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I. INTRODUCTION 

Business process re-engineering (BPR) has been a subject 
of intensive study since Michael Hammer published his 
seminal paper “Reengineering Work: Don't Automate, 
Obliterate” [6]. As a business management strategy, it focuses 
on the analysis and design of workflows and processes within 
an organization. Improving customer service and reducing 
operational costs are among its many goals. Many times BPR 
involves large scale modifications and redesigns of existing 
workflows. This paper, however, introduces a methodology of 
smaller scale that can speed up a specific class of workflows 
that has certain desirable properties. We then supplement the 
methodology with a real-world case study that demonstrates 
the usefulness of the methodology. 

To formally prove the methodology really does what it 
claims, we need a mathematical foundation upon which the 
methodology is based. For this purpose, we adopt some of the 
ideas of The Unified Modeling Language (UML), which has 
been an industry standard for modeling software-intensive 
systems since 2000 [12]. Developed by Grady Booch, Ivar 
Jacobson and James Rumbaugh at Rational Software in the 
1990s, UML provides a set of graphic notation techniques to 
create visual models of object-oriented software-intensive 
systems [3]. Particularly relevant to this research is the activity 
diagrams, from which our methodology is derived. 

Another important component of our methodology is the 
database concurrency theory [2], which has been an area of 
study in the last thirty years. Many recent studies applied this 
theory to workflows [1,4,5,7,8,9,10,11]. Database concurrency 

theory is mainly concerned with maintaining an orderly access 
of data items in the presence of multiple long-running 
concurrent database transactions. Without proper control, 
concurrent database transactions might read from and write to 
data items in an arbitrary order that will take a database from a 
correct state to an incorrect state. Placing locks on data items at 
the correct moment is a main mechanism the theory uses to 
control the execution of the transactions to ensure that the 
database will go from one correct state to another correct state.  

This paper is organized as follows. In Section 2, we present 
a mathematical foundation for workflows and define a 
particular class of workflows, called flow independent 
workflows, that has the property that being deterministic. A 
workflow being deterministic means that it will always 
produce the same output for a given input. Section 3 presents 
the proposed workflow re-engineering methodology and the 
correctness proof. Section 4 gives the case study. We conclude 
and point out possible future researches in Section 5. 

II. FUNDAMENTALS 

 Workflows and UML Activity Diagrams A.

UML has two types of diagrams: structural diagrams and 
behavioral diagrams [3]. Among all the behavioral diagrams of 
UML, activity diagrams are particularly relevant to this 
research because they specify the operational step-by-step 
processes of a system. Many concepts of activity diagrams are 
especially useful. For example, our definition for workflows 
adopts branches of control and concurrency from activity 
diagrams. Further, the concept of resources is also necessary in 
the definition because many workflows use, modify, consume 
and produce resources as they are executed. In addition, we 
also define the rules that govern the execution of workflows, 
i.e., the execution semantics of workflows. 

Definition 1: A workflow is an 8-tuple (Actions, Branches, 
Merges, Forks, Joins, Arrows, Resources, Constraints). 
Actions, Branches, Merges, Forks, Joins are all finite sets of 
nodes (vertices) and Arrows is a finite set of directed edges 
(ordered pairs) of nodes in Actions   Branches   Merges   
Forks   Joins. Resources is a finite multi-set of resources and 
Constraints is a finite set of constraints over the workflow. The 
following rules further refine these concepts. 

1: Resources is a finite multi-set of     resources r1, r2, 
…, rn. A resource ri of Resources can only be in one of an 
enumerable number of states at any moment of the execution 
of the workflow. (A workflow might need more than one unit 
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of a resource type in its execution. Therefore, a multi-set, 
rather than a set, of resources is used in the definition because 
elements of a multi-set are not necessarily distinct. However, 
the subscripts can make the elements distinct. For example, 
two identical but distinct elements ri and rj in Resources can be 
distinguished by their subscripts if i ≠ j. In a sense, the 
subscripts tag the resources and serve as unique identifiers.) 

2: An action node in Actions denotes an action, which is 
executed completely or not at all. An action takes a finite 
amount of time to complete, although it may vary from time to 
time. Any action node vi in Actions yields at most one directed 
edge of the form (vi, vj) in Arrows. (In other words, each action 
node has at most one out arrow.) 

3: Each action node has four associated multi-sets of 
resources: use, modify, consume, and produce. Use is the finite 
multi-set of resources that the action uses in its execution. 
Modify is the finite multi-set of resources whose states will be 
changed by the action during its execution. Consume specifies 
the finite multi-set of resources that the action consumes during 
its execution. After the action consumes a resource ri, ri ceases 
to exist. Produce is the finite multi-set of resources that the 
action produces during its execution. The action can assign a 
resource ri in one of its many allowable states when the action 
produces ri. Naturally, use ⊇ modify   consume and use   
produce = ∅. We stipulate that if an action node is given the 
same multi-set use multiple times, the action node will always 
yield the same multi-sets modify, consume, and produce every 
time.  

4: The nodes in Branches   Merges   Forks   Joins are 
control nodes. Control nodes only direct the flows of control 
during the execution of the workflow and thus they do not 
modify, consume or produce the resources in Resources. 

5: A source node n is a node that there is not a directed 
edge (vi, n) in Arrows. A sink node n is a node that there is not 
a directed edge (n, vi) in Arrows. Further, none of the directed 
edges in Arrows has the form (n, n) where n ∊ Actions   
Branches   Merges   Forks   Joins. (In other words, self-
loops are not allowed.) Source nodes and sink nodes must be 
action nodes, although multiple source nodes and/or sink nodes 
are allowed. 

6: Initially, there is not a flow of control in the workflow. 
When the execution of the workflow begins, simultaneously a 
separate flow of control will start at each source node. The 
execution of the workflow terminates when all of its flows of 
control terminate. 

7: When a flow of control reaches vi of a directed edge (vi, 
vj), whether vi will start executing depends on if vi uses any 
resources. If vi does not use any resources, vi immediately starts 
executing. If vi uses some resources, then we further check 
whether the elements in vi’s use are also in Resources. If use ⊆ 
Resources, then vi starts executing. In both cases, after vi  stops 
executing,  Resources = Resources   vi’s produce – vi’s 
consume, the elements in vi’s modify, which are also in 
Resources, have been modified, and vj immediately starts 
executing. If use ⊈ Resources, then the flow of control 
terminates at vi with no change to Resources. (In the case that 
the resources of vi are not immediately available to vi when the 

flow of control reaches vi, vi may enter a waiting period, which 
can be modeled by adding a branch node of Rule 8 and/or a 
constraint of Rule 12. Example 3 illustrates how this can be 
done. Hence, there is no loss of generality to say that if use ⊈ 
Resources, then the flow of control terminates at vi. Note that 
any action of a reasonable workflow will not wait indefinitely. 
Therefore, we stipulate that the length of such a waiting period 
must be specified beforehand.) 

The following rules are concerned with branch nodes, 
merge nodes, fork nodes and join nodes. All of these nodes are 
not source nodes and sink nodes. As a result, for every node vj 
∊ Branches   Merges   Forks   Joins, there are nodes vi and 
vk such that (vi, vj) and (vj, vk) are both in Arrows. 

8: For any branch node vj in Branches, there is a unique 
directed edge (vi, vj) in Arrows and there are     directed 
edges (vj, vk1), (vj, vk2), …, (vj, vkn) in Arrows. Further, there is a 
condition associated with (vj, vkl),      . When a flow of 
control reaches vj, at most one condition out of those associated 
with these n directed edges can be true at that moment. The 
flow of control then follows the unique directed edge whose 
condition is true. If the conditions associated with these n 
directed edges are all false, then the flow of control terminates 
at vj. Since the conditions associated with the directed edges 
(vj, vk1), (vj, vk2), …, (vj, vkn) might involve the elements in 
Resources, vj also has a multi-set use, which specifies the 
elements in Resources that are used in these conditions. 

9: For any merge node vj in Merges, there is a unique 
directed edge (vj, vk) in Arrows and there are     directed 
edges (vi1, vj), (vi2, vj), …, (vin, vj) in Arrows. For any flow of 
control that reaches any of vi1, vi2, …, vin and after it stops 
executing, vk immediately starts executing. Note that vj does 
not need any resources in its execution. 

10: For any fork node vj in Forks, there is a unique directed 
edge (vi, vj) in Arrows and there are     directed edges (vj, 
vk1), (vj, vk2), …, (vj, vkn) in Arrows. When a flow of control 
reaches vj via vi, the flow of control terminates at vj and n new 
flows of control f1, f2, …, fn will be created, and each fl starts at 
vj and then immediately reaches vkl,      . Note that vj 
does not need any resources in its execution. 

11: For any join node vj in Joins, there is a unique directed 
edge (vj, vk) in Arrows and there are     directed edges (vi1, 
vj), (vi2, vj), …, (vin, vj) in Arrows. A new flow of control starts 
at vj implies that there are n flows of control f1, f2, …, fn and 
each fl,      , reaches vj via vil and then terminates at vj. 
We stipulate that every flow of control that reaches vj via vil for 
some l can only give raise to a single new flow of control 
starting at vj. Note that vj does not need any resources in its 
execution. 

12: Constraints is a finite set of constraints defined on the 
workflow. □ 

Example 1: A moving company workflow might require a 
multi-set {truck1, truck2, worker1, worker2, worker3, worker4} 
of two trucks and four workers to move a family. Although 
truck1 and truck2 might be identical, the subscripts distinguish 
them from each other. As for the status of a resource, for 
example a document might be in one of the states prepared,  
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 A sample workflow in UML notation Fig.1.

unsigned, and signed; and a temperature variable might assume 
one of its many permissible values. □ 

In most workflows, many actions cannot have a fixed 
duration to complete. For example, a mailman might be able to 
finish his job in 5 hours on a sunny day but not on a rainy day. 
Hence, unless otherwise specified, we leave the duration of an 
action open. When such constraints are necessary, they are 
added to the set Constraints. 

We use UML notation to represent the components of a 
workflow. Action nodes are represented by rounded boxes, 
branch nodes and merge nodes by diamonds and fork nodes 
and join nodes by thick lines. Arrows naturally represent 
directed edges. 

Example 2: Fig 1shows a workflow in UML notation. 
When the workflow begins executing, two flows of control f1 
and f2, one starting at A1 and the other at A2, start 
simultaneously. These two flows of control are executed 
concurrently and synchronized at the join node, where each 
waits until the other reaches the join node. Then, they both 
terminate at the join node and a new flow of control starts at 
the join node. At the branch node, either C1 or C2 but not both 
is true. The flow of control follows the directed edge whose 
condition is true. Therefore, there are two possible flows of 
control f3 and f4 starting at the join node; but unlike f1 and f2, f3 
and f4 cannot co-exist at the same time. They are merely two 
different possibilities. Finally, the flow of control reaches the 
merge node, where it simply continues on to A7, the final action 
node. Although not shown in the Fig., the workflow in has a 
multi-set Resources and each action node has four associated 

finite multi-sets use, modify, consume and produce. □

 

 Adding a waiting period to A6 in Fig.1. Fig.2.

Example 3: Suppose the resources of action node A6 in are 
not available immediately when a flow of control reaches A6. 
A6 then has to wait for a while. To capture such a waiting 
period, a branch node can be added before A6 in the workflow. 
Since workflows cannot wait forever, there must be a specific 
time limit for the waiting period. Hence, the condition in  
specifies that the waiting period must be less than one hour, 
although some other time limit is also possible. If A6’s 
resources become available within one hour, the follow of 
control continues to A6; otherwise, the condition fails and the 
flow of control terminates at the branch node. □ 

Example 4: If initially Resources = {a, b, c1, c2} and A1’s 
use = {a, d1, d2}, then the flow of control started at A1 
immediately terminates at A1 because A1 uses two d’s in its 
execution, but there is none available in  Resources. When that 
happens, even if A2 successfully completes its action, no new 
flow of control will start at the join node because the join node 
will indefinitely wait for a flow of control coming from A1, 
which will never come. □ 

Example 5: We might additionally add a constraint that 
specifies A1 must complete its action within an hour or that the 
total time the workflow will take must be less than 5 hours. 
These constraints will then be added to the set Constraints. □  

 Configuartions of Workflows B.

Although self-loops are not allowed in a workflow, cycles 
are still possible. Hence, a workflow might not stop executing 
once it starts. Since most useful workflows terminate once they 
are given enough time and resources, non-terminating 
workflows are not considered any further. 

Definition 2: A terminating workflow is one that will 
terminate on any given multi-set Resources. □ 

Example 6: Because it does not have any cycles, the 
workflow in Fig.1 always terminates not matter what the multi-
set Resources is. □ 

Definition 3: A configuration of a workflow is the multi-set 
Resources together with the states of the elements in 
Resources. □ 

Every workflow has an initial configuration, which is the 
multi-set Resources together with the states of each of its 
elements before the workflow starts executing. After the 

 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Special Issue on Extended Papers from Science and Information Conference 2014 

55 | P a g e  

www.ijacsa.thesai.org 

workflow stops executing, it then has a final configuration, 
which is the multi-set Resources together with the states of 
each of its elements after the workflow stops executing. 

Definition 4:  A deterministic workflow is a terminating 
workflow and for any given multi-set Resources, it always 
ends up in the same final configuration even if the workflow 
has to be executed multiple times. On the other hand, a non-
deterministic workflow is also a terminating workflow and for 
some given multi-set Resources, it might not end up in the 
same final configuration if the workflow is executed multiple 
times. □ 

Although a deterministic workflow is a terminating 
workflow, the converse is not true. That is, it is possible that a 
terminating workflow is non-deterministic. Since most real-
world workflows are supposed to give the same results even if 
they have to be executed more than once, deterministic 
workflows are desirable.   

Example 7: Suppose Resources = {a, b1, b2, c}, and A1’s 
use = A1’s modify = A2’s use = A2’s modify = {a}, and in 
addition resource a is not in the multi-sets modify, consume and 
produce of the other action nodes in Fig.1. Since A1 might 
finish before A2 in one run, but in another run A2 might finish 
before A1, and since A1 and A2 both modify resource a, the 
workflow in Fig.1 would be non-deterministic under these 
conditions. □ 

Here, we give a sufficient condition for deterministic 
workflows. That is, if a workflow satisfies this condition, the 
workflow is deterministic. 

Definition 5: Two (not necessarily distinct) actions Ai and 
Aj are independent if Ai’s use   (Aj’s modify   Aj’s consume   
Aj’s produce) = ∅ and Aj’s use   (Ai’s modify   Ai’s consume 
  Ai’s produce) = ∅. □ 

Definition 6: Two distinct concurrent flows of control fi and 
fj of a workflow are independent if any pair of actions Ai of fi 
and Aj of fj are independent. A workflow is flow independent if 
any two of its distinct concurrent flows of control fi and fj are 
independent. □ 

Example 8: f1 and f2 are distinct concurrent flows of control 
in Fig.1. f3 and f4 are not concurrent flows of control because 
they cannot co-exist at the same time. □ 

Theorem 1: If a workflow w is flow independent, w is 
deterministic. 

Proof sketch: We proceed by induction on the number n of 
concurrent flows of control of w at any moment. If n = 1, then 
at any moment w has at most one flow of control. Suppose this 
flow of control fi has n ≥ 1 nodes v1, v2, …, vn‒1, vn. By Rule 3 
of Definition 1, when an action node is given the same multi-
set use multiple times, the action node will always yield the 
same multi-sets modify, consume, and produce every time. 
Hence, every action node vi of fi is deterministic. It is clear that 

a sequential execution of n ≥ 1 deterministic action nodes is 
also deterministic. Hence, the basis is established. Assume the 
induction hypothesis is true for n = k for some k ≥ 1. That is, w 
is deterministic if w has k or less concurrent flows of control at 
any moment. Suppose w has one more flow of control fk+1 at a 
moment. By the assumption that w is flow independent, any 
pair of actions Ai of fk+1 and Aj of fl (1 ≤ l ≤ k) are independent. 
Hence, every action Ai of fk+1 does not depend on the output of 
the action nodes of fl (1 ≤ l ≤ k). At this point the argument for 
the basis also applies to fk+1. Hence, the workflow is 
deterministic. □ 

III. WORKFLOWS RE-ENGINEERING 

The main purpose of workflows re-engineering is to make 
workflows more efficient, or to reduce certain resources 
required by the workflows. For most cases, the goal is to 
reduce the completion time of a workflow. Because flow 
independent workflows have the desirable property that they 
are deterministic, in this section we focus on flow independent 
workflows and present a methodology that will reduce their 
completion time.  

 Introducting Concurrency A.

Introducing concurrency to a flow independent workflow 
obviously can reduce the time it takes to complete. However, 
the interactions of the actions and the resources of the 
workflow imply a certain order the actions must observe. 
Example 9: Consider the workflow in and suppose A5’s use = 
{a} and A6’s modify = {a}. Under this assumption, A5 uses the 
resource a before it is modified by A6. Hence, A5 must precede 
A6. Now suppose A5’s modify = {a} and A6’s use = {a}. In this 
case, A6 uses the resource a modified by A5. Hence, A6 must 
follow A5. Similarly, suppose A5’s use = {a} and A6’s consume 
= {a}. Then, A5 must precede A6 because after A6, resource a 
will cease to exist. If A5’s consume = {a} and A6’s use = {a}, 
then A6 cannot be executed because resource a no longer exists 
after A5. Hence, the flow of control terminates at A5. (Note that 
one may argue that it is incorrect to have A5’s consume = {a} 
and A6’s use = {a}. However, we have to be compliant to the 
semantics of the workflow and thus the order of execution of 
the actions in the workflow must be preserved.) For the case 
that A5’s produce = {a} and A6’s use = {a}, A5 must precede 
A6. On the other hand, if A5’s use = {a} and A6’s produce = 
{a}, then the flow of control terminates at A5, which is similar 
to the case that A5’s consume = {a} and A6’s use = {a}. 
However, if A5 and A6 are independent, they can be executed 
concurrently. This can be done by adding a fork node as shown 
in Fig 3 As a result, two concurrent flows of control can start at 
A5 and A6 simultaneously. □ 

 The main idea of our methodology is to introduce 
concurrency to a flow independent workflow; but at the same 
time we have to ensure that the resulting workflow is 
equivalent to the original. 
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 A5 and A6 can be executed concurrently if they are independent. Fig.3.

Definition 7: Two deterministic workflows are equivalent if 
they are given any multi-set Resources as their initial 
configurations, they will both end up in the same final 
configuration after they stop executing. □ 

 Partitioning Flows of Control into Sequences B.

Lemma 1 points out some useful characteristics that will 
help introducing concurrency to flow independent workflows.  

Lemma 1: Consider a flow of control fi of n ≥ 1 nodes v1, 
v2, …, vn‒1, vn of a flow independent workflow. The following 
are all true for fi. 

a) v1 cannot be a branch node. 

b) Both v1 and vn cannot be a merge node. 

c) Only v1 or vn can be a fork node. 

d) Only v1 or vn can be a join node. 

e) If vi (1 < i < n) is a branch node, then each of v1, …, vi‒1 
cannot be executed concurrently with any of vi+1, …, vn. 

Proof sketch: 

a) Rule 8 of Definition 1 states that when a flow of 

control reaches a branch node, the conditions associated with 

all of its outgoing directed edges will be evaluated and the flow 

of control will follow the unique directed edge whose condition 

is true. Hence, branch nodes do not start any flow of control 

and thus v1 cannot be a branch node. 

b) According to Rule 9 of Definition 1, merge nodes 

neither start nor terminate any flow of control. Given a merge 

node vj, there are two directed edges (vi, vj) and (vj, vk) in 

Arrows and vj simply passes the flow of control from vi to vk. 

Hence, v1 and vn cannot be a merge node. 

c) Rule 10 of Definition 1 states that when a flow of 

control reaches a fork node, the flow of control will terminate 

at the fork node and then the fork node will yield more than 

one flow of control. Hence, if a vi where 1 < i < n is a fork 

node, then the flow of control starting at v1 will terminate at vi. 

This contradicts the lemma statement that the flow of control 

terminates at vn. 

d) Rule 11 of Definition 1 states that when a flow of 

control reaches a join node, the flow of control will wait for 

and synchronize with the other flows of control destined for the 

join node. Then, they will all terminate at the join node and a 

new flow of control will start at the join node. Hence, if a vi 

where 1 < i < n is a join node, the flow of control starting at v1 

will terminate at vi. This contradicts the lemma statement that 

the flow of control terminates at vn. 

e) If vi where 1 < i < n is a branch node, then by Rule 8 

of Definition 1 there is a condition associated with the directed 

edge (vi, vi+1). The execution of any of vi+1, …, vn depends on 

the truth value of the condition. If the condition is true, vi+1, …, 

vn will be executed in this order; otherwise, none of them will 

be executed. On the other hand, the execution of v1, …, vi‒1 do 

not depend on the condition of the directed edge (vi, vi+1). As a 

result, each of v1, …, vi‒1 cannot be executed concurrently with 

any of vi+1, …, vn. □ 

While the other parts of Lemma 1 restrict the nodes in fi, 
Part e relates directly to concurrency. With the additional 
restriction that none of the nodes of fi can be replicated, 
Lemma 2 provides another result about merge nodes that also 
relates directly to concurrency. 

Lemma 2: Consider a flow of control fi of n ≥ 1 nodes v1, 
v2, …, vn‒1, vn of a flow independent workflow. If vj (1 < j < n) 
is a merge node and none of the nodes of fi can be replicated, 
then each of v1, …, vj‒1 cannot be executed concurrently with 
any of vj+1, …, vn. 

Proof sketch: By Rule 9 of Definition 1, there are at least 
two directed edges (vj‒1, vj) and (vi, vj) and a unique directed 
edge (vj, vj+1) for vj. vj‒1 is the node precedes vj in fi but vi is not 
part of fi. When a flow of control reaches vj via vj‒1, vj will pass 
the flow of control to vj+1. Likewise, when a flow of control fk 
(i ≠ k) reaches vj via vi, vj will pass the flow of control to vj+1. If 
any of vj+1, …, vn is executed concurrently with any of v1, …, 
vj‒1, the same node must be removed from vj+1, …, vn and must 
also be executed concurrently with some node before vj on fk as 
well. However, since nodes on fi cannot be replicated, this is 
impossible. □ 

Given a flow of control fi of a flow independent workflow, 
Lemmas 1 and 2 specifies certain restrictions on fi. Particularly, 
the branch nodes and merge nodes partition fi into sequences of 
action nodes. By Lemma 1e and Lemma 2, every action node 
of each of these sequences cannot be executed concurrently 
with any action node of the other sequences of fi. However, we 
can rearrange the action nodes within a sequence so that some 
of them can be executed concurrently. 

Example 10: Consider a flow of control fi of a flow 
independent workflow that has two diamonds, where each 
diamond either represents a branch node or a merge node. As 
shown in Fig 4 these two diamonds partition fi into three 
sequences of action nodes, where each sequence of action 
nodes is represented by a dashed line. □ 

To rearrange the action nodes within a sequence, we first 
need to define a relation on the action nodes. This relation will 
yield an order of execution on the action nodes. 

Definition 8: Given a sequence of n ≥ 1 action nodes v1, v2, 
…, vn‒1, vn, we define a relation, denoted by ⊲, on the action 
nodes as follows: 
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 Three sequences of action nodes as a result of two branch/merge Fig.4.

nodes. 

a) vi ⊲ vj if i < j and vi and vj are not independent, or  

b)  vi ⊲ vj if vi ⊲ vk and vk ⊲ vj for some vk. □ 

The meaning of vi ⊲ vj is that vi must be executed before vj. 
Condition a is obvious because if vi precedes vj in the sequence 
and they are not independent, then vi must be executed before 
vj. (See Example 9.) Condition b says that if vi must be 
executed before vk and vk must be executed before vj, then vi 
must (indirectly) be executed before vj. Based on the relation 
⊲, we can now define an execution order hierarchy for the 
action nodes as follows: 

Definition 9: Given a sequence of n ≥ 1 action nodes v1, v2, 
…, vn‒1, vn, we define an execution order hierarchy h for the 
action nodes as follows: 

a) If vi ⋪ vk for each vi such that vi ≠ vk, then vk is a root 

of h. (Note that it is possible that h may have more than one 

root.) 

b) If vi is a node in h and vi ⊲ vj and there does not exist 
an vk such that vi ⊲ vk and vk ⊲ vj, then vi is a parent of vj in h. 
(Note that an action node may have more than one parent in h. 
Also note that if vi ⊲ vk and vk ⊲ vj for some vk, then vi is not a 
parent of vj in h. However, vi is an ancestor of vj in h.) 

Algorithms can be easily defined to generate the execution 
order hierarchy of Definition 9. One possibility is as follows. 

Algorithm 1: 

Input: a sequence of n ≥ 1 action nodes v1, v2, …, vn‒1, vn. 

Output: an initially empty execution order hierarchy h of 
Definition 9 for the input action nodes. 

1) Set s = ∅. 

2) For i = 1 to n do 

 For j = i+1 to n do /* i < j */ 

  If vi and vj are not independent, insert (vi, vj) to s. 

3) For i = 1 to n do 

 If vi does not appear in h, make vi a root of h. 

For each ordered pair of the form (vi, vj) in s, 

 add a directed edge vi ⟶ vj to h. 

4) For i = 1 to n do /* Remove redundant edges from h. */ 

If vi ⟶ vk is a directed edge in h but vi ⟶ vk can be derived 
from the other directed edges in h, remove vi ⟶ vk from h. 

Example 11: Consider the sequence of action nodes in Fig 
5 and further suppose the following: 

1) A1’s use = {a}, A1’s modify = {a}, A1’s produce = {b, c}, 

2) A2’s use = {d}, A2’s produce = {e, f}, 

3) A3’s use = {a, b, e}, A3’s modify = {a}, A3’s produce = {g}, 

4) A4’s use = {c, f}, A4’s modify = {f}, A4’s consume = {c}, 

5) A5’s use = {a}, A5’s produce = {h}, 

6) A6’s use = {e}, A6’s produce = {i}. 

 

 A sequence of action nodes Fig.5.

 The execution order hierarchy of Example 11 Fig.6.

After Step 2 of Algorithm 1, s = {A1 ⟶ A3, A1 ⟶ A4, A1 ⟶ 
A5, A2 ⟶ A3, A2 ⟶ A4, A2 ⟶ A6, A3 ⟶ A5}. In the first 
iteration of the for-loop of Step 3, A1 becomes the first root of 
h. Then, the directed edges A1 ⟶ A3, A1 ⟶ A4, A1 ⟶ A5 are 
added to h. In the second iteration of the for-loop of Step 3, A2 
becomes the second root of h. Then, the directed edges A2 ⟶ 
A3, A2 ⟶ A4, A2 ⟶ A6 are added to h. In the third iteration of 
the for-loop of Step 3, A3 does not become another root of h 
because A3 already appears in h. Then, the directed edge A3 ⟶ 
A5 is added to h. Now, the directed edge A1 ⟶ A5 becomes 
redundant in h because A1 ⟶ A5 can be derived from A1 ⟶ A3 

and A3 ⟶ A5 , which are also in h. Thus, A1 ⟶ A5 is removed 
at Step 4. The result is the execution order hierarchy in Fig 6. □ 

Theorem 2: Given a sequence of n ≥ 1 action nodes v1, v2, 
…, vn‒1, vn, Algorithm 1 generates the execution order 
hierarchy of Definition 9 from the action nodes. 

Proof sketch: 
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Step 2 of Algorithm 1 generates all ordered pairs vi ⊲ vj 
where there is no vk such that vi ⊲ vk and vk ⊲ vj. (That is, Step 
2 of Algorithm 1 generates all ordered pairs vi ⊲ vj such that vi 
must be executed directly, not indirectly, before vj.) In fact, 
Step 2 of Algorithm 1 may as well generate some ordered pairs 
that can be derived from the other ordered pairs. Step 3 of 
Algorithm 1 simply adds all the directed edges to h based on 
the ordered pairs in s. Potentially it may add redundant directed 
edges to h that can be inferred from the other directed edges, 
e.g., A1 ⟶ A5 of Example 11. Step 4 of Algorithm 1 is 
designed to remove them. □ 

Transforming the execution order hierarchy of Definition 9 
into a workflow with concurrency is straightforward. The idea 
is to use fork nodes to fork multiple flows of control and join 
nodes to synchronize these flows of control back into one.  

Algorithm 2: 

Input: an execution order hierarchy h generated by Algorithm 
1. 

Output: a workflow that is equivalent to the input sequence of 
action nodes to Algorithm 1. 

1) For each action node vi in h do, 
If vi has n > 1 outgoing directed edges, then 

Add a new fork node f and a directed edge from vi to f. 

Make f to have n outgoing directed edges. 

2) For each action node vi in h do, 

If vi has n > 1 incoming directed edges, then 

Add a new join node j and a directed edge from j to vi. 

Make j to have n incoming directed edges. 

3) According to the directed edges in h, connect the added 

fork nodes and the join nodes and the rest of the action nodes 

in h. 

4) If h has more than one root, add a fork node at the 

beginning of the resulting workflow such that it has out-going 

directed edges to all of the roots. 

5) If h has more than one sink action node, add a join node 

at the end of the resulting workflow such that it has in-coming 

directed edges from all of the sink action nodes. 

Example 12: In Fig 6, A1 has two out-going directed edges. 
Thus, Algorithm 2 adds a fork node that has two out-going 
directed edges and a directed edge from A1 to that fork node. 
Algorithm 2 does the same to A2. A3 has two in-coming 
directed edges. Thus, Algorithm 2 adds a join node that has 
two in-coming directed edges and a directed edge from that 
join node to A3. Similarly, Algorithm 2 does the same to A4. 
According to the directed edges in h, Algorithm 2 then 
connects the added fork nodes to the added join nodes and also 
the rest of the action nodes by directed edges. Because the 
execution order hierarchy has two roots, Algorithm 2 adds a 
fork node at the beginning of the workflow with out-going 
directed edges to the two roots. Since there are three sink 
action nodes, Algorithm 2 adds a join node at the end of the 

workflow to merge all of the flows of control back into one. 
The resulting workflow is shown in Fig 7. □ 

Theorem 3: Given a sequence of n ≥ 1 action nodes v1, v2, 
…, vn‒1, vn, our methodology generates an equivalent workflow 
from the sequence of action nodes. 

Proof sketch: 

The resulting workflow in UML notation is a simple 
translation from the execution order hierarchy of Definition 9. 
By Theorem 2, Algorithm 1 generates the execution order 
hierarchy of Definition 9 from the sequence of action nodes. It 
is therefore sufficient to consider the execution order hierarchy 
generated by Algorithm 1. We proceed by induction on the 
number n of action nodes in the sequence. When n = 1, it is 
clear that the sequence of action nodes is equivalent to the  

 The resulting workflow generated from the execution order hierarchy Fig.7.

in Fig 6. 

execution order hierarchy because both of them have only one 
action node. We assume the induction hypothesis is true for n = 
k for some k ≥ 1. When n = k+1, the sequence has k+1 action 
nodes where vk+1 is the last action node added to the sequence. 
Step 2 of Algorithm 1 adds the ordered pair (vi, vk+1) to s for 
each i ≤ k such that vi and vk+1 are not independent. Step 3 of 
Algorithm 1 adds the directed edge vi ⟶ vk+1 to the execution 
order hierarchy. As such, it is clear that if there is not a direct 
path from one action node vi to another action node vj in the 
execution order hierarchy, they are independent and thus vi can 
be executed before vj, or vj can be executed before vi, or vi and 
vj can be executed concurrently. Hence, the generated 
execution order hierarchy is equivalent to the original sequence 
of action nodes. □ 

IV. CASE STUDY 

The case study is drawn from a representative workflow 
(“phase” in research client terminology) from a much larger set 
of workflows at a large organization which serves as a broker 
between major international customers and multiple US 
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suppliers (“Broker”).  Broker provides a wide range of 
products and services to their customers, from individual items 
to complex integrated systems. Their overall workflow breaks 
into four sequential major “phases.”  The first phase is initial 
interest from a customer in a broad product category, where the 
customer works with Broker to develop a structured expression 
of interest for a particular product set with a rough-order-of-
magnitude (ROM) cost estimate.  The second phase involves 
contract development (CD), where Broker develops and 
structures the contract to be executed in phase three, contract 
execution (CE). The fourth phase is contract closure. Elements 
of phase two and three are illustrated in the case study. Other 
phases are not shown for simplicity. 

We provide two examples of workflow redesign in a case 
study. The first example introduces intra-phase concurrency in 
phase two, illustrated notionally in Fig 8, with a goal to reduce 
processing time within phase two. The second example 
introduces concurrency in inter-phase processes to convert 
certain non-deterministic processes to deterministic to reduce 
later contractual rework that causes multi-month delays. The 
goal in inter-phase workflow redesign is to reduce total system 
time.  

 Intra-phase concurrency A.

Phase two workflow translates the ROM developed in 
phase one into a formal itemized breakdown of costs and other 
contractual terms.  Some phase 2 actions involve 
communications with US suppliers to get accurate cost and 
delivery information, interactions with US regulatory agencies 
to ensure appropriate legal authority to export is maintained, 
and interactions with customers.  All new orders, whether for 
component parts or complex systems, flow through phase two.  

In addition, modifications or amendments to existing orders 
also require the modified or amended orders to be reviewed 
through all phase two steps again to ensure the updated order is 
capable of being fulfilled during CE in phase three. 
Modifications to orders may be initiated in phase three for 
many reasons and may include, for example, transportation 
changes, corrections of misspecification of items or contractual 
terms, inadvertent errors, or changes in delivery time for one or 
more items in a particular order. The interactions with 
customers during CE quite often yield an amendment of the 
order that introduces a new workflow so the amended order 
can be properly reviewed and re-signed before once again 
proceeding through CE.  

The duration of orders proceeding through phase two and 
three may span anywhere from several months to two years or 
more, depending on whether a particular order involves spare 
components parts, one or more major systems that are built to 
order, or a complex system comprised of complex machinery, 
on-site training upon delivery, and subscriptions for ongoing 
upgrades to technical manuals. With this complexity and multi-
year order duration, modifications and amendments to orders 
comprise more than half of all orders. Thus one order may 
proceed through process workflows in phases two and three 
multiple times over the contract duration. 

Our task was to map and model workflows to estimate 
Broker’s employee workload levels.  A major difficulty for 

Broker, particularly for complex integrated systems, is long 
lead-times associated with receiving 1) detailed cost and 
contract data from US suppliers, and 2) appropriate 
documentation for legal export from regulatory agencies.  
While the workflows are largely deterministic, the stochastic 
nature of time to receive responses from suppliers and 
customers means that the employees may be nearly idle while 
in the midst of one of these lead times, or extremely busy in 
transitioning from one customer action to processing an action 
for another customer.  The latter may induce delays due to 
bottlenecks in flow dependent actions, which extends lead 
times and induces additional costs.  

Broker’s performance is evaluated by many customer-
oriented metrics, including total processing time for each 
phase. Broker recently instituted targets for reducing total time 
for processing workflow in phase two for very complex 

 

 A real-world case study workflow Fig.8.

systems from l1 to l2, a reduction of 25%, which is measured in 
months. If the flows of control of phase 2 can be reengineered 
from serial to concurrent, reductions in processing time will 
help reduce maximum lead times to l2. As such, reengineered 
workflows would reduce total lead time by days or weeks, and 
thus 1) greatly improve responsiveness of Broker and Broker’s 
suppliers to customers, 2) reduce task load imbalances on 
Broker’s employees, and 3) reduce cost to Broker. 

Fig 8 shows the workflow based on the case study. Due to 
the confidentiality agreement, we cannot disclose the actual 
steps and the inputs and outputs of the workflow. Instead, we 
replace them by generic names. The workflow in Fig 8 cannot 
be hastened because, except for the sequence A1, A2, there is 
only a single action node in between any pair of branch node or 
merge node. However, a more in-depth analysis reveals that A3 
is not atomic. In fact, A3 can be decomposed into three pairwise 
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independent action nodes A3.1, A3.2, and A3.3. As a result, they 
can be executed concurrently, as shown in Fig 9. Likewise, A5 
can be decomposed into three atomic action nodes A5.1, A5.2 and  

 Rearranging three independent action nodes of A3 Fig.9.

 Rearranging three action nodes of A5 Fig.10.

A5.3 of which A5.1 and A5.2 are not independent while the other 
pairs are independent. Thus, they can be rearranged into a 
workflow like the one in Fig 10. 

The result of these reengineered workflows is reduced 
processing time to complete phase two, consistent with 
organizational goals, without an increase in resources or 
violations of workflow requirements or constraints. This 
example serves to illustrate how analysis and decomposition of 
processes provides opportunities to introduce workflow 
concurrency to serial tasks. 

Currently, the principal barrier to introducing these 
concurrencies is lack of authority on the part of mid-level 
employees to move forward without prior approval by higher-
level employees.  For example, by policy A3.2 currently has to 
wait on high-level approval on A3.1 before it may proceed, 
although there is no strict reason, from the point of view of 
available resources r1…rn  other than the approval itself (rj).  
We have therefore recommend Broker review some of the 
policies that introduce serial approval steps to evaluate their 
necessity. 

Our analysis also identified opportunities where inter-phase 
workflows across phases two and three are designed to be 
independent, but analysis revealed that a significant percentage 
of contract modifications and amendments are the result of 

internal changes in how contracts are executed, as well as 
misspecifications and errors identified earlier require 
modifications and amendments above and beyond those 
initiated by the customer. The resultant workflows increase 
resource requirements, increase total processing time, and 
consume capacity that is constrained during fluctuations in 
daily and weekly workflow. We analyze this case in the next 
example. 

 Inter-phase concurrency B.

In addition to introducing concurrency to improve 
processing time in serial processes, such as in the phase two 
example above, our analysis identified non-serial processes in 
separate phases that unintentionally introduce non-standard 
practices in both phases. As noted, this causes inconsistencies 
and errors that make specific workflow processes non-
deterministic. Due to the complex nature and long duration of 
many of these contracts, it is not surprising that these problems 
occur. But when they occur and contract modifications or 
amendments are necessary, the updated version of the contract 
must be re-processed through all of the phase two processes 
before the updated contract can be executed. This causes 
another full pass through phase two and through many of the 
processes in phase three. It is estimated the added workload is 
in the range of thirty percent of total workflows. In addition, 
often months can pass while the contract is re-specified, 
reviewed and re-signed. This affects resource costs, system 
capacity, total processing time, and customer satisfaction.  

To address these problems, the goal in this workflow 
redesign example is to make more of the phase three processes 
deterministic by using workflow redesign to leverage the 
benefits of concurrency in phase two, specifically in contract 
review, verification, and structuring, to eliminate many of the 
latent contract problems identified only during CE in phase 
three. The original workflows are show in Fig.11 where the 
relevant processes for phase two are denoted as A7 – A12, and 
the processes for phase three are shown as B1 – B8. The 
workflows for phase two and three are f5 and f6, respectively. 
The final phase, contract closure, is not addresses in the 
process redesign and is denoted C1 for simplicity. 

The workflows of redesign interest in Fig.11 are discussed 
next. A8 denotes a review process of customer requirements for 
a particular order by a CD manager (“CDM”). Due to the 
decreased phase two processing time targets for process time 
imposed by senior management, CDMs perform these review 
with input from suppliers that involve particular supplier 
requirements prior to forwarding the finalized customer 
requirements to the next phase. In A10, the CDM translates 
these requirements from A8 in to detailed contract 
requirements. In A11, contract requirements are forwarded to 
the next process where the contract requirements are embedded 
in a finalized contract, ready for customer signature.  

These three processes in the latter part of phase two are 
targeted for workflow redesign because many of the latent 
errors and misspecifications that arise months later in CE 
during phase three could be eliminated or mitigated during 
phase two. 
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It is noted that when working with organizational processes 
rather than information processing technology, it can be 
difficult to convert processes to deterministic. This challenge 
increases when a team that manages one phase for a key 
customer in phase two are located physically apart from a 
related customer team that manages in phase three. This 
example in our case study investigates how information 
uncertainty and inconsistencies between related contract 
specification teams and corresponding contract execution 
teams cause delays in contract execution,  

We employ workflow concurrency as follows to 
accomplish this objective. For the workflow redesign of 
processes A8, A10 and A11, we first decompose workflow f5 in 
Fig 11 into separate workflows and label them f5A, f5B, f5C, f5D 
and f5E and f5F (Fig 12). These workflows correspond to the six 
phase two processes identified in Fig 11 namely A7, A8, A9, A10, 
A11 and A12, respectively. The three workflows, f5B, f5D and f5E, 
will be redesigned in this example. 

For the first workflow redesign in process A8 (Fig 12), we 
introduce concurrent workflows using a fork node following 
A7, where the new concurrent workflows denoted f5B.1 and f5B.2 
correspond to processes A8 and BR1-8. This preserves the phase 
two review in A8 by the CDM and introduces a concurrent 
review, denote BR1-8, by the CE manager (“CEM”). The CEM 
uses a standardized review process that scans and identifies 
common errors, misspecifications, and other contractual 
problems that later drive increased workload.  

The CEM review in BR1-8 in Fig 12 includes issues typically 
identified in phase three during any of the processes B1 through 
B8 that could have been avoided through better initial 
specification of customer requirements and how they match 
Broker’s organizational capabilities to meet the requirements. 
These review are processed through a join node into a final 
customer requirements document (not shown for simplicity).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Original workflows for phase two (f5) and phase three (f6). Fig.11.
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 Redesigned intra-phase workflows using concurrency. Fig.12.

The second workflow redesign after the fork node 
following A9, denoted f5D.1 and f5D.2 in Fig 12, introduces a 
concurrent review to verify detailed contract requirements in 
A10 and BV1-8, which is driven by customer requirements 
derived in process A8. Thus process A10 is also preserved, and 
the concurrent CEM review, BV1-8, involves a standardized 
review to identify problematic contractual clauses and 
misspecifications in the draft of detailed contract clauses to 
ensure the contract clauses conform to customer requirements, 
Broker and supplier capabilities, relevant regulatory 
requirements, and international trade documentation and 
transportation requirements.  

The detailed contract requirements resulting from A10 and 
BV1-8 in Fig 12 join after these processes, and immediately fork 
again to incorporate a concurrent review of the contract 
structure prior to final signatures. The CDM continues to 
perform a review of the contract structure in A11 while the 
CEM concurrently performs a review of known  issues in 
contract structures that can affect phase three processing time, 
resource requirements, and customer satisfaction. Process flow 
then proceeds to A12. 

These concurrent reviews introduced in phase two are 
considered to be largely resource neutral, in that for most major 
contracts they already occur as part of a phase three process to 
identify problems that will occur later in time. Not all of these 
are caught in the phase three reviews during CE until they are 
ready for execution. In the longer term, concurrent reviews 
may be resource reducing when problems caught early during 
contract development eliminate the later need to expend 
resources and time to correct the contract or related supplier 
issues. Examples of these are shown in Fig 12, where processes 
B2, B4 and B5 are represented in grey, signifying that these later 
processes do not need to be invoked for a particular contract if 
latent contract problems were identified and corrected in the 
concurrent reviews in phase 2. 

 Benefits of concurrent reviews C.

Introducing concurrent reviews for specifying customer 
requirements, detailed contract clauses, and contract structure 
much earlier in the process accomplishes several objectives. 
First, it identifies problems earlier, allowing more time to 
effectively react at lower cost while trying to maintain high 
levels of customer satisfaction. Second, by identifying and 
rectifying problems prior to formal contract signing, it avoids 
introducing contract modifications and amendments that must 
be processed through the full processes of phase two. This 
considerably reduces total process time to perform on the 
contract and initiate contract closure, reduces cost and resource 
consumption, reduces over-capacity utilization through 
reduced work flows, and improves customer satisfaction and 
Broker morale through improved customer performance and 
reduced execution of wasteful practices. It also avoids the 
requirement to run all contract modifications and amendments 
through all phase two processes, regardless of the extent of the 
contract modification or amendment. 

These examples serve to introduce two type of concurrency 
that can be employed in organizational processes, with an 
intra-phase example of concurrency that employs decomposing 
serial processes into concurrent processing, and an example of 
non-serial inter-phase concurrency being employed earlier in 
organizational processes to convert certain non-deterministic 
work flows into deterministic workflows. 

It is interesting to note that these workflow redesign 
opportunities existed prior to Broker introducing the phase two 
tightening of process performance times with the intent to 
better serve the customer. Thus the new shorter lead times to 
contract signature and execution did not create these problems, 
but they did exacerbate them. If concurrent workflows are 
introduced at processes A8, A10 and A11 in phase two and 
maintained to effectively resolve the issues identified in this 
paper, the additional time to process these concurrent reviews 
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is on the order of days or perhaps a week or two, while the 
delays that the latent problems induce can be measured on the 
order of six to twelve months in additional delays.  However, 
because of the current physical, organizational and social 
separation between the CDMs and CEMs, Broker is facing 
resistance in increasing the role of the CEMs in phase two.  

This illustrates that the most effective policy to improve 
customer satisfaction is not to optimize time in a single phase 
at the expense of subsequent phases, but to consider the whole 
system and work to reduce total time from contract 
development to contract closure. Using concurrency in 
workflows can be effective in real organizations, and non-
deterministic work flows can, in some cases, be converted to 
deterministic processes to reduce processing time and resource 
consumption while simultaneously improving customer 
satisfaction. 

V. CONCLUSIONS & FUTURE RESEARCH 

Adopting some of the concepts of activity diagrams, this 
paper defined a mathematical foundation for workflows.  It 
then defined deterministic workflows, a class of workflows that 
have the predictable property that they will produce the same 
results if they have to be executed over and over again. After 
which, it defined flow independent workflows, a class of 
workflows that are deterministic. A methodology was then 
presented, which can be applied to each flow of control of a 
flow independent workflow. The methodology rearranges the 
action nodes in a flow of control so that some action nodes can 
be executed concurrently. We also supplement the paper by a 
real-world workflow that demonstrates the usefulness of our 
methodology. 

Although introducing concurrency to flow independent 
workflows can be done in polynomial time, ultimately the 
workflows must be executed by humans or machines or any 
combination of the two. Hence, another relevant research 
problem is to assign the action nodes of a flow independent 
workflow to processors, which will eventually be responsible 
for executing the action nodes.  

However, the problem of assigning action nodes of a flow 
independent workflow to a fixed number of processors so that 
the completion time of the workflow is under a certain time 
constraint does not seem to have a polynomial time solution. In 
fact, it seems like the problem is NP-complete. One can easily 
see the problem that given a number m of action nodes of a 
flow independent workflow that are pairwise independent, 
assigning them to n < m processors to be executed so that the 
completion time of the workflow is under a specific time 
constraint subsumes the bin-packing problem, a well-known 
NP-hard problem. (In the bin packing problem, objects of 
different volumes must be packed into a finite number of bins 
or containers each of volume v in a way that minimizes the 
number of bins used.) We will report the investigation of this 
problem in a future journal paper. 

 

 

 

 

 Adding fork nodes and join nodes to a not necessarily flow Fig.13.

independent workflow. 

Although flow independent workflows have the desirable 
property that being deterministic, as illustrated in this paper not 
all real-world workflows are flow independent. Another type of 
workflows have collaborating concurrent flows of control that 
pass data back and forth with one another. Although they may 
not be deterministic, nevertheless collaborating flows of 
control are quite common. Therefore, it is still useful to apply 
our methodology to a not necessarily flow independent 
workflow to speed it up.  

The first step, however, is to identify the parts of the 
workflow to which our methodology can be applied. Although 
much more work is needed, we do have some preliminary 
ideas on this third approach. Fig 13 shows a workflow with 
two flows of control that are not independent. The dashed lines 
in Fig 13 denote data are passed from a sender action node to a 
recipient action node, and the recipient action node must wait 
for the data become available from the sender. In Fig 13, A8 
requires some data items from A3 and A8 send some data items 
to A5.  

Fig 13 also shows that after a careful analysis of the 
situation, in fact we can add fork nodes and join nodes to make 
the explicit modeling of passing data unnecessary. In addition, 
the added fork nodes and join nodes also delineate the 
sequences of action nodes to which our methodology can be 
applied. As shown in Fig 13, our methodology can now be 
applied to the sequences A1, A2, A3 and A6, A7. We will also 
report these efforts in a future journal publication. 
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