
(IJACSA) International Journal of Advanced Computer Science and Applications,

Special Issue on Extended Papers from Science and Information Conference 2014

52 | P a g e

www.ijacsa.thesai.org

Introducing Concurrency to Workflows: Theory and

A Real-World Case Study

Laird Burns, Wai Yin Mok, and Wes N. Colley

College of Business Administration

University of Alabama in Huntsville

Huntsville, Alabama, USA, 35899

Abstract—Making use of the concepts of the activity diagrams

of the Unified Modeling Language, this paper defines an

important class of workflows, called flow independent workflows,

which are deterministic in the sense that if a flow independent

workflow is given the same multi-set of resources as input over

and over again, it will produce the same output every time. After

which, this paper provides a methodology, and its accompanying

algorithms, that introduces concurrency to flow independent

workflows by rearranging the action nodes in every flow of

control. It then applies the methodology to a real-world case to

demonstrate its usefulness. It concludes with future research

possibilities that might extend the methodology to general

workflows, i.e., not necessarily flow independent workflows.

Keywords—Business process re-engineering; Unified Modeling

Language; activity diagrams; flow independent workflows;

concurrency

I. INTRODUCTION

Business process re-engineering (BPR) has been a subject
of intensive study since Michael Hammer published his
seminal paper “Reengineering Work: Don't Automate,
Obliterate” [6]. As a business management strategy, it focuses
on the analysis and design of workflows and processes within
an organization. Improving customer service and reducing
operational costs are among its many goals. Many times BPR
involves large scale modifications and redesigns of existing
workflows. This paper, however, introduces a methodology of
smaller scale that can speed up a specific class of workflows
that has certain desirable properties. We then supplement the
methodology with a real-world case study that demonstrates
the usefulness of the methodology.

To formally prove the methodology really does what it
claims, we need a mathematical foundation upon which the
methodology is based. For this purpose, we adopt some of the
ideas of The Unified Modeling Language (UML), which has
been an industry standard for modeling software-intensive
systems since 2000 [12]. Developed by Grady Booch, Ivar
Jacobson and James Rumbaugh at Rational Software in the
1990s, UML provides a set of graphic notation techniques to
create visual models of object-oriented software-intensive
systems [3]. Particularly relevant to this research is the activity
diagrams, from which our methodology is derived.

Another important component of our methodology is the
database concurrency theory [2], which has been an area of
study in the last thirty years. Many recent studies applied this
theory to workflows [1,4,5,7,8,9,10,11]. Database concurrency

theory is mainly concerned with maintaining an orderly access
of data items in the presence of multiple long-running
concurrent database transactions. Without proper control,
concurrent database transactions might read from and write to
data items in an arbitrary order that will take a database from a
correct state to an incorrect state. Placing locks on data items at
the correct moment is a main mechanism the theory uses to
control the execution of the transactions to ensure that the
database will go from one correct state to another correct state.

This paper is organized as follows. In Section 2, we present
a mathematical foundation for workflows and define a
particular class of workflows, called flow independent
workflows, that has the property that being deterministic. A
workflow being deterministic means that it will always
produce the same output for a given input. Section 3 presents
the proposed workflow re-engineering methodology and the
correctness proof. Section 4 gives the case study. We conclude
and point out possible future researches in Section 5.

II. FUNDAMENTALS

 Workflows and UML Activity Diagrams A.

UML has two types of diagrams: structural diagrams and
behavioral diagrams [3]. Among all the behavioral diagrams of
UML, activity diagrams are particularly relevant to this
research because they specify the operational step-by-step
processes of a system. Many concepts of activity diagrams are
especially useful. For example, our definition for workflows
adopts branches of control and concurrency from activity
diagrams. Further, the concept of resources is also necessary in
the definition because many workflows use, modify, consume
and produce resources as they are executed. In addition, we
also define the rules that govern the execution of workflows,
i.e., the execution semantics of workflows.

Definition 1: A workflow is an 8-tuple (Actions, Branches,
Merges, Forks, Joins, Arrows, Resources, Constraints).
Actions, Branches, Merges, Forks, Joins are all finite sets of
nodes (vertices) and Arrows is a finite set of directed edges
(ordered pairs) of nodes in Actions Branches Merges
Forks Joins. Resources is a finite multi-set of resources and
Constraints is a finite set of constraints over the workflow. The
following rules further refine these concepts.

1: Resources is a finite multi-set of resources r1, r2,
…, rn. A resource ri of Resources can only be in one of an
enumerable number of states at any moment of the execution
of the workflow. (A workflow might need more than one unit

(IJACSA) International Journal of Advanced Computer Science and Applications,

Special Issue on Extended Papers from Science and Information Conference 2014

53 | P a g e

www.ijacsa.thesai.org

of a resource type in its execution. Therefore, a multi-set,
rather than a set, of resources is used in the definition because
elements of a multi-set are not necessarily distinct. However,
the subscripts can make the elements distinct. For example,
two identical but distinct elements ri and rj in Resources can be
distinguished by their subscripts if i ≠ j. In a sense, the
subscripts tag the resources and serve as unique identifiers.)

2: An action node in Actions denotes an action, which is
executed completely or not at all. An action takes a finite
amount of time to complete, although it may vary from time to
time. Any action node vi in Actions yields at most one directed
edge of the form (vi, vj) in Arrows. (In other words, each action
node has at most one out arrow.)

3: Each action node has four associated multi-sets of
resources: use, modify, consume, and produce. Use is the finite
multi-set of resources that the action uses in its execution.
Modify is the finite multi-set of resources whose states will be
changed by the action during its execution. Consume specifies
the finite multi-set of resources that the action consumes during
its execution. After the action consumes a resource ri, ri ceases
to exist. Produce is the finite multi-set of resources that the
action produces during its execution. The action can assign a
resource ri in one of its many allowable states when the action
produces ri. Naturally, use ⊇ modify consume and use
produce = ∅. We stipulate that if an action node is given the
same multi-set use multiple times, the action node will always
yield the same multi-sets modify, consume, and produce every
time.

4: The nodes in Branches Merges Forks Joins are
control nodes. Control nodes only direct the flows of control
during the execution of the workflow and thus they do not
modify, consume or produce the resources in Resources.

5: A source node n is a node that there is not a directed
edge (vi, n) in Arrows. A sink node n is a node that there is not
a directed edge (n, vi) in Arrows. Further, none of the directed
edges in Arrows has the form (n, n) where n ∊ Actions
Branches Merges Forks Joins. (In other words, self-
loops are not allowed.) Source nodes and sink nodes must be
action nodes, although multiple source nodes and/or sink nodes
are allowed.

6: Initially, there is not a flow of control in the workflow.
When the execution of the workflow begins, simultaneously a
separate flow of control will start at each source node. The
execution of the workflow terminates when all of its flows of
control terminate.

7: When a flow of control reaches vi of a directed edge (vi,
vj), whether vi will start executing depends on if vi uses any
resources. If vi does not use any resources, vi immediately starts
executing. If vi uses some resources, then we further check
whether the elements in vi’s use are also in Resources. If use ⊆
Resources, then vi starts executing. In both cases, after vi stops
executing, Resources = Resources vi’s produce – vi’s
consume, the elements in vi’s modify, which are also in
Resources, have been modified, and vj immediately starts
executing. If use ⊈ Resources, then the flow of control
terminates at vi with no change to Resources. (In the case that
the resources of vi are not immediately available to vi when the

flow of control reaches vi, vi may enter a waiting period, which
can be modeled by adding a branch node of Rule 8 and/or a
constraint of Rule 12. Example 3 illustrates how this can be
done. Hence, there is no loss of generality to say that if use ⊈
Resources, then the flow of control terminates at vi. Note that
any action of a reasonable workflow will not wait indefinitely.
Therefore, we stipulate that the length of such a waiting period
must be specified beforehand.)

The following rules are concerned with branch nodes,
merge nodes, fork nodes and join nodes. All of these nodes are
not source nodes and sink nodes. As a result, for every node vj
∊ Branches Merges Forks Joins, there are nodes vi and
vk such that (vi, vj) and (vj, vk) are both in Arrows.

8: For any branch node vj in Branches, there is a unique
directed edge (vi, vj) in Arrows and there are directed
edges (vj, vk1), (vj, vk2), …, (vj, vkn) in Arrows. Further, there is a
condition associated with (vj, vkl), . When a flow of
control reaches vj, at most one condition out of those associated
with these n directed edges can be true at that moment. The
flow of control then follows the unique directed edge whose
condition is true. If the conditions associated with these n
directed edges are all false, then the flow of control terminates
at vj. Since the conditions associated with the directed edges
(vj, vk1), (vj, vk2), …, (vj, vkn) might involve the elements in
Resources, vj also has a multi-set use, which specifies the
elements in Resources that are used in these conditions.

9: For any merge node vj in Merges, there is a unique
directed edge (vj, vk) in Arrows and there are directed
edges (vi1, vj), (vi2, vj), …, (vin, vj) in Arrows. For any flow of
control that reaches any of vi1, vi2, …, vin and after it stops
executing, vk immediately starts executing. Note that vj does
not need any resources in its execution.

10: For any fork node vj in Forks, there is a unique directed
edge (vi, vj) in Arrows and there are directed edges (vj,
vk1), (vj, vk2), …, (vj, vkn) in Arrows. When a flow of control
reaches vj via vi, the flow of control terminates at vj and n new
flows of control f1, f2, …, fn will be created, and each fl starts at
vj and then immediately reaches vkl, . Note that vj
does not need any resources in its execution.

11: For any join node vj in Joins, there is a unique directed
edge (vj, vk) in Arrows and there are directed edges (vi1,
vj), (vi2, vj), …, (vin, vj) in Arrows. A new flow of control starts
at vj implies that there are n flows of control f1, f2, …, fn and
each fl, , reaches vj via vil and then terminates at vj.
We stipulate that every flow of control that reaches vj via vil for
some l can only give raise to a single new flow of control
starting at vj. Note that vj does not need any resources in its
execution.

12: Constraints is a finite set of constraints defined on the
workflow. □

Example 1: A moving company workflow might require a
multi-set {truck1, truck2, worker1, worker2, worker3, worker4}
of two trucks and four workers to move a family. Although
truck1 and truck2 might be identical, the subscripts distinguish
them from each other. As for the status of a resource, for
example a document might be in one of the states prepared,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Special Issue on Extended Papers from Science and Information Conference 2014

54 | P a g e

www.ijacsa.thesai.org

 A sample workflow in UML notation Fig.1.

unsigned, and signed; and a temperature variable might assume
one of its many permissible values. □

In most workflows, many actions cannot have a fixed
duration to complete. For example, a mailman might be able to
finish his job in 5 hours on a sunny day but not on a rainy day.
Hence, unless otherwise specified, we leave the duration of an
action open. When such constraints are necessary, they are
added to the set Constraints.

We use UML notation to represent the components of a
workflow. Action nodes are represented by rounded boxes,
branch nodes and merge nodes by diamonds and fork nodes
and join nodes by thick lines. Arrows naturally represent
directed edges.

Example 2: Fig 1shows a workflow in UML notation.
When the workflow begins executing, two flows of control f1
and f2, one starting at A1 and the other at A2, start
simultaneously. These two flows of control are executed
concurrently and synchronized at the join node, where each
waits until the other reaches the join node. Then, they both
terminate at the join node and a new flow of control starts at
the join node. At the branch node, either C1 or C2 but not both
is true. The flow of control follows the directed edge whose
condition is true. Therefore, there are two possible flows of
control f3 and f4 starting at the join node; but unlike f1 and f2, f3
and f4 cannot co-exist at the same time. They are merely two
different possibilities. Finally, the flow of control reaches the
merge node, where it simply continues on to A7, the final action
node. Although not shown in the Fig., the workflow in has a
multi-set Resources and each action node has four associated

finite multi-sets use, modify, consume and produce. □

 Adding a waiting period to A6 in Fig.1. Fig.2.

Example 3: Suppose the resources of action node A6 in are
not available immediately when a flow of control reaches A6.
A6 then has to wait for a while. To capture such a waiting
period, a branch node can be added before A6 in the workflow.
Since workflows cannot wait forever, there must be a specific
time limit for the waiting period. Hence, the condition in
specifies that the waiting period must be less than one hour,
although some other time limit is also possible. If A6’s
resources become available within one hour, the follow of
control continues to A6; otherwise, the condition fails and the
flow of control terminates at the branch node. □

Example 4: If initially Resources = {a, b, c1, c2} and A1’s
use = {a, d1, d2}, then the flow of control started at A1
immediately terminates at A1 because A1 uses two d’s in its
execution, but there is none available in Resources. When that
happens, even if A2 successfully completes its action, no new
flow of control will start at the join node because the join node
will indefinitely wait for a flow of control coming from A1,
which will never come. □

Example 5: We might additionally add a constraint that
specifies A1 must complete its action within an hour or that the
total time the workflow will take must be less than 5 hours.
These constraints will then be added to the set Constraints. □

 Configuartions of Workflows B.

Although self-loops are not allowed in a workflow, cycles
are still possible. Hence, a workflow might not stop executing
once it starts. Since most useful workflows terminate once they
are given enough time and resources, non-terminating
workflows are not considered any further.

Definition 2: A terminating workflow is one that will
terminate on any given multi-set Resources. □

Example 6: Because it does not have any cycles, the
workflow in Fig.1 always terminates not matter what the multi-
set Resources is. □

Definition 3: A configuration of a workflow is the multi-set
Resources together with the states of the elements in
Resources. □

Every workflow has an initial configuration, which is the
multi-set Resources together with the states of each of its
elements before the workflow starts executing. After the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Special Issue on Extended Papers from Science and Information Conference 2014

55 | P a g e

www.ijacsa.thesai.org

workflow stops executing, it then has a final configuration,
which is the multi-set Resources together with the states of
each of its elements after the workflow stops executing.

Definition 4: A deterministic workflow is a terminating
workflow and for any given multi-set Resources, it always
ends up in the same final configuration even if the workflow
has to be executed multiple times. On the other hand, a non-
deterministic workflow is also a terminating workflow and for
some given multi-set Resources, it might not end up in the
same final configuration if the workflow is executed multiple
times. □

Although a deterministic workflow is a terminating
workflow, the converse is not true. That is, it is possible that a
terminating workflow is non-deterministic. Since most real-
world workflows are supposed to give the same results even if
they have to be executed more than once, deterministic
workflows are desirable.

Example 7: Suppose Resources = {a, b1, b2, c}, and A1’s
use = A1’s modify = A2’s use = A2’s modify = {a}, and in
addition resource a is not in the multi-sets modify, consume and
produce of the other action nodes in Fig.1. Since A1 might
finish before A2 in one run, but in another run A2 might finish
before A1, and since A1 and A2 both modify resource a, the
workflow in Fig.1 would be non-deterministic under these
conditions. □

Here, we give a sufficient condition for deterministic
workflows. That is, if a workflow satisfies this condition, the
workflow is deterministic.

Definition 5: Two (not necessarily distinct) actions Ai and
Aj are independent if Ai’s use (Aj’s modify Aj’s consume
Aj’s produce) = ∅ and Aj’s use (Ai’s modify Ai’s consume
 Ai’s produce) = ∅. □

Definition 6: Two distinct concurrent flows of control fi and
fj of a workflow are independent if any pair of actions Ai of fi
and Aj of fj are independent. A workflow is flow independent if
any two of its distinct concurrent flows of control fi and fj are
independent. □

Example 8: f1 and f2 are distinct concurrent flows of control
in Fig.1. f3 and f4 are not concurrent flows of control because
they cannot co-exist at the same time. □

Theorem 1: If a workflow w is flow independent, w is
deterministic.

Proof sketch: We proceed by induction on the number n of
concurrent flows of control of w at any moment. If n = 1, then
at any moment w has at most one flow of control. Suppose this
flow of control fi has n ≥ 1 nodes v1, v2, …, vn‒1, vn. By Rule 3
of Definition 1, when an action node is given the same multi-
set use multiple times, the action node will always yield the
same multi-sets modify, consume, and produce every time.
Hence, every action node vi of fi is deterministic. It is clear that

a sequential execution of n ≥ 1 deterministic action nodes is
also deterministic. Hence, the basis is established. Assume the
induction hypothesis is true for n = k for some k ≥ 1. That is, w
is deterministic if w has k or less concurrent flows of control at
any moment. Suppose w has one more flow of control fk+1 at a
moment. By the assumption that w is flow independent, any
pair of actions Ai of fk+1 and Aj of fl (1 ≤ l ≤ k) are independent.
Hence, every action Ai of fk+1 does not depend on the output of
the action nodes of fl (1 ≤ l ≤ k). At this point the argument for
the basis also applies to fk+1. Hence, the workflow is
deterministic. □

III. WORKFLOWS RE-ENGINEERING

The main purpose of workflows re-engineering is to make
workflows more efficient, or to reduce certain resources
required by the workflows. For most cases, the goal is to
reduce the completion time of a workflow. Because flow
independent workflows have the desirable property that they
are deterministic, in this section we focus on flow independent
workflows and present a methodology that will reduce their
completion time.

 Introducting Concurrency A.

Introducing concurrency to a flow independent workflow
obviously can reduce the time it takes to complete. However,
the interactions of the actions and the resources of the
workflow imply a certain order the actions must observe.
Example 9: Consider the workflow in and suppose A5’s use =
{a} and A6’s modify = {a}. Under this assumption, A5 uses the
resource a before it is modified by A6. Hence, A5 must precede
A6. Now suppose A5’s modify = {a} and A6’s use = {a}. In this
case, A6 uses the resource a modified by A5. Hence, A6 must
follow A5. Similarly, suppose A5’s use = {a} and A6’s consume
= {a}. Then, A5 must precede A6 because after A6, resource a
will cease to exist. If A5’s consume = {a} and A6’s use = {a},
then A6 cannot be executed because resource a no longer exists
after A5. Hence, the flow of control terminates at A5. (Note that
one may argue that it is incorrect to have A5’s consume = {a}
and A6’s use = {a}. However, we have to be compliant to the
semantics of the workflow and thus the order of execution of
the actions in the workflow must be preserved.) For the case
that A5’s produce = {a} and A6’s use = {a}, A5 must precede
A6. On the other hand, if A5’s use = {a} and A6’s produce =
{a}, then the flow of control terminates at A5, which is similar
to the case that A5’s consume = {a} and A6’s use = {a}.
However, if A5 and A6 are independent, they can be executed
concurrently. This can be done by adding a fork node as shown
in Fig 3 As a result, two concurrent flows of control can start at
A5 and A6 simultaneously. □

 The main idea of our methodology is to introduce
concurrency to a flow independent workflow; but at the same
time we have to ensure that the resulting workflow is
equivalent to the original.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Special Issue on Extended Papers from Science and Information Conference 2014

56 | P a g e

www.ijacsa.thesai.org

 A5 and A6 can be executed concurrently if they are independent. Fig.3.

Definition 7: Two deterministic workflows are equivalent if
they are given any multi-set Resources as their initial
configurations, they will both end up in the same final
configuration after they stop executing. □

 Partitioning Flows of Control into Sequences B.

Lemma 1 points out some useful characteristics that will
help introducing concurrency to flow independent workflows.

Lemma 1: Consider a flow of control fi of n ≥ 1 nodes v1,
v2, …, vn‒1, vn of a flow independent workflow. The following
are all true for fi.

a) v1 cannot be a branch node.

b) Both v1 and vn cannot be a merge node.

c) Only v1 or vn can be a fork node.

d) Only v1 or vn can be a join node.

e) If vi (1 < i < n) is a branch node, then each of v1, …, vi‒1
cannot be executed concurrently with any of vi+1, …, vn.

Proof sketch:

a) Rule 8 of Definition 1 states that when a flow of

control reaches a branch node, the conditions associated with

all of its outgoing directed edges will be evaluated and the flow

of control will follow the unique directed edge whose condition

is true. Hence, branch nodes do not start any flow of control

and thus v1 cannot be a branch node.

b) According to Rule 9 of Definition 1, merge nodes

neither start nor terminate any flow of control. Given a merge

node vj, there are two directed edges (vi, vj) and (vj, vk) in

Arrows and vj simply passes the flow of control from vi to vk.

Hence, v1 and vn cannot be a merge node.

c) Rule 10 of Definition 1 states that when a flow of

control reaches a fork node, the flow of control will terminate

at the fork node and then the fork node will yield more than

one flow of control. Hence, if a vi where 1 < i < n is a fork

node, then the flow of control starting at v1 will terminate at vi.

This contradicts the lemma statement that the flow of control

terminates at vn.

d) Rule 11 of Definition 1 states that when a flow of

control reaches a join node, the flow of control will wait for

and synchronize with the other flows of control destined for the

join node. Then, they will all terminate at the join node and a

new flow of control will start at the join node. Hence, if a vi

where 1 < i < n is a join node, the flow of control starting at v1

will terminate at vi. This contradicts the lemma statement that

the flow of control terminates at vn.

e) If vi where 1 < i < n is a branch node, then by Rule 8

of Definition 1 there is a condition associated with the directed

edge (vi, vi+1). The execution of any of vi+1, …, vn depends on

the truth value of the condition. If the condition is true, vi+1, …,

vn will be executed in this order; otherwise, none of them will

be executed. On the other hand, the execution of v1, …, vi‒1 do

not depend on the condition of the directed edge (vi, vi+1). As a

result, each of v1, …, vi‒1 cannot be executed concurrently with

any of vi+1, …, vn. □

While the other parts of Lemma 1 restrict the nodes in fi,
Part e relates directly to concurrency. With the additional
restriction that none of the nodes of fi can be replicated,
Lemma 2 provides another result about merge nodes that also
relates directly to concurrency.

Lemma 2: Consider a flow of control fi of n ≥ 1 nodes v1,
v2, …, vn‒1, vn of a flow independent workflow. If vj (1 < j < n)
is a merge node and none of the nodes of fi can be replicated,
then each of v1, …, vj‒1 cannot be executed concurrently with
any of vj+1, …, vn.

Proof sketch: By Rule 9 of Definition 1, there are at least
two directed edges (vj‒1, vj) and (vi, vj) and a unique directed
edge (vj, vj+1) for vj. vj‒1 is the node precedes vj in fi but vi is not
part of fi. When a flow of control reaches vj via vj‒1, vj will pass
the flow of control to vj+1. Likewise, when a flow of control fk
(i ≠ k) reaches vj via vi, vj will pass the flow of control to vj+1. If
any of vj+1, …, vn is executed concurrently with any of v1, …,
vj‒1, the same node must be removed from vj+1, …, vn and must
also be executed concurrently with some node before vj on fk as
well. However, since nodes on fi cannot be replicated, this is
impossible. □

Given a flow of control fi of a flow independent workflow,
Lemmas 1 and 2 specifies certain restrictions on fi. Particularly,
the branch nodes and merge nodes partition fi into sequences of
action nodes. By Lemma 1e and Lemma 2, every action node
of each of these sequences cannot be executed concurrently
with any action node of the other sequences of fi. However, we
can rearrange the action nodes within a sequence so that some
of them can be executed concurrently.

Example 10: Consider a flow of control fi of a flow
independent workflow that has two diamonds, where each
diamond either represents a branch node or a merge node. As
shown in Fig 4 these two diamonds partition fi into three
sequences of action nodes, where each sequence of action
nodes is represented by a dashed line. □

To rearrange the action nodes within a sequence, we first
need to define a relation on the action nodes. This relation will
yield an order of execution on the action nodes.

Definition 8: Given a sequence of n ≥ 1 action nodes v1, v2,
…, vn‒1, vn, we define a relation, denoted by ⊲, on the action
nodes as follows:

(IJACSA) International Journal of Advanced Computer Science and Applications,

Special Issue on Extended Papers from Science and Information Conference 2014

57 | P a g e

www.ijacsa.thesai.org

 Three sequences of action nodes as a result of two branch/merge Fig.4.

nodes.

a) vi ⊲ vj if i < j and vi and vj are not independent, or

b) vi ⊲ vj if vi ⊲ vk and vk ⊲ vj for some vk. □

The meaning of vi ⊲ vj is that vi must be executed before vj.
Condition a is obvious because if vi precedes vj in the sequence
and they are not independent, then vi must be executed before
vj. (See Example 9.) Condition b says that if vi must be
executed before vk and vk must be executed before vj, then vi
must (indirectly) be executed before vj. Based on the relation
⊲, we can now define an execution order hierarchy for the
action nodes as follows:

Definition 9: Given a sequence of n ≥ 1 action nodes v1, v2,
…, vn‒1, vn, we define an execution order hierarchy h for the
action nodes as follows:

a) If vi ⋪ vk for each vi such that vi ≠ vk, then vk is a root

of h. (Note that it is possible that h may have more than one

root.)

b) If vi is a node in h and vi ⊲ vj and there does not exist
an vk such that vi ⊲ vk and vk ⊲ vj, then vi is a parent of vj in h.
(Note that an action node may have more than one parent in h.
Also note that if vi ⊲ vk and vk ⊲ vj for some vk, then vi is not a
parent of vj in h. However, vi is an ancestor of vj in h.)

Algorithms can be easily defined to generate the execution
order hierarchy of Definition 9. One possibility is as follows.

Algorithm 1:

Input: a sequence of n ≥ 1 action nodes v1, v2, …, vn‒1, vn.

Output: an initially empty execution order hierarchy h of
Definition 9 for the input action nodes.

1) Set s = ∅.

2) For i = 1 to n do

 For j = i+1 to n do /* i < j */

 If vi and vj are not independent, insert (vi, vj) to s.

3) For i = 1 to n do

 If vi does not appear in h, make vi a root of h.

For each ordered pair of the form (vi, vj) in s,

 add a directed edge vi ⟶ vj to h.

4) For i = 1 to n do /* Remove redundant edges from h. */

If vi ⟶ vk is a directed edge in h but vi ⟶ vk can be derived
from the other directed edges in h, remove vi ⟶ vk from h.

Example 11: Consider the sequence of action nodes in Fig
5 and further suppose the following:

1) A1’s use = {a}, A1’s modify = {a}, A1’s produce = {b, c},

2) A2’s use = {d}, A2’s produce = {e, f},

3) A3’s use = {a, b, e}, A3’s modify = {a}, A3’s produce = {g},

4) A4’s use = {c, f}, A4’s modify = {f}, A4’s consume = {c},

5) A5’s use = {a}, A5’s produce = {h},

6) A6’s use = {e}, A6’s produce = {i}.

 A sequence of action nodes Fig.5.

 The execution order hierarchy of Example 11 Fig.6.

After Step 2 of Algorithm 1, s = {A1 ⟶ A3, A1 ⟶ A4, A1 ⟶
A5, A2 ⟶ A3, A2 ⟶ A4, A2 ⟶ A6, A3 ⟶ A5}. In the first
iteration of the for-loop of Step 3, A1 becomes the first root of
h. Then, the directed edges A1 ⟶ A3, A1 ⟶ A4, A1 ⟶ A5 are
added to h. In the second iteration of the for-loop of Step 3, A2
becomes the second root of h. Then, the directed edges A2 ⟶
A3, A2 ⟶ A4, A2 ⟶ A6 are added to h. In the third iteration of
the for-loop of Step 3, A3 does not become another root of h
because A3 already appears in h. Then, the directed edge A3 ⟶
A5 is added to h. Now, the directed edge A1 ⟶ A5 becomes
redundant in h because A1 ⟶ A5 can be derived from A1 ⟶ A3

and A3 ⟶ A5 , which are also in h. Thus, A1 ⟶ A5 is removed
at Step 4. The result is the execution order hierarchy in Fig 6. □

Theorem 2: Given a sequence of n ≥ 1 action nodes v1, v2,
…, vn‒1, vn, Algorithm 1 generates the execution order
hierarchy of Definition 9 from the action nodes.

Proof sketch:

(IJACSA) International Journal of Advanced Computer Science and Applications,

Special Issue on Extended Papers from Science and Information Conference 2014

58 | P a g e

www.ijacsa.thesai.org

Step 2 of Algorithm 1 generates all ordered pairs vi ⊲ vj
where there is no vk such that vi ⊲ vk and vk ⊲ vj. (That is, Step
2 of Algorithm 1 generates all ordered pairs vi ⊲ vj such that vi
must be executed directly, not indirectly, before vj.) In fact,
Step 2 of Algorithm 1 may as well generate some ordered pairs
that can be derived from the other ordered pairs. Step 3 of
Algorithm 1 simply adds all the directed edges to h based on
the ordered pairs in s. Potentially it may add redundant directed
edges to h that can be inferred from the other directed edges,
e.g., A1 ⟶ A5 of Example 11. Step 4 of Algorithm 1 is
designed to remove them. □

Transforming the execution order hierarchy of Definition 9
into a workflow with concurrency is straightforward. The idea
is to use fork nodes to fork multiple flows of control and join
nodes to synchronize these flows of control back into one.

Algorithm 2:

Input: an execution order hierarchy h generated by Algorithm
1.

Output: a workflow that is equivalent to the input sequence of
action nodes to Algorithm 1.

1) For each action node vi in h do,
If vi has n > 1 outgoing directed edges, then

Add a new fork node f and a directed edge from vi to f.

Make f to have n outgoing directed edges.

2) For each action node vi in h do,

If vi has n > 1 incoming directed edges, then

Add a new join node j and a directed edge from j to vi.

Make j to have n incoming directed edges.

3) According to the directed edges in h, connect the added

fork nodes and the join nodes and the rest of the action nodes

in h.

4) If h has more than one root, add a fork node at the

beginning of the resulting workflow such that it has out-going

directed edges to all of the roots.

5) If h has more than one sink action node, add a join node

at the end of the resulting workflow such that it has in-coming

directed edges from all of the sink action nodes.

Example 12: In Fig 6, A1 has two out-going directed edges.
Thus, Algorithm 2 adds a fork node that has two out-going
directed edges and a directed edge from A1 to that fork node.
Algorithm 2 does the same to A2. A3 has two in-coming
directed edges. Thus, Algorithm 2 adds a join node that has
two in-coming directed edges and a directed edge from that
join node to A3. Similarly, Algorithm 2 does the same to A4.
According to the directed edges in h, Algorithm 2 then
connects the added fork nodes to the added join nodes and also
the rest of the action nodes by directed edges. Because the
execution order hierarchy has two roots, Algorithm 2 adds a
fork node at the beginning of the workflow with out-going
directed edges to the two roots. Since there are three sink
action nodes, Algorithm 2 adds a join node at the end of the

workflow to merge all of the flows of control back into one.
The resulting workflow is shown in Fig 7. □

Theorem 3: Given a sequence of n ≥ 1 action nodes v1, v2,
…, vn‒1, vn, our methodology generates an equivalent workflow
from the sequence of action nodes.

Proof sketch:

The resulting workflow in UML notation is a simple
translation from the execution order hierarchy of Definition 9.
By Theorem 2, Algorithm 1 generates the execution order
hierarchy of Definition 9 from the sequence of action nodes. It
is therefore sufficient to consider the execution order hierarchy
generated by Algorithm 1. We proceed by induction on the
number n of action nodes in the sequence. When n = 1, it is
clear that the sequence of action nodes is equivalent to the

 The resulting workflow generated from the execution order hierarchy Fig.7.

in Fig 6.

execution order hierarchy because both of them have only one
action node. We assume the induction hypothesis is true for n =
k for some k ≥ 1. When n = k+1, the sequence has k+1 action
nodes where vk+1 is the last action node added to the sequence.
Step 2 of Algorithm 1 adds the ordered pair (vi, vk+1) to s for
each i ≤ k such that vi and vk+1 are not independent. Step 3 of
Algorithm 1 adds the directed edge vi ⟶ vk+1 to the execution
order hierarchy. As such, it is clear that if there is not a direct
path from one action node vi to another action node vj in the
execution order hierarchy, they are independent and thus vi can
be executed before vj, or vj can be executed before vi, or vi and
vj can be executed concurrently. Hence, the generated
execution order hierarchy is equivalent to the original sequence
of action nodes. □

IV. CASE STUDY

The case study is drawn from a representative workflow
(“phase” in research client terminology) from a much larger set
of workflows at a large organization which serves as a broker
between major international customers and multiple US

(IJACSA) International Journal of Advanced Computer Science and Applications,

Special Issue on Extended Papers from Science and Information Conference 2014

59 | P a g e

www.ijacsa.thesai.org

suppliers (“Broker”). Broker provides a wide range of
products and services to their customers, from individual items
to complex integrated systems. Their overall workflow breaks
into four sequential major “phases.” The first phase is initial
interest from a customer in a broad product category, where the
customer works with Broker to develop a structured expression
of interest for a particular product set with a rough-order-of-
magnitude (ROM) cost estimate. The second phase involves
contract development (CD), where Broker develops and
structures the contract to be executed in phase three, contract
execution (CE). The fourth phase is contract closure. Elements
of phase two and three are illustrated in the case study. Other
phases are not shown for simplicity.

We provide two examples of workflow redesign in a case
study. The first example introduces intra-phase concurrency in
phase two, illustrated notionally in Fig 8, with a goal to reduce
processing time within phase two. The second example
introduces concurrency in inter-phase processes to convert
certain non-deterministic processes to deterministic to reduce
later contractual rework that causes multi-month delays. The
goal in inter-phase workflow redesign is to reduce total system
time.

 Intra-phase concurrency A.

Phase two workflow translates the ROM developed in
phase one into a formal itemized breakdown of costs and other
contractual terms. Some phase 2 actions involve
communications with US suppliers to get accurate cost and
delivery information, interactions with US regulatory agencies
to ensure appropriate legal authority to export is maintained,
and interactions with customers. All new orders, whether for
component parts or complex systems, flow through phase two.

In addition, modifications or amendments to existing orders
also require the modified or amended orders to be reviewed
through all phase two steps again to ensure the updated order is
capable of being fulfilled during CE in phase three.
Modifications to orders may be initiated in phase three for
many reasons and may include, for example, transportation
changes, corrections of misspecification of items or contractual
terms, inadvertent errors, or changes in delivery time for one or
more items in a particular order. The interactions with
customers during CE quite often yield an amendment of the
order that introduces a new workflow so the amended order
can be properly reviewed and re-signed before once again
proceeding through CE.

The duration of orders proceeding through phase two and
three may span anywhere from several months to two years or
more, depending on whether a particular order involves spare
components parts, one or more major systems that are built to
order, or a complex system comprised of complex machinery,
on-site training upon delivery, and subscriptions for ongoing
upgrades to technical manuals. With this complexity and multi-
year order duration, modifications and amendments to orders
comprise more than half of all orders. Thus one order may
proceed through process workflows in phases two and three
multiple times over the contract duration.

Our task was to map and model workflows to estimate
Broker’s employee workload levels. A major difficulty for

Broker, particularly for complex integrated systems, is long
lead-times associated with receiving 1) detailed cost and
contract data from US suppliers, and 2) appropriate
documentation for legal export from regulatory agencies.
While the workflows are largely deterministic, the stochastic
nature of time to receive responses from suppliers and
customers means that the employees may be nearly idle while
in the midst of one of these lead times, or extremely busy in
transitioning from one customer action to processing an action
for another customer. The latter may induce delays due to
bottlenecks in flow dependent actions, which extends lead
times and induces additional costs.

Broker’s performance is evaluated by many customer-
oriented metrics, including total processing time for each
phase. Broker recently instituted targets for reducing total time
for processing workflow in phase two for very complex

 A real-world case study workflow Fig.8.

systems from l1 to l2, a reduction of 25%, which is measured in
months. If the flows of control of phase 2 can be reengineered
from serial to concurrent, reductions in processing time will
help reduce maximum lead times to l2. As such, reengineered
workflows would reduce total lead time by days or weeks, and
thus 1) greatly improve responsiveness of Broker and Broker’s
suppliers to customers, 2) reduce task load imbalances on
Broker’s employees, and 3) reduce cost to Broker.

Fig 8 shows the workflow based on the case study. Due to
the confidentiality agreement, we cannot disclose the actual
steps and the inputs and outputs of the workflow. Instead, we
replace them by generic names. The workflow in Fig 8 cannot
be hastened because, except for the sequence A1, A2, there is
only a single action node in between any pair of branch node or
merge node. However, a more in-depth analysis reveals that A3
is not atomic. In fact, A3 can be decomposed into three pairwise

(IJACSA) International Journal of Advanced Computer Science and Applications,

Special Issue on Extended Papers from Science and Information Conference 2014

60 | P a g e

www.ijacsa.thesai.org

independent action nodes A3.1, A3.2, and A3.3. As a result, they
can be executed concurrently, as shown in Fig 9. Likewise, A5
can be decomposed into three atomic action nodes A5.1, A5.2 and

 Rearranging three independent action nodes of A3 Fig.9.

 Rearranging three action nodes of A5 Fig.10.

A5.3 of which A5.1 and A5.2 are not independent while the other
pairs are independent. Thus, they can be rearranged into a
workflow like the one in Fig 10.

The result of these reengineered workflows is reduced
processing time to complete phase two, consistent with
organizational goals, without an increase in resources or
violations of workflow requirements or constraints. This
example serves to illustrate how analysis and decomposition of
processes provides opportunities to introduce workflow
concurrency to serial tasks.

Currently, the principal barrier to introducing these
concurrencies is lack of authority on the part of mid-level
employees to move forward without prior approval by higher-
level employees. For example, by policy A3.2 currently has to
wait on high-level approval on A3.1 before it may proceed,
although there is no strict reason, from the point of view of
available resources r1…rn other than the approval itself (rj).
We have therefore recommend Broker review some of the
policies that introduce serial approval steps to evaluate their
necessity.

Our analysis also identified opportunities where inter-phase
workflows across phases two and three are designed to be
independent, but analysis revealed that a significant percentage
of contract modifications and amendments are the result of

internal changes in how contracts are executed, as well as
misspecifications and errors identified earlier require
modifications and amendments above and beyond those
initiated by the customer. The resultant workflows increase
resource requirements, increase total processing time, and
consume capacity that is constrained during fluctuations in
daily and weekly workflow. We analyze this case in the next
example.

 Inter-phase concurrency B.

In addition to introducing concurrency to improve
processing time in serial processes, such as in the phase two
example above, our analysis identified non-serial processes in
separate phases that unintentionally introduce non-standard
practices in both phases. As noted, this causes inconsistencies
and errors that make specific workflow processes non-
deterministic. Due to the complex nature and long duration of
many of these contracts, it is not surprising that these problems
occur. But when they occur and contract modifications or
amendments are necessary, the updated version of the contract
must be re-processed through all of the phase two processes
before the updated contract can be executed. This causes
another full pass through phase two and through many of the
processes in phase three. It is estimated the added workload is
in the range of thirty percent of total workflows. In addition,
often months can pass while the contract is re-specified,
reviewed and re-signed. This affects resource costs, system
capacity, total processing time, and customer satisfaction.

To address these problems, the goal in this workflow
redesign example is to make more of the phase three processes
deterministic by using workflow redesign to leverage the
benefits of concurrency in phase two, specifically in contract
review, verification, and structuring, to eliminate many of the
latent contract problems identified only during CE in phase
three. The original workflows are show in Fig.11 where the
relevant processes for phase two are denoted as A7 – A12, and
the processes for phase three are shown as B1 – B8. The
workflows for phase two and three are f5 and f6, respectively.
The final phase, contract closure, is not addresses in the
process redesign and is denoted C1 for simplicity.

The workflows of redesign interest in Fig.11 are discussed
next. A8 denotes a review process of customer requirements for
a particular order by a CD manager (“CDM”). Due to the
decreased phase two processing time targets for process time
imposed by senior management, CDMs perform these review
with input from suppliers that involve particular supplier
requirements prior to forwarding the finalized customer
requirements to the next phase. In A10, the CDM translates
these requirements from A8 in to detailed contract
requirements. In A11, contract requirements are forwarded to
the next process where the contract requirements are embedded
in a finalized contract, ready for customer signature.

These three processes in the latter part of phase two are
targeted for workflow redesign because many of the latent
errors and misspecifications that arise months later in CE
during phase three could be eliminated or mitigated during
phase two.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Special Issue on Extended Papers from Science and Information Conference 2014

61 | P a g e

www.ijacsa.thesai.org

It is noted that when working with organizational processes
rather than information processing technology, it can be
difficult to convert processes to deterministic. This challenge
increases when a team that manages one phase for a key
customer in phase two are located physically apart from a
related customer team that manages in phase three. This
example in our case study investigates how information
uncertainty and inconsistencies between related contract
specification teams and corresponding contract execution
teams cause delays in contract execution,

We employ workflow concurrency as follows to
accomplish this objective. For the workflow redesign of
processes A8, A10 and A11, we first decompose workflow f5 in
Fig 11 into separate workflows and label them f5A, f5B, f5C, f5D
and f5E and f5F (Fig 12). These workflows correspond to the six
phase two processes identified in Fig 11 namely A7, A8, A9, A10,
A11 and A12, respectively. The three workflows, f5B, f5D and f5E,
will be redesigned in this example.

For the first workflow redesign in process A8 (Fig 12), we
introduce concurrent workflows using a fork node following
A7, where the new concurrent workflows denoted f5B.1 and f5B.2
correspond to processes A8 and BR1-8. This preserves the phase
two review in A8 by the CDM and introduces a concurrent
review, denote BR1-8, by the CE manager (“CEM”). The CEM
uses a standardized review process that scans and identifies
common errors, misspecifications, and other contractual
problems that later drive increased workload.

The CEM review in BR1-8 in Fig 12 includes issues typically
identified in phase three during any of the processes B1 through
B8 that could have been avoided through better initial
specification of customer requirements and how they match
Broker’s organizational capabilities to meet the requirements.
These review are processed through a join node into a final
customer requirements document (not shown for simplicity).

 Original workflows for phase two (f5) and phase three (f6). Fig.11.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Special Issue on Extended Papers from Science and Information Conference 2014

62 | P a g e

www.ijacsa.thesai.org

 Redesigned intra-phase workflows using concurrency. Fig.12.

The second workflow redesign after the fork node
following A9, denoted f5D.1 and f5D.2 in Fig 12, introduces a
concurrent review to verify detailed contract requirements in
A10 and BV1-8, which is driven by customer requirements
derived in process A8. Thus process A10 is also preserved, and
the concurrent CEM review, BV1-8, involves a standardized
review to identify problematic contractual clauses and
misspecifications in the draft of detailed contract clauses to
ensure the contract clauses conform to customer requirements,
Broker and supplier capabilities, relevant regulatory
requirements, and international trade documentation and
transportation requirements.

The detailed contract requirements resulting from A10 and
BV1-8 in Fig 12 join after these processes, and immediately fork
again to incorporate a concurrent review of the contract
structure prior to final signatures. The CDM continues to
perform a review of the contract structure in A11 while the
CEM concurrently performs a review of known issues in
contract structures that can affect phase three processing time,
resource requirements, and customer satisfaction. Process flow
then proceeds to A12.

These concurrent reviews introduced in phase two are
considered to be largely resource neutral, in that for most major
contracts they already occur as part of a phase three process to
identify problems that will occur later in time. Not all of these
are caught in the phase three reviews during CE until they are
ready for execution. In the longer term, concurrent reviews
may be resource reducing when problems caught early during
contract development eliminate the later need to expend
resources and time to correct the contract or related supplier
issues. Examples of these are shown in Fig 12, where processes
B2, B4 and B5 are represented in grey, signifying that these later
processes do not need to be invoked for a particular contract if
latent contract problems were identified and corrected in the
concurrent reviews in phase 2.

 Benefits of concurrent reviews C.

Introducing concurrent reviews for specifying customer
requirements, detailed contract clauses, and contract structure
much earlier in the process accomplishes several objectives.
First, it identifies problems earlier, allowing more time to
effectively react at lower cost while trying to maintain high
levels of customer satisfaction. Second, by identifying and
rectifying problems prior to formal contract signing, it avoids
introducing contract modifications and amendments that must
be processed through the full processes of phase two. This
considerably reduces total process time to perform on the
contract and initiate contract closure, reduces cost and resource
consumption, reduces over-capacity utilization through
reduced work flows, and improves customer satisfaction and
Broker morale through improved customer performance and
reduced execution of wasteful practices. It also avoids the
requirement to run all contract modifications and amendments
through all phase two processes, regardless of the extent of the
contract modification or amendment.

These examples serve to introduce two type of concurrency
that can be employed in organizational processes, with an
intra-phase example of concurrency that employs decomposing
serial processes into concurrent processing, and an example of
non-serial inter-phase concurrency being employed earlier in
organizational processes to convert certain non-deterministic
work flows into deterministic workflows.

It is interesting to note that these workflow redesign
opportunities existed prior to Broker introducing the phase two
tightening of process performance times with the intent to
better serve the customer. Thus the new shorter lead times to
contract signature and execution did not create these problems,
but they did exacerbate them. If concurrent workflows are
introduced at processes A8, A10 and A11 in phase two and
maintained to effectively resolve the issues identified in this
paper, the additional time to process these concurrent reviews

(IJACSA) International Journal of Advanced Computer Science and Applications,

Special Issue on Extended Papers from Science and Information Conference 2014

63 | P a g e

www.ijacsa.thesai.org

is on the order of days or perhaps a week or two, while the
delays that the latent problems induce can be measured on the
order of six to twelve months in additional delays. However,
because of the current physical, organizational and social
separation between the CDMs and CEMs, Broker is facing
resistance in increasing the role of the CEMs in phase two.

This illustrates that the most effective policy to improve
customer satisfaction is not to optimize time in a single phase
at the expense of subsequent phases, but to consider the whole
system and work to reduce total time from contract
development to contract closure. Using concurrency in
workflows can be effective in real organizations, and non-
deterministic work flows can, in some cases, be converted to
deterministic processes to reduce processing time and resource
consumption while simultaneously improving customer
satisfaction.

V. CONCLUSIONS & FUTURE RESEARCH

Adopting some of the concepts of activity diagrams, this
paper defined a mathematical foundation for workflows. It
then defined deterministic workflows, a class of workflows that
have the predictable property that they will produce the same
results if they have to be executed over and over again. After
which, it defined flow independent workflows, a class of
workflows that are deterministic. A methodology was then
presented, which can be applied to each flow of control of a
flow independent workflow. The methodology rearranges the
action nodes in a flow of control so that some action nodes can
be executed concurrently. We also supplement the paper by a
real-world workflow that demonstrates the usefulness of our
methodology.

Although introducing concurrency to flow independent
workflows can be done in polynomial time, ultimately the
workflows must be executed by humans or machines or any
combination of the two. Hence, another relevant research
problem is to assign the action nodes of a flow independent
workflow to processors, which will eventually be responsible
for executing the action nodes.

However, the problem of assigning action nodes of a flow
independent workflow to a fixed number of processors so that
the completion time of the workflow is under a certain time
constraint does not seem to have a polynomial time solution. In
fact, it seems like the problem is NP-complete. One can easily
see the problem that given a number m of action nodes of a
flow independent workflow that are pairwise independent,
assigning them to n < m processors to be executed so that the
completion time of the workflow is under a specific time
constraint subsumes the bin-packing problem, a well-known
NP-hard problem. (In the bin packing problem, objects of
different volumes must be packed into a finite number of bins
or containers each of volume v in a way that minimizes the
number of bins used.) We will report the investigation of this
problem in a future journal paper.

 Adding fork nodes and join nodes to a not necessarily flow Fig.13.

independent workflow.

Although flow independent workflows have the desirable
property that being deterministic, as illustrated in this paper not
all real-world workflows are flow independent. Another type of
workflows have collaborating concurrent flows of control that
pass data back and forth with one another. Although they may
not be deterministic, nevertheless collaborating flows of
control are quite common. Therefore, it is still useful to apply
our methodology to a not necessarily flow independent
workflow to speed it up.

The first step, however, is to identify the parts of the
workflow to which our methodology can be applied. Although
much more work is needed, we do have some preliminary
ideas on this third approach. Fig 13 shows a workflow with
two flows of control that are not independent. The dashed lines
in Fig 13 denote data are passed from a sender action node to a
recipient action node, and the recipient action node must wait
for the data become available from the sender. In Fig 13, A8
requires some data items from A3 and A8 send some data items
to A5.

Fig 13 also shows that after a careful analysis of the
situation, in fact we can add fork nodes and join nodes to make
the explicit modeling of passing data unnecessary. In addition,
the added fork nodes and join nodes also delineate the
sequences of action nodes to which our methodology can be
applied. As shown in Fig 13, our methodology can now be
applied to the sequences A1, A2, A3 and A6, A7. We will also
report these efforts in a future journal publication.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Special Issue on Extended Papers from Science and Information Conference 2014

64 | P a g e

www.ijacsa.thesai.org

REFERENCES

[1] I. Arpinar, U. Halici, S. Arpinar, and A. Dogac, “Formalization of
workflows and correctness issues in the presence of concurrency,” vol.
7, pp. 199-248, April, 1999.

[2] P. A. Bernstein, and N. Goodman, “Concurrency Control in Distributed
Database Systems,” vol. 13, pp. 185-221, June 1981.

[3] G. Booch, J. Rumbaugh, and I. Jacobson, The Unified Modeling
Language User Guide, 2nd edition, Addison-Wesley, 2005.

[4] F. Cédric, F. Dirk, and V. Hagen, “The relationship between workflow
graphs and free-choice workflow nets,” Information Systems, in press.

[5] Y. Gao, H. Ma, H. Zhang, X. Kong, and W. Wei, “Concurrency
Optimized Task Scheduling for Workflows in Cloud,” 2013 IEEE Sixth
International Conference on Cloud Computing, pp. 709-716.

[6] M. Hammer, “Reengineering Work: Don't Automate, Obliterate,”
Harvard Business Review, vol. 68, pp. 104-112, Jul/Aug1990.

[7] J. Puustjarvi, “Workflow concurrency control,” Computer Journal, vol.
44, pp. 42-53, 2001.

[8] X. S. Sherry, and J. L. Zhao, “Formal Workflow Design Analytics Using
Data Flow Modeling,” Decision Support Systems, vol. 55, pp. 270-283,
Feb 2014.

[9] Y. Wang, and P. Lu, “Dataflow detection and applications to workflow
scheduling,” Concurrency And Computation-Practice & Experience,
vol. 23, pp. 1261-1283, Aug 2010.

[10] Y. Wang, and P. Lu, “DDS: A deadlock detection-based scheduling
algorithm for workflow computations in HPC systems with storage
constraints,” Parallel Computing, vol. 39, pp. 291-305, 2013.

[11] M. Wang, X. Zhang, L. Zhu, and L. Liao, “Trust-based workflow
refactoring for concurrent scheduling in service-oriented environment,”
Concurrency And Computation-Practice & Experience, vol. 25, pp.
1879-1893, 2013.

[12] Object Management Group, "The Unified Modeling Language™ -
UML," http://www.uml.org/

