
(IJACSA) International Journal of Advanced Computer Science and Applications,

Special Issue on Extended Papers from Science and Information Conference 2013

78 | P a g e

www.ijacsa.thesai.org

Constructing and Monitoring Processes in BPM using

Hybrid Architectures

José Martinez Garro

Universidad Nacional de La Plata

UNLP

La Plata, Argentina

Patricia Bazán

LINTI – Universidad Nacional de La Plata

UNLP

La Plata, Argentina

Abstract— With the entrance of BPM in the Cloud, a change

in the conception and design of Business Processes has been

produced. Distributed environments, in this context offer

computing possibilities which are advantageous for processes,

especially in a decomposition context. This last concept has been

introduced in BPM allowing processes to be executed in a cloud

environment as well as in an embedded one. This situation takes

advantage of both approaches under criteria like sensitive data,

high computing performance and system portability. An

unexplored aspect in current bibliography is process monitoring

over a decomposed environment. In the present article we

introduce the analysis of some concepts presented in current

bibliography, and we propose also the architecture for a

distributed process monitoring system. In this architecture we

consider different design factors like location transparency, and

the data needed for instance tracking over a cloud system.

Keywords — BPM; Cloud Computing; Execution; Monitoring.

I. INTRODUCTION

In this article we face the problem of including a Business
Process Management System (BPMS) in a cloud oriented
collaborative environment, with the particularity that it is an
external environment to the organization. It is one of the
purposes of this work to make a current bibliography analysis
in sections II to VII, where we describe the different variants of
a cloud model, its benefits and cons, hybrid architectures with
embedded systems and the problem of monitoring a distributed
process. Then, from section VIII we introduce the architecture
of a process monitoring application. Finalizing the document
we present some conclusions about the current state of the art
and future work proposals in this research line.

II. RELATED WORKS

There are different trends in what comes to BPM in the
cloud, but they are different if we are talking about research
fields or trends in the market. Currently we can find research
works tending to analyze the different paradigms of BPM
(whether in the cloud or embedded), and how they escalate
according to user’s needs, connectivity that grows and mobile
device incorporation. In [1], [2] and [3] especially we found
trends like adaptive workflows and complex events.

These references support the idea of the hybrid architecture
and the necessity of monitoring a distributed process using a
centralized application. Regarding the other references, we will
cite each one of them in every related topic.

In relation to the commercial market, we find fewer
advances than in the research area. Most of the available
BPMS in the cloud are very similar to the embedded ones, and
the concepts introduced in the present work, in [2] and [29]
like decomposed processes (or dynamic services) are not
present. At the same time, most BPMS support local process
monitoring, which is not equivalent to monitor a process
instance distributed in different servers. In this paper we
introduce further our approach for a monitoring application
that gathers information from different servers in a complex
architecture and displays it seamlessly.

III. BPM AND CLOUD

With the fast technological development in the context of
application launching and execution using cloud based
architectures, companies that began to choose this model are
facing new problems. In particular, collaborative business
processes with several interaction areas offer an optimization
potential through the combination of cloud computing and
BPM. A common factor between both paradigms is the flexible
and agile approach. The cloud based computing model may be
considered as an enabler for an improved combination of
service oriented architectures, and also an agile procedure for
Business Process Management. But this potential depends on
the conditions imposed by the different frameworks, which can
be viewed from technical and financial aspects.

A. Technical view:

From a technical point of view there are three dimensions
in order to design, implement and successfully operate the
different BPM tools in a cloud environment. These dimensions
are: programming, integration and security.

 Programming: complex and distributed systems
are easily reachable in current IT. In connection
with obtaining more usability and flexibility, this
complexity represents new requirements for
Software Engineering. To solve this problem it is
necessary to adopt new languages. So, based on
new concepts and innovative techniques, the
efforts invested in the development phase have
been reduced to convert the complexity of these
new aspects into a manageable element.

 Integration: this category can be divided in data
integration, function integration and process
integration. Under the light of the new challenges
involved, the current topic plays an important role

(IJACSA) International Journal of Advanced Computer Science and Applications,

Special Issue on Extended Papers from Science and Information Conference 2013

79 | P a g e

www.ijacsa.thesai.org

in different scenarios. For example, a cloud based
workflow can control distributed activities
beyond the companies’ border, mainly due to its
easy accessibility. For a simplified execution of
several process instances it is necessary to have
integration interfaces and structured methods that
allow joining the new components under the
considered process.

 Security: this concept can be divided into three
categories: functional security, information
security and data security. All these categories
have a significant relevance for BPM, especially
in regard to business process grids and distributed
process servers. Functional security specifies how
the current status corresponds with the desired
functionality status. The information security is
focused in unauthorized changes or information
extractions, as well as data security is in charge of
the process related data.

Even more, from a technical point of view the question on
“what processes are more appropriated to be executed in a
cloud-based architecture” should be responded. Possible risks,
such as insufficient integration options, location and integrity
problems as well as programming interfaces should be taken in
consideration.

B. Financial view

There are two dimensions from the financial point of view:

 Availability: the services provided by a cloud
infrastructure can be accessed at any time because
of the high availability model. Based in a high
abstraction level, the customization and
installation are significantly easier. In addition
with this simplification, the final user is capable
of working with the service immediately.

 Investment risk: in the context of the different
variable billing models (for example “pay per
transaction”) the use of a cloud based service
results in certain charges. These charges contain
relevant costs given by transferences and
transactions [1] [2] [3] [4].

IV. BENEFITS AND DRAWBACKS

Cloud based BPM provides users the possibility of using
software in a “pay per use” way, instead of forcing them to
make big investments in BPM software, hardware and
maintenance, versus the traditional licensing applications.
Systems can escalate up and down according to the user‘s
needs. This means they do not have to worry about the over/
under resource provisioning because of the high adaptability
provided currently by cloud service providers, as we can see in
Figure 1.

The current model, on the other hand, has several low
points. By putting a BPMS in the cloud, users may lose control
over sensitive data. This aspect results major considering that
business processes inside an organization may manage
important information for it and its members. On the other
hand, the non-high computational activities’ efficiency and
effectiveness cannot be increased by putting them in the cloud,

but rather these activities may get more expensive. For
example, an activity which is not intensively computational
could need to process a certain amount of data. The
transference of these data to the cloud could take more time
than the transmission to an embedded version installed locally.
That transference could result bigger than the real necessity of
processing. Even more, the cost of the activity may increase
due the data transference. This element is one of the billing
concepts in a cloud computing system because of the high
connection availability [1] [2] [5] [6].

Fig.1. Service model

V. SERVICE MODEL

A. Infrastructure as a service (IaaS)

When an application is moved to an IaaS model, the cloud
user is responsible for the operating system, the middleware
and the applications running on the virtual machine. The action
of installing BPM software in an IaaS cloud solution is
comparable to installing an embedded BPMS, since everything
except the hardware is managed by the cloud user.
Furthermore, the user has to make some security decisions in
order to avoid intrusions. According to this, possible security
measures are: port blocking, access control policies and
updating the applications and the operating system frequently.

B. Product as a Service (PaaS)

By positioning a workflow based application in a model
like “Product as a Service”, the responsibilities for the user and
the cloud provider are different. The execution engine is
assumed as a part of the platform, so it is offered by the service
provider. Users must upload their processes to run them in the
cloud. The engine can be used by several users since the
platform is shared. The responsibility for data storage and
management is no longer in charge of the user, who has to deal
with several security issues:

 The process models should not be readable by intruders
in posession of a description file.

 Process models should not be altered by intruders.

 Process models should not be deployed in other servers.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Special Issue on Extended Papers from Science and Information Conference 2013

80 | P a g e

www.ijacsa.thesai.org

In order to achieve these requirements, the process model
descriptions should be encrypted and signed. The encryption
ensures that process models are not readable by intruders. By
the action of signing them, it can be assured that a file is only
valid for a particular execution engine, and using it to point to
another execution engine will provoke an error. This turns into
utility considering that the same server can be accessed by
different users in a shared environment.

Storing the application database can be an issue also. Data
should be encrypted in order to not be readable by intruders.
Data encryption in a relational database generates expressivity
issues with queries using relational operators. For example,
joins can have problems in an encrypted data context.

C. Software as a Service (SaaS)

By moving an application to a SaaS model, the cloud
provider is now responsible for the application itself. The
application is no longer an asset of the enterprise cloud user but
it is offered by the cloud provider. The application may be
given to multiple cloud users in a single or multiple tenant
architecture. In a single tenant paradigm, an execution engine
is installed for each process model. In a multi-tenant
environment, multiple users and process models are served by
a unique engine. The data stored by the cloud provider should
be assured in order to prevent unintended accesses, both by the
service provider or other users in the cloud. The same measures
we have mentioned in the previous subsection related with
signing and encryption can be applied to solve this problem.

In a multi-tenant architecture, different users access the
same execution engine. The data used by one user should not
be accessible to other cloud users. There are two possible
solutions for this problem: in the first place, a database for each
cloud user can be created. As an alternative, a column to each
table where the user identifier is saved can be added. It is
necessary to observe the scalability of both solutions: the
amount of users could increase, and because of that, the need
of resources too [1] [6] [7] [8].

VI. COMBINATION OF EMBEDDED AND CLOUD SCHEMES

Privacy protection is one of the barriers to execute BPM in
a cloud environment. Not all users desire to put their sensitive
data outside the organization. Besides, it is necessary to
observe product’s portability and versions, and their
availability in a cloud system. Another not minor problem is
the efficiency.

The intensive computing activities may obtain benefits in
the cloud due to the scalability and the computing force high
availability. The non intensive computational tasks, on the
other hand, not always take advantage of this context. The
performance of one activity running in an embedded
environment should be better than in the cloud because of the
data that are transferred in order to execute the activity. These
activities could also result expensive due to the fact that data
transference is a billing criterion in the cloud [11] [12].

 Architecture: in most BPM solutions, the process
engine, the activities and the process data are located in
the same side, even in an embedded or cloud solution.
There are some papers introducing the PAD model

(Process - Activity - Data) of Figure 2 as a distribution
possibility for BPM in the cloud. In this approach, the
process model, the involved activities and the data are
separately distributed. The PAD model defines four
possibilities of distribution:

Fig.2. PAD Distribution Schema [6]

1) The first pattern is the traditional alternative where all

elements are distributed over the final user side.

2) The second pattern is useful when the user already has

a BPMS, but the high computing activities are located in the

cloud to increment their performance.

3) The third pattern is useful for the users who still do not

have a BPMS, so they can use the cloud system in a “pay per

use” way. In this approach the activities with low computing

intensity or the ones with sensitive data management can be

located on the final user side.

4) The fourth pattern is the cloud based model where all

the elements are located in the cloud.

 Business processes consist of two kinds of flows:
control and data. Control flows regulate the execution
of activities and their sequence, while data flows
determine how the information is transferred from one
activity to the other inside the process. BPM engines
must deal with the control of both kinds of flows. A
data flow could contain sensitive data, so when a BPMS
is deployed in the cloud, the content of those flows
should be protected. An example of the proposed
architecture could be a scenario where the engine in the
cloud only deals with data flows using reference
identifiers instead of real data. When an activity needs
sensitive data, the data being transferred to the activity
are managed under user supervision in an encryption

(IJACSA) International Journal of Advanced Computer Science and Applications,

Special Issue on Extended Papers from Science and Information Conference 2013

81 | P a g e

www.ijacsa.thesai.org

tunnel. Sensitive data are saved in the final user side,
and non sensitive data are saved in the cloud. This
schema allows that sensitive data do not travel
indiscriminately through the web.

 Optimal distribution: the cloud system costs have been
an object of study in different articles. There are several
formulas to calculate the optimal distribution of
activities, since they can be located in the cloud or in an
embedded system. The calculation takes in
consideration time costs, monetary costs and privacy
risk costs. By using the formulas, users can make cost
estimations about deploying part of their applications in
an embedded or cloud system alternatively [2] [5] [6]
[9].

VII. PROCESS DECOMPOSITION

It is possible to generalize the distribution and identify a
fifth pattern where the process engine, the activities and data
are deployed in the cloud and in the final user. This solution
presents two potential benefits:

1) The process engine regulates control and data flows.

One activity receives data from the process engine and after

its execution the produced data are passed again to the

process engine. Consider now a sequence of activities located

in the cloud, while the process engine is deployed in the final

user. Each activity uses data produced by the previous activity

as an income. Data are not passed directly from one activity

to the other but they are sent to the process engine first. Since

data transference is one of the billing factors in this model this

kind of situations could become more expensive when large

amounts of data are transmitted between activities. To avoid

this problem a process engine can be added to the cloud, in

order to regulate the control and data flows between activities

located inside it. When a sequence of activities is located in

the cloud, data are regulated by the process engine in the

cloud. This reduces the amount of data to be transmitted

between the cloud and the embedded system.

2) When the cloud is not accessible, users can execute

business processes in a complete way in the embedded system

until the former one is available again.

In order to run a single business process between two
separated engines, it should be split into two individual
processes. It could be convenient for the users to take a
distribution list of the process and its activities. The process
can be automatically transformed into two business processes,
one in the cloud and the other in the embedded system. The
communication between both systems can be described using a
choreography language, like BPEL. Besides, the distribution
list can be created automatically according to the optimal
distribution formulas mentioned in subsection VI [13] [14].

Business process monitoring is more complicated now,
since the process has been divided into two or more parts. As a
solution, a monitoring tool can be developed for the original
process, through the combination of the individual process
monitoring details. This point will be analyzed further.

A possible approach to manage the process decomposition
is to identify its structure and semantics. When the control and
data dependencies are identified, the consequences of moving
some activities from the embedded system to the cloud and
vice versa can be researched. When the activity distribution
consequences are known, a transformation model can be
created.

Then, a business process and a list with marks are used to
create two separated processes, one for the cloud and another
for the final user. Also, a choreography description can be
generated in order to describe the communication between both
processes using some standard language, like BPEL [6] [10].

VIII. HYBRID SCHEMES IMPLEMENTATION

The possibility of locating a BPMS in an external space to
the organization (for example in a cloud computing
architecture with a SaaS model) makes feasible to access it
from inside the organization through an Internet connection, as
well as from any other external point. Considering this fact,
besides the possibility of having clients accessing from mobile
devices, the access points to the cloud are incremented.

This generates the following issues about process
execution, and their corresponding proposed solutions:

 Process Decomposition: as exposed in Section V, the
fact of putting a BPM server in the cloud generates the
problem of what to do with sensitive data management.
Facing this problem, this solution can be enounced: in
case of publishing the corporative database (or at least
part of it) in a cloud environment is not a viable choice
according to the organizational security policies, the
decomposition of the process is going to be necessary in
order to implement a hybrid scheme. In this scenario,
the high computing activities can be located inside the
cloud in order to take advantage of the computing
performance, and the activities that make use of
corporative sensitive data are located inside the
organization in an embedded installation.

 Decomposed process synchronization: the
disaggregated process is formally divided into sections
according to the amount of involved servers. According
to this, it is going to be necessary to solve how to
synchronize the servers in order to ensure the execution
sequence. There are, in theory, different ways to
implement the synchronization, such as by using
messages or event monitoring. Using messages, the end
event of each process part invokes the start event of the
next one. This can be made through start and end
message type events, included both in the last version of
standard BPMN (Business Process Management
Notation), where the execution of the end event of a
process throws a message to the BPMS in order to
notify the finalization, and require the execution of a
process previously parameterized. The notifications can
be implemented by using a message queue and a
daemon for pooling. This daemon receives messages
and initiates instances of the required process. In this
way, each server in this hybrid model (the embedded

(IJACSA) International Journal of Advanced Computer Science and Applications,

Special Issue on Extended Papers from Science and Information Conference 2013

82 | P a g e

www.ijacsa.thesai.org

and also the cloud based ones) must have a copy of the
pooling service in order to receive the finalization
notifications and later notify the process engine. The
result of this is to initiate instances corresponding to the
requested definition [15] [16].

 Decomposed process monitoring: the biggest problem
of having a process partitioned orientation is to monitor
the different distributed instances, and at the same time
to accomplish an integrated model of them under the
optic of the “real process” which they belong to. In
order to solve this inconvenient the following solution
can be analyzed: in first place it is necessary to
associate the different instances with the original
process, in order to recover them from the existing
servers. Once they are recovered, some kind of
application in charge of gathering data and showing
them seamlessly should be provided. The most
important thing in this aspect is to accomplish
monitoring transparency for the user, without forcing
him to distinguish the server where each activity has
been executed. This fact provides thus an integrated
visualization of the different instances by seeing them
as a unique entity. The implementation of the current
feature should be made by a cloud resident web
application, located there in order to access every
involved server, whether cloud or embedded, and to
ensure user access from any point. For this purpose it is
important for the application to have a catalog with
every existing server in the architecture, with their
location information updated. Each involved server will
have a copy of a web service which receives a process
definition identifier and returns information about every
existing instance associated with the sent definition.
The returned information includes instance
identification, current status (running, completed,
suspended), current activity in case of non-completion
status, start and end date. According to this, the cloud
resident web application sends an invocation of the web
service with the selected process definition as a
parameter to each server, and receives the information
of the associated instances. Then this information will
be visualized in a web interface where the user can
select a particular instance and observe its details. For
this purpose the application contains a web service to
require to each server the details of the associated
activities. The information returned includes
identification of the activity, associated participant, start
date, current status and end date. After receiving this
information the web application will allow the user to
observe some activity details transparently, without
indicating the server information where they were
executed. This helps to accomplish location
transparency [6] [17] [18].

IX. MONITORING PROCESSES IN THE CLOUD

As we have seen previously, the biggest problem about
using a partitioned process model is to gather and monitor the

different distributed instances (either in an embedded system or
in the cloud), and at the same time to accomplish an integrated
view under the optic of the “original process” which they
belong to. To face this inconvenient we have designed a
solution considering distributed and intercommunicated
components forming an architecture, which is described as
follows.

On the one hand, it is going to be necessary to associate the
different process instances initiated in a chain, with the purpose
of gathering information about them accessing the different
involved servers. The execution model of decomposed
processes consists of linking each instance flow to the
corresponding partitioned processes. Thus, when an instance
finishes in a server, it initiates automatically a new instance
corresponding to the next process partition, depending on the
distribution architecture. For this purpose, each node in the
architecture should be capable of establish communication with
the next node in order to initiate new instances, and gather in
this way information about them. Namely, given a new
instance which was initiated in a node of the architecture, we
should be able to obtain, not only its data but every instance
generated by it in another server [29].

A. Bonita Open Solution: API and connectors.

There are several ways of implementing instance flow
linking. In our case we have selected Bonita Open Solution
[30] as the BPMS. In this way, once the original process was
partitioned over the servers, following criteria like sensitive
data storing, data transferring and application portability, we
have used the API and connectors provided by the BPMS in
order to create instances and recover their information using
Java classes. These classes use the API as libraries, including
functions like server authentication, instance launching,
instance information gathering and process variable setting.
These classes are invoked from the process definition using
connectors.

It was also included in each process definition the
information needed for the communication with another Bonita
server inside the architecture, and in this case, by using
connectors, launch new instances in that server. Thus, every
instance when is finished will execute the connector which
allows initiating a new instance by using the API, linking in
this way automatically the process execution flow [19] [20].

B. Centralized front-end

As it was described initially in section VIII, a monitoring
application must be developed in order to show integrated data
related with distributed instances. Facing the execution link, it
is very important for each instance to be able of storing, not
only their own information but the one associated with the
instances created by them over other servers. In this way, by
accessing the initial instance of the process, it is possible to
recover the information associated to the next instance, and so
on in order to obtain the complete flow of the process. Once
recovered the execution chain in the different servers, it must
be provided an application for visualization in charge of
gathering data and show them seamlessly.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Special Issue on Extended Papers from Science and Information Conference 2013

83 | P a g e

www.ijacsa.thesai.org

The most important thing in this aspect is to accomplish
monitoring transparency for the user: he should not be forced
to distinguish the server where the activity was executed but he
should visualize seamlessly the different instances and observe
them as a unique entity. The implementation of this feature was
made through a web application located in the cloud, following
the criteria established in Section VII. This application was
placed there in order to access each involved server, being
them cloud or embedded, guaranteeing in this way user access
from every point. For this purpose it is important for the
application to have a catalog with the existing servers in the
architecture considering their location information updated.
Each of these servers has a copy of a web service
(getInstanceService), which receives a process definition id
and returns information of each instance existing in the server
associated with the definition sent as a parameter. The
information returned includes instance id, current status
(executing, completed, suspended), current activity if the
instance is not finalized, start and end date. In this way, the
application located in the cloud sends to each server a web
service invocation with the selected process definition as a
parameter, and receives the information of the associated
instances. Then, this information is visualized in a web
interface, where the user can select a particular instance and
observe its details. In order to make this, the application has
another web service (getInstanceActivityService) used to get
from each server the details of each activity associated to the
instance. The returned information includes activity id,
participant, start date, current status and end date. Once ended
this collection phase, we need to remember that each instance
contains also the information of the different instances initiated
over the different servers in the architecture. In this way, the
web application will have to concatenate the information
received about the different instances and allow to the user to
observe the monitoring details in a transparent and integrated
way, without indicating him (unless he asks for it, for
administration purposes) the information of the server where
each activity was executed, accomplishing in this way location
transparency [21] [22] [23].

C. Application’s architecture

We can observe in Figure 3 the different distributed
components identified in the architecture design, as well as the
internal relationship between them and the user.

The solution is composed by three main nodes: the cloud,
the embedded or traditional system and the monitoring
application. The cloud works as the container of several
elements: the BPMS, the monitoring application, the REST
API used by the developers in order to integrate the
applications with the process engine, and eventually a
geolocation service which allows assigning to mobile clients
the most convenient version of the service according to where
they are.

On the other side we find the embedded type components,
namely traditional BPM applications which belong to the
organization, and because of different reasons like data
sensibility or application portability, it could be decided not to
locate them in the cloud. These nodes, functionally talking,
take a role which is equivalent to the cloud node’s behavior,

even when they have access restrictions and lower computing
force compared with the first ones.

Fig.3. Application architecture and user location

The third component is related with monitoring. It is used
by the monitoring application, and is in charge of returning
information about instances and activities which were executed
in every node of the distributed architecture. The web services
getInstance and getInstanceActivity were constructed jointly
with the monitoring application, and are executed on demand
by this one. They are communicated with the process servers
through an API (in our case, the Bonita one), and are in charge
of returning, in first place, information about the instances
initiated on each servers, and once these were accessed, return
data about the activities that compose them [24] [25] [26].

D. Component communication

If we consider every component present in the architecture,
we have analyzed the communication between each one of
them through an application communication diagram. There
we can observe the most important involved applications, their
main actors and the interaction of the different distributed
software components.

We can see at the same time the different user profiles
involved in the execution of the components represented in the
architecture.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Special Issue on Extended Papers from Science and Information Conference 2013

84 | P a g e

www.ijacsa.thesai.org

While the preponderant role in the process execution is the
activity’s participant, the monitoring site results are important
for the business analyst, as well as for the architecture
administrators which can optimize the services or process
components (Figure 4).

A feature in common between the process execution
application and the monitoring one is the location transparency.
Users should not be necessarily notified about the execution
environment change, in case we are considering a decomposed
process where the activities are located in different servers.
This is very useful in order to allow users to have a unified
vision of the process, more than a partitioned one, which main
existence reason is related with taking advantage of technical
resources.

We can also visualize in Fig. 4 how both the execution and
the monitoring components access indistinctly to the cloud or
embedded nodes, in order to gather information about each
instance initiated in the distributed servers [27] [28].

Fig.4. Application Communication Diagram

X. CONCLUSIONS

As we could observe, BPM as well as many other
specialties in IT, have suffered changes due to the different
service models in the cloud. This has forced specialists to
consider new process design and implementation variants
which allow using different advantages offered by the quoted
paradigm. Facing the possibility of using unlimited computing
force and high availability, some new decomposition process
schemes appear in order to divide a process along some
distributed server architecture.

Even when this approach allows using efficiently
technological resources and protecting the organization’s
sensitive data, it is not necessarily easy to implement, and
many times depends on the subjacent cloud infrastructure and
the selected process server. In the present article we have used
Bonita Open Solution because it is open source, and has an
API which allows, through using connectors, accessing the
different servers of the architecture. Without this last
component it is very difficult to initiate new instances in
different servers, and accomplish in this way the execution link
of a decomposed and distributed process.

On the other side, as we said previously, even when process
decomposition is a highly explored subject in current literature,
the scenario is not the same with distributed process
monitoring. This topic, at a glance, is not easily soluble. In a
traditional business process model, the information source to
monitor is in the same node that executes and monitors
processes, while in a distributed environment instances are
located in different servers. For this reason, different
mechanisms are needed in order to gather data about executed
instances, as well as to link them and provide an integration
perspective under the light of the original process.

Currently, our research interest is focused on improving the
monitoring application, allowing different filters for the users.
The objective of this is to monitor efficiently each node of the
architecture and optimize eventually the performance in some
of them.

On the other side, it results important also to analyze
different modifications to the BPMN notation present in
current bibliography, which would allow including in process
models semantic associated with decomposition, as well as
interconnections between distributed servers.

REFERENCES

[1] T. Kirkham, S. Winfield, T. Haberecht, J. Müller, G. De Angelis, "The
Challenge of Dynamic Services in Business Process Management",
University of Nottingham, United Kingdom, Springer, 2011

[2] M. Minor, R. Bergmann, S. Görg, "Adaptive Workflow Management in
the Cloud – Towards a Novel Platform as a Service", Business
Information Systems II, University of Trier, Germany, 2012

[3] M Mevius, R. Stephan, P. Wiedmann, "Innovative Approach for Agile
BPM", eKNOW 2013: The Fifth International Conference on
Information, Process, and Knowledge Management, 2013.

[4] Dr. Manuel Goetz, "Integration of Business Process Management and
Complex Event Processing", Germany, 2012.

[5] M. Gerhards, V. Sander, A. Belloum, "About the flexible Migration of
Workflow Tasks to Clouds -Combining on and off premise Executions
of Applications", CLOUD COMPUTING 2012: The Third International
Conference on Cloud Computing, GRIDs, and Virtualization, 2012.

[6] Evert Duipmans, Dr. Luis Ferreira Pires, "Business Process
Management in the cloud: Business Process as a Service (BPaaS)",
University of Twente, April, 2012.

[7] S. Aleem, S. Molnar, and N. Mohamed, "Collaborative Business Process
Modeling Approaches: A Review", In Proc. of the 2012 IEEE 21st
International workshop on Enabling Technologies: Infrastructure for
Collaborative Enterprises, pp. 274-279, June 2012.

[8] Dirk Fahland, Wil M.P. van der Aalst Eindhoven, "Simplifying
Discovered Process Models in a Controlled Manner", University of
Technology, The Netherlands, 2012.

[9] Hubert Scheuerlein, Falk Rauchfuss, Yves Dittmar, Rüdiger Molle,
Torsten Lehmann, Nicole Pienkos, Utz Settmacher, "New methods for

(IJACSA) International Journal of Advanced Computer Science and Applications,

Special Issue on Extended Papers from Science and Information Conference 2013

85 | P a g e

www.ijacsa.thesai.org

clinical pathways –Business Process Modeling Notation (BPMN) and
Tangible Business Process Modeling (t.BPM)". Springer-Verlag 2012.

[10] Marielba Zacarias, Paula Ventura Martins, "Collaborative methods for
Business Process Discovery”, Portugal, Springer-Verlag 2012.

[11] Jiri Kolar, Tomas Pitner, "Agile BPM in the age of Cloud technologies”,
Scalable Computing: Practice and Experience, 2012.

[12] Andreas Lehmann and Dirk Fahland , "Information Flow Security for
Business Process Models - just one click away", University of Rostock,
Germany, 2012.

[13] Rafael Accorsi, Thomas Stocker, Günter Müller, "On the Exploitation of
Process Mining for Security Audits: The Process Discovery Case",
Department of Telematics, University of Freiburg, Germany, 2012.

[14] Aleš Frece, Gregor Srdić, Matjaž B. Jurič, "BPM and iBPMS in the
Cloud", Proceedings of the 1st International Conference on Cloud
Assisted ServiceS, Bled, 25 Octubre 2012

[15] Dr. Luis Ferreira Pires, "Business Process Management in the cloud:
Business Process as a Service (BPaaS)", University of Twente, April,
2012.

[16] S Balzert, P Fettke, P Loos, "A Framework for Reflective Business
Process Management", 45th Hawaii International Conference on System
Sciences, USA, 2012.

[17] Marco Brambilla, Piero Fraternali, and Carmen Vaca, "BPMN and
Design Patterns for Engineering Social BPM Solutions", Politecnico di
Milano, Piazza L. da Vinci 32, Milano, Italy, 2012

[18] Marco Brambilla, Piero Fraternali, Carmen Vaca, Stefano Butti,
"Combining Social Web and BPM for Improving Enterprise
Performances: the BPM4People Approach to Social BPM", WWW
2012, European Projects Track, Abril 16–20, Lyon, France, 2012.

[19] S. Balzert, P. Fettke, P. Loos, "Enhancement of traditional Business
Process Management with reflection – a new perspective for
Organizational Learning", Institute for Information Systems (IWi) at
German Research Center for Artificial Intelligence (DFKI), Germany,
2012.

[20] Huang Hua, Zhang Yi-Lai, Zhang Min, "A Survey of Cloud Workflow",
Jingdezhen Ceramic Institute, Jingdezhen, Jiangxi, 333001, China,

Proceedings of the 2nd International Conference On Systems
Engineering and Modeling (ICSEM-13), 2013.

[21] Toàn Nguyên, Jean-Antoine-Désidéri, "Resilience Issues for Application
Workflows on Clouds", Project OPALE, INRIA Grenoble Rhône-Alpes,
ICNS 2012: The Eighth International Conference on Networking and
Services, Grenoble, France, 2012.

[22] Markus D• ohring and Birgit Zimmermann, "vBPMN: Event-Aware
Workflow Variants by Weaving BPMN2 and Business Rules", SAP
Research, Darmstadt, Germany, 2011.

[23] Zhenyu Fang, Changqing Yin, "BPM Architecture Design Based on
Cloud Computing", School of Software Engineering, Tongji University,
Intelligent Information Management, Shanghai, China, 2010.

[24] Duipmans E Pires L. da Silva Santos L. “Towards a BPM Cloud
Architecture with Data and Activity Distribution” 2012 IEEE 16th
International Enterprise Distributed Object Computing Conference
Workshops. ISBN 978-0-7695-4786-2/12

[25] T. Anstett, F. Leymann, R. Mietzner, and S. Strauch, “Towards bpel in
the cloud: Exploiting different delivery models for the execution of
business processes,” in Proceedings of the 2009 Congress on Services -
I. Washington, DC, USA: IEEE Computer Society, 2009, pp. 670–677.

[26] Roder, A.; Lehmann, M.; Kabitzsch, K., "Monitoring service
choreographies," Industrial Informatics (INDIN), 2011 9th IEEE
International Conference on , vol., no., pp.142,147, 26-29 July 2011.
doi: 10.1109/INDIN.2011.6034852

[27] T. Dornemann, E. Juhnke, and B. Freisleben, “On demand resource
provisioning for bpel workflows using amazon’s elastic compute cloud,”
in Proceedings of the 2009 9th IEEE/ACM International Symposium on
Cluster Computing and the Grid, ser. CCGRID ’09. Washington, DC,
USA: IEEE Computer Society, 2009, pp. 140–147.

[28] W. Fdhila, U. Yildiz, and C. Godart, “A flexible approach for automatic
process decentralization using dependency tables,” in ICWS, 2009, pp.
847–855.

[29] J.Martinez Garro, P.Bazan “Constructing hybrid architectures and
dynamic services in Cloud BPM¨ Science and Information Conference
2013 October 7-9, 2013 | London, UK.

[30] Bonita Open Solution http://es.bonitasoft.com/. October, 2013.

