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Abstract—In this paper, we introduce a new type of
information-theoretic method called “information-theoretic active
SOM”, based on the self-organizing maps (SOM) for training
multi-layered neural networks. The SOM is one of the most
important techniques in unsupervised learning. However, SOM
knowledge is sometimes ambiguous and cannot be easily inter-
preted. Thus, we introduce the information-theoretic method to
produce clearer and interpretable representations. The present
method extends this information-theoretic approach into super-
vised learning. The main contribution can be summarized by
three points. First, it is shown that clear representations by
the information-theoretic method can be effective in training
supervised learning. Second, the method is sufficiently simple
where there are two separated components, namely, information
maximization and error minimization component. Usually, two
components are mixed in one framework, and it is difficult to
compromise between them. In addition, the knowledge obtained
by this information-theoretic SOM can be used to solve the
shortage of unlabeled data, because the information maximization
component is unsupervised and can process all input data with
and without labels. The method was applied to the well-known
image segmentation datasets. Experimental results showed that
clear weights were produced and generalization performance was
improved by using the information-theoretic SOM. In addition,
the final results were stable, almost independent of the parameter
values.

Keywords—SOM; Labeled and Unlabeled; Supervised and Un-
supervised; Generalization; Interpretation

I. INTRODUCTION

The present paper aims to introduce a new type of
information-theoretic method called “information-theoretic ac-
tive self-organizing maps (SOM)” to improve generalization
performance. The novelty and contribution of the new method
can be summarized by three points, namely, the utility of
information-theoretic SOM for supervised learning, simple and
separated computation, and application to the target shortage
problem.

A. Explicit Knowledge for Supervised Learning

First, the present paper aims to show the utility of using
the information-theoretic SOM for supervised learning. Self-
organizing maps (SOM) have been established as one of the
most important unsupervised methods in neural networks [1],
[2]. Knowledge obtained by the SOM and represented over
connection weights has been exclusively used for the visual-
ization of input patterns [3], [4], [5], [6], [7], [8]. However, one
of the main problems is that SOM knowledge is sometimes
ambiguous and hard to interpret [9], [10], [11], [12], [13],

[14], [15], [16], [17], [18], [19]. Thus, contrary to its good
reputation for visualization, practically it has been difficul to
use and visualize SOM knowledge.

The information-theoretic SOM has been introduced to im-
prove and clarify SOM knowledge [20], [21]. In this method,
information on input patterns is increased while maintaining
neighborhood relations between neurons. By controlling the
information content of input patterns, connection weights can
be modifie for better visualization. When this information
content is increased, a smaller number of hidden neurons tend
to represent input patterns. Because many input patterns are
compressed into a smaller number of hidden neurons, it be-
comes easier to interpret the fina activities of hidden neurons.
It has been observed that increased information content can
improve the interpretation of neurons’ behaviors.

The present paper tries to show that this knowledge by
the information-theoretic method can be used to train neural
networks in supervised ways. While the SOM was originally
developed for unsupervised learning, the rich knowledge ob-
tained by this method has stimulated a number of attempts
to use it for supervised learning as well [22], [23], [24],[25].
However, they were not necessarily successful and it can be
said that they could not reach the performance level of the
conventional supervised learning methods. This is because
SOM knowledge is itself created in unsupervised ways and
not necessarily suited for training supervised neural networks.
For this, the information-theoretic SOM has good potentiality,
because the knowledge obtained by the method is much clearer
than that by the conventional methods. The present paper
tries to show the effectiveness of this clear representation for
training supervised neural networks.

B. Simple and Separated Computing

The present method is well suited for the supervised SOM
[24] [25] with simple and separated computing components.
As above mentioned, the SOM knowledge has been used
for supervised learning. However, these attempts have not
necessarily been successful, because it is difficul to compro-
mise between error minimization and competition processes.
Though information-theoretic methods have been applied to
supervised learning, one of the major problems is that in-
formation maximization is sometimes contradictory to error
minimization between targets and outputs. Thus, it becomes
difficul to compromise between those two contradictory pro-
cedures, especially when the problems become more complex.
The present method solves this problem by separating the
information maximization and error minimization components.
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Borrowing procedures from the fiel of deep learning [26],
[27], the present method separates the information maximiza-
tion or unsupervised phase from the supervised information use
phase. By virtue of this separation, each phase, unsupervised
or supervised, can focus on its own main task of information
maximization or error minimization.

C. Application to Label-Shortage Problem

Then, the present method can be applied to the so-called
“label-shortage problem” [28], [29]. As is frequently pointed
out, there is little labeled data, while unlabeled data are
abundant. A variety of methods have been developed to handle
the shortage of labeled data. Among them, the most important
methods are semi-supervised learning and active learning. Both
methods try to utilize the knowledge of unlabeled data to
ameliorate the shortage of labeled data. Active learning tries
to recruit the most informative unlabeled patterns to reinforce
supervised learning [29]. On the other hand, in semi-supervised
learning, information on unlabeled data is used to estimate the
targets in explicit or implicit ways [28].

To cope with the ”labeled data shortage” problem, we
can use the knowledge generated by the information-theoretic
SOM, since it can be produced in unsupervised ways. As
mentioned above, the two phases of learning, namely, the
information maximization and error minimization phases, are
separated. In the firs information maximization phase, the
information-theoretic SOM is applied to obtained knowledge
on input patterns with and without labels. Then, in the su-
pervised phase, this knowledge is used to train connection
weights for supervised learning. Similar methods have been
proposed for semi-supervised learning, for example, the use of
generative models to gain features for classificatio [30], [31].
The present method can use the rich knowledge through the
information-theoretic SOM, which can be expected to produce
much information on the entire input patterns.

D. Paper Organization

In Section 2, we present how to compute connection
weights in both unsupervised and supervised ways. In the
unsupervised phase, collective outputs from multiple hidden or
competitive neurons are computed. Information maximization
processes are realized in terms of decreasing Kullback-Leibler
divergence between collected an individual outputs. In the
supervised phase, the softmax learning procedures are used to
produce update rules. In Section 3, the experimental results of
the image segmentation data sets are shown from the well-
known machine learning database. First, the most explicit
connection weights are obtained by changing the number
of winners. Then, generalization errors and the number of
epochs are examined. Experimental results for the dataset
show that improved generalization could be obtained with
clearer connection weights. Compared with generalization by
the conventional BP and support vector machines (SVM),
the present method gave the better performance. In addition,
these results were more stable than those by the conventional
method.

II. THEORY AND COMPUTATIONAL METHODS

A. Information-Theoretic Supervised SOM

Figure 1 shows how the information-theoretic SOM is
applied. In Figure 1(a), there is a small number of labeled
data, while unlabeled data are abundant. In the unsupervised
phase in Figure 1(b), all data (both labeled and unlabeled)
are used for training the information-theoretic SOM. Then,
in Figure 1(c), the connection weights by the unsupervised
phase are transferred to the supervised learning phase. Taking
those connection weights as initial weights, supervised learning
is performed. Naturally, the supervised learning is conducted
only with labeled data. The problem is whether SOM knowl-
edge by all data (labeled and unlabeled) can be effective in
improving performance.

B. Basic Components

As shown in Figure 1, a network is composed of an
input layer, competitive layer and output layer. Let us ex-
plain how to compute the output from the competitive and
output neurons. Now, the sth input pattern can be represented
by xs = [xs

1, x
s
2, · · · , xs

L]
T , s = 1, 2, · · · , S. Connection

weights into the jth competitive neuron are denoted by wj =
[w1j , w2j , · · · , wLj ]

T , j = 1, 2, . . . ,M. The output from an
output neuron is computed by

vsj = exp

(
−∥ xs −wj ∥2

2σ2

)
, (1)

where σ denotes the spread parameter.

In the output layer, we use the sofmax output computed by

osi = f

 M∑
j=1

Wjiv
s
j

 (2)

where Wji are connection weights from the competitive neu-
rons of the last competitive layer to the output ones.

C. Unsupervised Phase

In the unsupervised phase, the individual neurons try
to imitate the outputs by multiple winners to realize self-
organization. By normalizing the output, we have the firin
probability

p(j | s) =
vsj∑M

m=1 v
s
m

. (3)

In addition to this firin probability, the output by multiple
neurons or winners is used to realize cooperation between
neurons as done in the SOM. Now, suppose that the neurons
c1, c2 are the firs and the second winners, and so on. Then,
the corresponding outputs can be ranked as follows:

vc1 > vc2 > . . . > vcM . (4)

Following the formulation of SOM, the distance between the
winner and the other neurons is computed by

ϕjc1 = exp

(
−∥ rj − rc1 ∥2

2σ2
ngh

)
, (5)
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Fig. 1. Learning processes for the information-theoretic supervised SOM with the unsupervised (a) and supervised (b) phase.

where rj denotes the position of the jth neuron on the output
map and σngh is the spread parameter. The jth neuron’s output
is the weighted sum of R winners’ outputs and computed by

zsj (R) =
R∑

m=1

ϕjcmvcm . (6)

The firin probability by the multiple winners is define by

q(j | s;R) =
zsj (R)∑M

j=1 z
s
m(R)

. (7)

Learning should be performed to reduce the difference
between these outputs. This difference using the Kullback-
Leibler divergence is computed by

KL =

S∑
s=1

p(s)

M∑
j=1

p(j | s) log p(j | s)
q(j | s;R)

. (8)

In addition to the KL divergence, there are the other errors
which must be minimized, namely quantization errors between
connection weights and input patterns

Q =
S∑

s=1

p(s)
M∑
j=1

p(j | s)∥xs −wj∥2. (9)

Fixing this quantization error and minimizing the KL-
divergence, the optimal firin rates are computed by

p∗(j | s) =
q(j | s;R) exp

(
−∥xs−wj∥2

2σ2

)
∑M

m=1 q(m | s;R) exp
(
−∥xs−wm∥2

2σ2

) . (10)

In addition, for connection weights, the re-estimation formula
[20] are obtained by

wj =

∑S
s=1 p

∗(j | s)xs∑S
s=1 p

∗(j | s)
. (11)

D. Supervised Fine Tuning

In the output layer, the sofmax output is computed by

osi =
exp

(∑M
j=1 Wjiv

s
j

)
∑N

m=1 exp
(∑M

j=1 Wjmvsj

) , (12)

where Wji are connection weights from the competitive neu-
rons of the last competitive layer to the output ones. The error
is computed by

E = −
S∑

s=1

N∑
i=1

ysi log o
s
i , (13)

where y is the target and N is the number of output neurons.
The error function is differentiated with respect to connection
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weights in the competitive and output layer. The update
formula for the firs competitive layer is shown by

∆wkj =
η

S

S∑
s=1

δsj (x
s
k − wkj), (14)

where δ is the error signal sent from the upper layers and η is
a learning parameter.

III. RESULTS AND DISCUSSION

A. Image Segmentation Data

1) Experiment Outline:The dataset of the image segmenta-
tion was taken from the well-known machine learning database
[32]. The dataset was drawn randomly from a database of 7
outdoor images. The images were hand-segmented to create a
classificatio for every pixel. The number of input patterns was
2310. The number of input neurons was 19 and the number of
output neurons was seven, corresponding to the seven outdoor
images. The number of competitive neurons was 5 by 12
neurons, as shown in Figure 2. The number of training patterns
was increased from 10 to 100 to demonstrate the effect of
the unsupervised information-theoretic method. The number
of patterns for the validation set was 500, and the remaining
patterns were used for testing (1710 patterns).

2) Improved Interpretation:First, we showed that the pro-
posed method could produce more interpretable connection
weights. Figure 3 shows U-matrices (1) and the corresponding
labels (2) by the conventional method (a) and the information-
theoretic method (b). By the conventional method in Figure
3(a), a clear class boundary in warmer colors could be seen
on the upper side of the matrix. Another boundary, though
weaker, was seen on the lower side of the matrix. However, by
using the information-theoretic method with three winners in
Figure 3(b), those class boundaries became stronger in warmer
colors.

The same tendency was obtained for the connection
weights, meaning that stronger characteristics could be seen
by the information-theoretic method. Comparing connection
weights by the SOM, some, in particular those in Figure 4(b6),
(b-9)-(b-12) were accentuated by the information-theoretic
method .

3) Improved Generalization :We compared generalization
performance of three methods, namely, the conventional BP,
SVM and the information-theoretic method. For fair compar-
ison, the SVM was fine-tuned the box constraint and kernel
scale parameters were extensively changed to have the best
possible results. As seen in Table I, the generalization errors
by the information-theoretic method, including the average,
minimum and maximum ones, were much lower than those
by the conventional methods. For example, when the number
of training patterns was the smallest (10 patterns), the average,
minimum and maximum values were 0.620, 0.473 and 0.753
by the conventional method, and 0.732, 0.474 and 0.909
by the SVM, respectively. Those values decreased to 0.438,
0.280 and 0.620 by the information-theoretic method. The
differences between them decreased when the number of input
patterns increased. However, even if the number of input
patterns increased to 100 patterns, the average, minimum and
maximum values decreased from 0.185, 0.161 and 0.222 by

TABLE I. SUMMARY OF EXPERIMENTAL RESULTS BY THE

CONVENTIONAL BP, SVM AND THE INFORMATION-THEORETIC METHOD

FOR THE SEGMENTATION DATA SET. THE NOTATION CNV AND INF
REPRESENT THE CONVENTIONAL AND INFORMATION-THEORETIC

METHODS, RESPECTIVELY.

Generalization error
Methods Patterns Average Std dev Min Max Epochs

CNV 10 0.620 0.098 0.473 0.753 468
20 0.543 0.093 0.372 0.695 470
30 0.433 0.100 0.264 0.581 445
40 0.352 0.078 0.261 0.486 492
50 0.291 0.080 0.187 0.451 480
100 0.185 0.019 0.161 0.222 466

INF 10 0.438 0.098 0.280 0.620 316
20 0.310 0.069 0.209 0.430 444
30 0.249 0.062 0.168 0.337 396
40 0.209 0.059 0.133 0.282 390
50 0.181 0.041 0.131 0.260 466
100 0.123 0.011 0.110 0.144 460

SVM 10 0.732 0.165 0.474 0.909
20 0.499 0.156 0.311 0.805
30 0.426 0.172 0.247 0.836
40 0.314 0.057 0.212 0.392
50 0.276 0.042 0.213 0.336
100 0.201 0.021 0.161 0.236

the conventional method to 0.123, 0.110 and 0.144 by the
information-theoretic method. Interestingly, the SVM gave the
worst errors when the number of input patterns was 100. In
addition, the standard deviation of the generalization errors
was smaller by the information-theoretic method. The number
of learning epochs was similar across both methods.

4) Improved Stability:Our analysis showed that the fina
values by the information-theoretic method were relatively
stable, meaning that the generalization errors and the number
of epochs were not relatively affected by the change in the
parameter values.

Figure 5 shows the generalization errors by the conven-
tional method in blue and by the information-theoretic method
in red as a function of the parameter σ when the number
of input patterns increased from 10 (a) to 100 (d). The
generalization errors by the information-theoretic method in
red were well lower than those by the conventional method
in blue, particularly when the number of input patterns was
smaller. Even if the number of input pattern was larger, the
generalization errors by the information-theoretic method were
lower than those by the conventional method, in particular
when the parameter σ became smaller.

One of the most important things to note is that the gener-
alization errors generated by the information-theoretic method
were more stable than those by the conventional method. When
the number of input patterns was ten, the generalization errors
were higher for smaller values of the parameter σ. However,
the generalization errors were almost constant for all values
of the parameter σ. This tendency of stability became more
apparent when the number of input patterns increased.

Figure 6 shows that the number of epochs produced the
lowest validation errors when the number of training patterns
increased from 10(a) to 100(d). By the conventional method,
the number of epochs gradually increased when the param-
eter σ increased. On the other hand, the number of epochs
by the information-theoretic method remained stable, almost
independent of the parameter σ.

Finally, our method was able to effectively reduce the
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(a) Unsuperivsed (b) Superivsed

Weight transfer

Fig. 2. Network architecture with 19 input neurons, 5 by 12 competitive and 7 output neurons for the image segmentation data.
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Fig. 3. U-matrices and labels by the conventional SOM (a) and when the number of winners was three (b).

number of errors in cases where the conventional method failed
to do so. Figure 7 shows an example of learning processes.
Without knowledge in Figure 7(a), learning was impossible.
On the other hand, all errors became immediately smaller by
the information-theoretic method.

B. Discussion

1) Validity of the Method and Experimental Results:
In this paper, we showed that information obtained by the
information-theoretic SOM can be used to improve generaliza-
tion performance with a relatively smaller number of labeled
input patterns. In the fiel of active and semi-supervised
learning [30], [31], [33], there have been many attempts to
use information content in unlabeled data for training neural
networks. The present method suggests that the information-
theoretic SOM can be used to train neural networks with
information in unlabeled data.

The main results can be summarized by the following three
points, namely, improved interpretability, generalization and
stability. First, fina representations were easier to interpret
when using the information-theoretic method. By appropriately
increasing the number of winners, fina connection weights
were well visualized by using the well-known U-matrix in

Figure 3, though the number of winners had to be heuristically
determined. The fina visualized weights showed much clearer
maps than those by the conventional method.

Second, the clearer weights could be used to train multi-
layered neural networks with better generalization perfor-
mance. In particular, when the number of training patterns
was smaller, improved generalization performance could be
more explicitly observed. Figure 7 shows that learning was
accelerated even when the learning itself was impossible by
the conventional SOM. This suggests that knowledge obtained
by the information-theoretic method can be used to train multi-
layered neural networks.

Third, the fina results were obtainable almost indepen-
dently of the parameter values. As shown in the experi-
mental results in Figure 5, generalization errors were almost
unchanged when the parameter σ was increased. On the
other hand, by using the conventional multi-layered neural
networks, drastic changes were observed when the parameter
σ was changed. The present method, thus, could be used to
stabilize learning processes via easy tuning of the parameters.
In addition, in Figure 6, the number of training epochs to reach
the lowest validation error showed the stable number of epochs
by the present method. On the other hand, the conventional
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Fig. 4. Connection weights by the conventional SOM(a) and the information-theoretic method (b).

method showed drastic changes in the number of epochs.

The experimental results showed that the present method
could utilize unlabeled data to train supervised networks. In
addition, the results obtained by the present method were
accompanied by explicit internal representations, permitting
possible interpretation. The reason for this improved perfor-
mance is due to the fact that self-organizing maps, based
on competitive learning, aim to separate input patterns into
several classes with an equal number of input patterns. Thus,
the information-theoretic method classifie input patterns into
several classes, and in the fina supervised phase, only minor
adjustments need to be made to the connection weights for
input patterns.

C. Problems of the Method

Though the present method demonstrated relatively greater
stability and generalization, it has two problems, namely, the
number of winners and relations between interpretability and

generalization. Both are due to the absence of any explicit
measure of interpretability.

First, the number of winners needed to determine the
outputs is uncertain. As mentioned, the number of neurons is
critically related to the clarity of fina internal representations.
Thus, the number of neurons should be increased appropriately.
However, because there are no explicit criteria to quantify
the clarity of representations, the number of neurons was
chosen very heuristically. Accordingly, some criteria for clear
representations are needed for detecting the number of winners.

Second, relations between interpretability and generaliza-
tion are also uncertain, because there are no criteria to ensure
the clarity of representations. In the present paper, the clearest
possible representations were intuitively chosen at the outset;
then, the relations between them were examined. However,
the intuitively clearest possible representations did not neces-
sarily produce the best possible generalization performance.
To examine the exact relations between interpretability and
generalization, some criteria are needed to determine the clarity
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Fig. 5. The generalization errors by the conventional method in blue and by the information-theoretic method in red as a function of the parameter σ when
the number of input patterns increased from 10 (a) to 100 (d).

of internal representations.

D. Possibility of the Method

The possibilities of the present method can be summarized
by the following four points: interpretation, active learning,
deep learning and self-organizing maps. First, the present
method provides neural networks with improved interpretation
performance. One of the main problems of neural networks
is that it is impossible to interpret the fina representations
obtained through learning [34], [35], [36], [37], [38], [39] [40],
[41]. Even if novel new machine learning methods such as
SVM, active and semi-supervised learning and deep learning
show better performance in particular for generalization, it is
practically impossible to interpret the fina results. The present
method aims mainly to produce interpretable representations
and to relate these representations to improved generalization.
The method will be the firs step towards interpretation-
oriented neural networks.

Second, in terms of active learning, the present method
does not actively recruit input patterns to be labeled. It can
thus be called “passive” learning. The next stage is to actively
recruit the patterns to be labeled as done in active learning.
In this case, the information content accumulated by the
information-theoretic SOM can be used to choose candidate
patterns to be labeled. This will be a new form of active

learning which considers the information content stored in
competitive neurons.

Third, in terms of deep learning, the present method is a
form of shallow learning with only one hidden (competitive)
layer. However, it is easy to extend this shallow model to a
hierarchical deep model by adding multiple competitive layers.
In this case, each layer added can be interpreted because the
information-theoretic SOM has been developed to explicitly
visualize connection weights. Thus, this is a new type of multi-
layered network architecture for deep learning in which all
hidden layers can be explicitly interpreted.

Finally, this paper suggests a new use for self-organizing
maps. It has been shown that the information content by
the information-theoretic SOM can be used to visualize only
connection weights. However, in addition to visualization, the
information obtained by the SOM can be used for many
different purposes, such as training. Thus, the present method
opens up a new possibility for using the SOM for different
purposes.

IV. CONCLUSION

In this paper, it has been shown that the information-
theoretic method can produce clear representations, and that
the knowledge obtained by the information-theoretic SOM can
be used to train supervised neural networks. Though the SOM
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Fig. 6. The number of epochs by the method without knowledge in blue and with knowledge in red when the number of input patterns increased from 10 (a)
to 100(d).
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Fig. 7. Training (blue), validation (green) and testing (red) error rates by the method without knowledge by unsupervised learning (a) and with the knowledge
(b), where the parameter σ was 0.2 and 100 patterns.

was developed to create more interpretable representations,
it sometimes produces very ambiguous representations. The
information-theoretic SOM was introduced in this paper to
obtain more explicit and interpretable knowledge on input
patterns. In addition, the method aimed to solve the shortage
of labeled data problem. In actual situations, the amount of

labeled date is scarce, and it is difficul to label unlabeled
data. On the other hand, unlabeled data is abundant. Thus,
the problem is to fin a method which can maximize the
use of abundant unlabeled data. In the present method, the
information-theoretic SOM acquires information content on
input patterns in unsupervised ways, and can be used to over-
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come the shortage of labeled data. Finally, the method aimed to
solve the problem of compromising between error minimiza-
tion of targets and outputs, and information maximization. It
has been shown that error minimization is not necessarily used
to increase information content in the information-theoretic
sense. To solve this problem, the information acquisition and
use phases are separated. Information was firs maximized in
the acquisition phase, and then error was minimized in the
information use phase. This separation showed better results
for generalization and interpretation.

By applying the method to the image segmentation data
sets from the machine learning database, favorable results were
obtained and summarized by three points. The information-
theoretic methods could produce much clearer internal rep-
resentations which were accompanied by improved general-
ization. In particular, when the number of training patterns
became smaller, the difference between our method and con-
ventional ones become clearer. In addition, for all experimental
results, the stabilization of learning processes was observed.
This means that the number of learning epochs and general-
ization errors tended to be almost independent of the different
values of the parameter. Applying the method to the image
segmentation data sets revealed that it was able to produce
more interpretable representations which were accompanied
by improved generalization performance and stability.

However, one of the problems is that the relations between
interpretability and generalization are uncertain. This means
that though interpretability is roughly related to generalization
performance, it is not necessarily accompanied by better gen-
eralization. To better relate interpretability to generalization,
a method should be developed to unify the two concepts.
In addition, the present method should be combined with
some active learning techniques to recruit new input patterns
to be labeled. Though the problems mentioned above should
be solved, the present method nevertheless opened up new
possibilities for using SOM knowledge.
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