches
of both one and two layers in the hidden zone.

It is clearly indicated that much better results are found us-
ing LM as training algorithm with two hidden layers topology
because LM uses Hessian matrix approximation as a second-
order method to calculate the change in gradient. Figures
7 and 8 display regression plots of the network outputs on
both compositions of training and test sets. For a perfect
fit, the data must fall along a 45-degree line, where the
network outputs are equal to the targets. The network with two
hidden layers trained by LM algorithm, the fit, is reasonably
good of both datasets, with R values in each case of 0.99
or above. Checking the test set is importantly required for
examining the generalisation of the network of unseen data
in the learning stage. It is worth noting that the network
training and simulation was performed using MATLAB R© and
Simulink R© platform.

Training
Method

No. of
Hidden
Layers

No. of
Neurones

Training
MSE

Testing
MSE

Validation
MSE

Time
(sec)

GD
1 4 3.972×

10−4
3.952×
10−4

3.996×
10−4

12.40

2 9 − 2 2.047×
10−4

2.112×
10−4

2.015×
10−4

11.84

SCG
1 19 1.529×

10−5
1.6 ×
10−5

1.5 ×
10−5

12.39

2 20 − 25 9.392×
10−7

9.429×
10−7

9.743×
10−7

38.39

LM
1 25 1.12 ×

10−6
1.225×
10−6

1.195×
10−6

18.58

2 23 − 25 4.365×
10−9

3.984×
10−9

7.8 ×
10−9

11.37

TABLE I: Performances (MSE) of different PSO-ANN topolo-
gies
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Fig. 5: Performance curves of one hidden layer PSO-ANN of
different algorithms

1st Hidden Layer

5

10

15

20

25

GD

25

20

2nd Hidden Layer

15

10

5

×10-3

5

0

6

4

3

2

1

P
e

rf
o
rm

a
n

c
e

 M
S

E

1st Hidden Layer

5

10

15

20

25

SCG

25

20

2nd Hidden Layer

15

10

5

×10-4

0

0.5

1

2

1.5

P
e
rf

o
rm

a
n
c
e
 M

S
E

(IJARAI) International Journal of Advanced Research in Artificial Intelligence, 

Vol. 5, No.4, 2016 

32 | P a g e
www.ijarai.thesai.org 



5

1st Hidden Layer

10
15

20
25

LM

25
20

2nd Hidden Layer

15
10

5

×10-4

1

0.8

0.4

0.2

0

0.6

P
e
rf

o
rm

a
n

c
e
 M

S
E

Fig. 6: Performance 3D surfaces of two hidden layers PSO-
ANN of different algorithms
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Fig. 7: The regression line between predicted and simulated
compositions of training set
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Fig. 8: The regression line between predicted and simulated
compositions of testing set

V. CONCLUSION

A PSO-based artificial neural network has been proposed
as an intelligent prediction approach to estimate product
compositions of a binary distillation column; boil-up and
reflux were used as inputs to the network. A double layer
in the hidden zone with 23-25 neurones architecture was
presented the optimal performance of the prediction model
after examining different training algorithms and topologies
using particle swarm optimisation. the network trained by Lev-
enbergMarquardt algorithm gave more accurate results with
less MSE compared to Gradient Descent and Scaled Conjugate
Gradient. Therefore, the precision of predicted compositions of
the distillation column using LM algorithm has shown to be
high, and the estimated compositions have approximately been
in agreement with the simulation results. The proposed ANN
could be used efficiently to improve the performance of the
different neural network controllers like NARMA-L2, direct
inverses and NN predictive controller, which mainly depend
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on the prediction performance, which is to be the subject of
future work.
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APPENDIX

Abbreviations, the operating conditions and technical as-
pects of the distillation column are detailed in following table.

Symbol Description Value Unit
N Number of trays 20 -
NF Feed stage location 11 -
F Typical inlet flow rate to the column 1 kmol/min
D Typical distillate flow rate 0.5 kmol/min
B Typical bottoms flow rate 0.5 kmol/min
zF Light component in the feed (mole frac-

tion)
0.5 -

qF Mole fraction of the liquid in the feed 1 -
L Typical reflux flow rate 1.28 kmol/min
V Typical boil-up flow rate 1.78 kmol/min
α Relative volatility 2 -
xD Distillate composition (mole fraction) 0.98 -
xB Bottoms composition (mole fraction) 0.02 -
i Stage number during distillation - -
x Mole fraction of light component in

liquid
- -

y Mole fraction of light component in
vapour

- -

M Tray hold-up liquid 0.5 kmol
MD Condenser hold-up liquid 0.5 kmol
MB Reboiler hold-up liquid 0.5 kmol
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