
(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 1, 2019 

210 | P a g e  
www.ijacsa.thesai.org 

Radial basis Function Neural Network for Predicting 

Flow Bottom Hole Pressure 

Medhat H A Awadalla 

Dept. of Electrical and Computer Engineering, SQU, Oman 

Dept. of Communications and Computers, Helwan University, Egypt 

 

 
Abstract—The ability to monitor the flow bottom hole 

pressure in pumping oil wells provides important information 

regarding both reservoir and artificial lift performance. This 

paper proposes an iterative approach to optimize the spread 

constant and root mean square error goal of the radial basis 

function neural network. In addition, the optimized network is 

utilized to estimate this oil well pressure. Simulated experiments 

and qualitative comparisons with the most related techniques 

such as feedforward neural networks, neuro-fuzzy system, and 

the empirical model have been conducted. The achieved results 

show that the proposed technique gives better performance in 

estimating the flow of bottom hole pressure. Compared with the 

other developed techniques, an improvement of 7.14% in the root 

mean square error and 3.57% in the standard deviation of 

relative error has been achieved. Moreover, 90% and 95% 

accuracy of the proposed network are attained by 99.6% and 
96.9% of test data, respectively. 

Keywords—Radial basis function neural network; neuro-fuzzy 

system; feedforward neural networks; empirical model 

I. INTRODUCTION 

Flowing bottom-hole pressure is the pressure that can be 
measured or calculated nearby the producing formation while 
the well is producing hydrocarbons. Petroleum engineers are 
keen to know the flowing bottom-hole pressure (FBHP) 
because it affects the productivity of oil wells, and helps in 
forecasting the potential of well throughout the well life cycle. 
In addition, it helps the optimization of artificial lifting 
performance, monitoring the performance of the well 
production, and monitoring sand conditions and conditions of 
the bore hole through the sand [1]. The appropriate gauges can 
be installed in the electric submersible pumping well systems 
to measure FBHP.  Electric submersible pump systems, shown 
in Fig. 1, are the effective artificial lift method of pumping 
production fluids to the surface. However, to intervene the oil 
wells to measure FBHP is a tedious work, risky, and affects 
the wells production. Because of all these difficulties to 
measure the flowing bottom-hole pressure, the most common 
problems in the field of petroleum engineering is how to 
predict FBHP. Several trials have been accomplished by 
engineering and even tackled by research to find empirical 
correlations to predict this pressure. Not all of these trials 
managed to produce successful correlations that provide good 
prediction in some cases [2-4]. Different heuristic approaches 
have been used to tackle the problem of predicting FBHP such 
as Neural networks (NNs) [5-7]. Single and two layers neural 
networks have been developed. The parameters of the neural 

networks such as number of neurons per layer, and the error 
goal have been optimized. Neuro-fuzzy system has been 
introduced in [8], where the main mechanisms of fuzzy logic 
technique such as fuzzification, rule base, inference, and 
defuzzification have been implemented in the layers of the 
neural network.  Particle Swarm optimization, PSO, and 
neuro-fuzzy models again are addressed the valuable problem 
[9-12].  Furthermore, support vector machine approach is used 
as a solution for predicating FBHP [13]. Even though these 
approaches succeeded with high extent of accuracy to be 
considered as rigid solutions for this viable problem.  Many 
researches and engineers in the petroleum field are still 
looking forward for more robust solutions with high extent of 
accuracy. In this paper, radial basis function neural network is 
proposed to address this problem. Real data have been 
collected from different wells to be used as samples for 
learning and testing the developed network. To prove the 
effectiveness of the proposed radial basis function neural 
network in estimating  FBHP, rigorous performance analysis 
have been conducted and a comparison with the most related 
approaches have been accomplished such as feedforward and 
neuro-fuzzy system, and the empirical model. 

 

Fig. 1. Electric Submersible Pumping Oil Well System. 
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The organization of the paper is as follows. Section 2 
shows the data sources and collections. Some data samples are 
illustrated. These samples have been used for learning the 
proposed model and testing it.  Radial basis function neural 
network is presented in Section 3. Optimization of RBFNN 
parameters are presented in Section 4. The experiments and 
discussions are demonstrated in Section 5. Section 6 has the 
paper conclusions. 

II. DATA SOURCES AND COLLECTIONS 

The data used for inputs (12 inputs) and the outputs (1 
output) is obtained from different oil fields in Oman [6-8]. 
These different fields are shown in Fig. 2, where fields A, B, 
and C are considered here because they are the most valuable 
fields. All these fields have water injection as reservoir 
pressure support and all of them having well production with 
two different artificial lifting, ESP and gas-lift. 

Some samples of the used data sets are given in Table 1. 
Before initializing the training/testing of the model, the data 
sets should be randomized. In addition, before training/testing 
the developed model, normalization for the data using 
MATLAB toolbox normalizing function "mapminmax" has 
been made. At the end, when the phase of training and testing 

finished, de-normalization  for the achieved data sets has been 
carried out to convert the data again to the wells and timing 
sequence.  Table 2 shows the number of samples and the wells 
that have been used from the three fields. Table 3 and Table 4 
show samples of the data elements for the three fields and for 
the case of all the three fields data combined. 

 

Fig. 2. The Three Fields Layout. 

TABLE I. SAMPLE OF DATA USED 
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12/6/2012 3123.

8 

82.8 10398.6 18024.2 1149.9 61.3 1088.50 1349.6 94.6 22 37.2 1.13 1321 A05

9 

13/6/2012 3226.

7 

83 10385.5 18033.3 1149.9 61.3 1088.5 1349.6 94.6 22 37.2 1.13 1321 A05

9 

14/6/2012 3219.

8 

82 10380.8 18023.6 1149.9 61.3 1088.5 1349.6 94.6 22 37.2 1.13 1321 A05

9 

4/7/2012 3229.

9 

82.4 10356.1 18029.8 1335.7 14.6 1321 629 98.9 43 37.2 1.13 1321 A05

9 

5/7/2102 3265.

5 

82.4 10357.1 18051.6 1335.7 14.6 1321 629 98.9 43 37.2 1.13 1321 A05

9 

30/12/201

0 

1849.

8 

57 9431 16466 1595.6 51.6 1543.9 2247.1 96.7 43 40.4 1.12 1327 A06

5 

31/12/201

0 

1834.

7 

56.4 9393.6 16447 1595.6 51.6 1543.9 2247.1 96.7 43 40.4 1.12 1327 A06

5 

1/1/2011 1835.

5 

57 9381.2 16462.5 1290 46 1244 844 96.4 18 40.4 1.12 1327 A06

5 

2/1/2011 1839.

3 

57 9384 16475 1290 46 1244 844 96.4 18 40.4 1.12 1327 A06

5 
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TABLE II. FIELDS DATA SAMPLES SUMMARY 

 
  

Field-A 
 

 
Input Maximum Minimum Range Average 

1 Tubing Head Pressure 4733 527 4206 2191 

2 Motor Current 141 33 108 58 

3 Liquid Production Rate 1812 305 1507 941 

4 Oil Production Rate 62 4 58 28 

5 Water Production Rate 1769 272 1497 913 

6 Gas Production Rate 4800 59 4741 1494 

7 Base Sediment & Water (water cut) 99 88 11 96 

8 Formation Gas Oil Ratio 657 3 654 59 

9 Oil Specific Gravity 40.4 37.0 3.4 37.7 

10 Produced Water Specific gravity 1.13 1.12 0.01 1.13 

11 Pump Intake True Vertical Depth 1481 896 585 1192 

12 Pump Discharge Pressure 19140 10925 8215 15214 

 
Output 

    
1 Pump Intake Pressure 11703 3468 8235 7680 

   
Field-B 

 

 
Input Maximum Minimum Range Average 

1 Tubing Head Pressure 4980 506 4474 2043 

2 Motor Current 87 16 71 47 

3 Liquid Production Rate 1687 259 1429 829 

4 Oil Production Rate 98 1 97 26 

5 Water Production Rate 1655 258 1398 802 

6 Gas Production Rate 32562 80 32482 1897 

7 Base Sediment & Water (water cut) 100 91 9 97 

8 Formation Gas Oil Ratio 1064 8 1056 99 

9 Oil Specific Gravity 40.4 32.8 7.6 38.9 

10 Produced Water Specific gravity 1.13 1.01 0.12 1.11 

11 Pump Intake True Vertical Depth 1199 909 290 1032 

12 Pump Discharge Pressure 19370 10121 9249 14745 

 
Output 

    
1 Pump Intake Pressure 11358.2 2208.5 9149.7 6414.3 

   
Field-C 

 

 
Input Maximum Minimum Range Average 

1 Tubing Head Pressure 5850 382 5468 3130 

2 Motor Current 95 28 67 51 

3 Liquid Production Rate 1602 256 1345 602 

4 Oil Production Rate 32 2 30 11 

5 Water Production Rate 1582 250 1331 591 

6 Gas Production Rate 12747 61 12686 582 

7 Base Sediment & Water (water cut) 100 93 7 98 

8 Formation Gas Oil Ratio 1437 6 1431 66 

9 Oil Specific Gravity 34.0 34.0 0.0 34.0 

10 Produced Water Specific gravity 1.13 1.10 0.03 1.10 

11 Pump Intake True Vertical Depth 1174 1147 27 1165 

12 Pump Discharge Pressure 18870 9899 8971 14384 

 
Output 

    
1 Pump Intake Pressure 14180.9 3487.4 10693.5 6031.0 
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TABLE III. FIELDS A, B, AND C DATA SUMMARY 

 
No. Wells No. Data samples 

Field-A 15 8560 

Field-B 19 11870 

Field-C 8 4680 

TABLE IV. ALL FIELDS DATA SUMMARY 

All Fields 

 
Input 

Maxim

um 

Minimu

m 
Range 

Avera

ge 

1 Tubing Head Pressure 5850 382 5468 2273 

2 Motor Current 141 16 125 52 

3 Liquid Production Rate 1812 256 1556 825 

4 Oil Production Rate 98 1 97 24 

5 Water Production Rate 1769 250 1519 801 

6 Gas Production Rate 32562 59 32503 1548 

7 
Base Sediment & Water 

(water cut) 
100 88 12 97 

8 Formation Gas Oil Ratio 1437 3 1434 81 

9 Oil Specific Gravity 40.4 32.8 7.6 37.7 

1

0 

Produced Water Specific 

gravity 
1.13 1.01 0.12 1.12 

1

1 

Pump Intake True Vertical 

Depth 
1481 896 585 1104 

1

2 
Pump Discharge Pressure 19750 10458 9292 15104 

 
Output 

    

1 Pump Intake Pressure 14180.9 2208.5 
11972

.3 
6745.2 

III. RADIAL BASIS FUNCTION NEURAL NETWORK 

Radial Basis Neural Network, RBFNN, is a powerful, fast 
learning, and self-organized neural network. It is better than 
Back Propagation (BP) network in approximation, 
classification and learning speed, especially in processing 
highly nonlinear problems [14-15]. Fig. 3 illustrates the 
structure of RBFNN, where the first layer represents the input 
layer. The second layer is the hidden radial basis layer, and the 
last layer represents the output linear layer. 

The input layer can be considered as gate for the inputs x = 
(x1, x2, ..., xJ), where the number of inputs is represented by 
J. There is a full connection among the input neurons and the 
hidden layer neurons, the links that used to connect them have 
no weights. The number of neurons in the hidden layer, N, is 
variable and this number can be optimized through the process 
of training. The activation functions within the hidden layer 
neurons are a nonlinear radial basis function such as Gaussian 
function shown in equation 1. 

  ( )   
  ‖    ‖

 
             (1) 

 

Fig. 3. Radial basis Function Neural Network Structure. 

Where x is the input vector, μ is the prototype vector, ||.|| is 
Euclidean distance, and    is the spread parameter. The 
distance between the inputs x and the prototypes μ, (μ1, μ2, 
…,μN) control the activation of the neurons in the hidden 
layer. The output of each neuron takes a value between 0 and 
1 and the maximum value is 1 in the case of both the 
prototype and neuron input values are equal. The output of the 
hidden layer neurons are weighted and linearly summed to 
produce the output for every element           output vector 
y(x) = (y1, y2, ..., yk), as shown in equation 2. 

  ( )  ∑      
 
     ( )             (2) 

MATLAB Toolbox functions such as newrbe and newrb 
can be used to design the radial basis function neural 
networks. At the starting, there are no neurons in the hidden 
radial basis (radbas) layer; and then, the function newrb will 
add one neuron at a time iteratively. For every iteration, the 
input vector that results in reducing the error of the network is 
the most used to add a radbas neuron. In addition, if the error 
of the new developed network is small enough (less than a 
specified value), newrb function will not generate more 
neurons. Otherwise, the next neuron will be added. More 
neurons will be added to the hidden layer of a radial basis 
network until it reaches the desired mean squared error goal or 
the maximum number of neurons. 

In addition to the input and output (targets) training data 
sets, the newrb takes two arguments, the first one is the sum-
squared error goal and the second is the spread constant 
(factor). The spread constant plays an important role in the 
development of the radial basis function neural network. 

Many neurons are required to fit fast-changing function for 
big values of the spread factor (vicinity of 1). While for small 
values of spread factor (vicinity of 0), many neurons are 
required to fit a smooth function. This behavior poses 
restriction in generalizing the network. Using „newrb‟ 
iteratively with various spreads analyzing the achieved results 
to determine the optimum values for these arguments. 

IV. RADIAL BASIS FUNCTION NEURAL NETWORK 

PARAMERS OPTIMIZATION 

In this section, the root mean square error goal and the 
spread value of the radial basis function neural network are 
optimized in such way that the radial basis neural network will 
provide its best performance. 
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Starting with a very basic structure, with default spread 
value for the radial function of 1, has maximum number of 
neurons of 150 with 2 neurons are added every iteration and 
the mean square error goal of 0.0001.  Then, the mean square 
error goal is doubled in 20 steps until 0.004.  Each time, the 
network is trained to the specified training error goal. After 
each training, the network is tested using test data that is not 
been used in the training phase. The network performance 
statistical indicators are recorded; the main performance 
indicator considered is the Relative Root Mean Square Error 
(RMSE) of the test data. In addition, the percentages of the 
test data attained 95% and 90% accuracy of FBHP estimation 
are used as a secondary performance indicator. Fig. 4 shows 
the network performance indicators against the mean square 
error goal. The best point for the RMSE is the point with 
minimum value whereas for the percentage of the test data 
with 90% and 95% accuracy is the maximum value. It clear 
that the best point is the point with 0.6 x10-3 mean square error 
goal. With polynomial fitting for the RMSE data, it is clear 
that the best point from the polynomial fit is at 1.5 x10-3.  The 
two best points are far apart so, further tuning and 
improvements of the selected error goal are carried out by 
running the model with varying error goal from 0.2 x10-3 to 2 
x10-3. The results are shown in Fig. 5. It can be seen that the 
best point of the RMSE is 3.1% at a mean square error 
training goal of 0.8 x10-3. In addition, the average of absolute 
error accuracy of the model results might be observed from 
the percent of the test data that came up with intake pressure 
estimations within the 5% and 10% error band from the actual 
intake pressure measurements are 90.8% and 98.9% 
respectively. With the RMSE polynomial fit, it is obvious that 
the best point occurs at an error goal of 0.7 x10-3, which is 
very close to the actual RMSE. Therefore, a value of 0.7 x10-3 
is selected to be the best mean square error goal. 

Further improvements of the model are carried out by 
selecting the best value for the spread constant that would 
result with the best network performance. It is happened by 
training the network with the selected best mean square error 
goal of 0.7 x10-3 and different values of spread constant 
starting from 0.2 and increasing to 40, the achieved results are 
depicted in a Fig. 6. 

 

Fig. 4. RMSE and Accuracy of RBNN with Spread=1 vs. Training Error 

Goal. 

As shown in Fig. 6, the best performance point is at the 
very low range of the spread value from 0 to 1. The results 
show that the best point is at a spread constant value of 0.4. To 
get the picture clearer and to zoom in, another optimization 
run is carried out with spread constant varying from 0.1 to 1.0 
with step of 0.1 and again the performance trends is shown in 
Fig. 7. 

 

Fig. 5. RMSE and Accuracy of RBNN with Spread=1 vs. Training Error 

Goal. 

 

Fig. 6. RMSE and Accuracy of RBNN with Error Goal=0.7 x10-3 vs. 

Spread Constant. 

 

Fig. 7. RMSE and Accuracy of RBNN with Error Goal=0.7 x10-3 vs. 

Spread Constant. 
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As illustrated in Fig. 7, the best spread constant is within 
the range of 0.2 to 0.5. The best RMSE is 1.93 % at a spread 
constant value of 0.4. This is also, supported by the good 
accuracy points of 99.6% of test data fall within the 10% error 
band and 96.9% fall within the 5% error band. Therefore, the 
final best architecture of the radial basis neural network is the 
one with 0.7 x10

-3
 mean square error goal, spread constant of 

0.4 and a number of neurons of 126. 

V. EXPERIMENTAL RESULTS AND DISCUSSIONS 

Extensive experiments have been carried out using data 
collected from real oil wells to compare the performance of 
the developed radial basis function neural network with neuro-
fuzzy system, two-layer feedforward neural network. Root 
Mean Square Error (RMSE), Standard Deviation (STD), 
Correlation Coefficient (R), and the accuracy have been used 
as performance metrics for the comparison. The following 
equations have been used to determine the mentioned 
performance metrics. 

The average Relative Error    is calculated using the 
following equation: 

   
 

 
∑   
 
                 (3) 

Where,    is the relative deviation of the estimated value 
from the measured one and is calculated as: 

   [
(    )     (    )   

(    )    
]                  (4) 

Where: (    )     is the actual measured value of the 
     and (    )    is the estimated value. 

Average Absolute Relative Error    is calculated using the 
following equation: 

   
 

 
∑ |  |
 
                 (5) 

Root Mean Square Error      is calculated using the 
following equation: 

     [
 

 
∑   

  
   ]

   

             (6) 

Standard Deviation STD is calculated using the following 
equation: 

    √
 

     
∑ [{

                

        
}      ]

 
 
             (7) 

Where:       represents the degree of freedom in 
multiple-regression. 

The Correlation Coefficient R is calculated using the 
following equation: 

  √  
∑ ,                -
 
   

∑          
 

 
 
   ∑,*                +- 

          (8) 

Fig. 8-11 show the achieved results. Based on the achieved 
results, the developed radial basis function neural network has 
a reasonable performance as two-layer feedforward neural 
network and outperforms the neuro-fuzzy system. 

 

Fig. 8. The Achieved RMSE using RBFNN, FFNN, and Neuro-Fuzzy. 

 

Fig. 9. The Achieved STD using RBFNN, FFNN, and Neuro-Fuzzy. 

 

Fig. 10. The Achieved Correlation Coefficient using RBFNN, FFNN, and 

Neuro-Fuzzy. 

For more validity test for the proposed architecture, a 
comparison has been accomplished with empirical model [16]. 
As shown in Fig. 12, all approaches outperform the empirical 
model especially radial basis neural network and feedforward 
neural network have remarkable results. 
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Fig. 11. Trends of RBFNN, FFNN and Neuro-Fuzzy Models Results for 

A/B/C Fields. 

 

Fig. 12. Performance Comparison among RBFNN, Neuro-Fuzzy, FFNN, and 

Empirical Model. 

VI. CONCLUSIONS 

This paper has proposed and developed radial basis 
function neural network to predict FBHP of oil wells. Spread 
factor and mean square error goal have been optimized for 
radial basis function neural network. The achieved results of 
the developed network are compared with two-layer neural 
network feedforward, neuro-fuzzy system, and the empirical 
model. The performance of the developed RBFNN is 
comparable with two-layer feedforward neural network and 
better than neuro-fuzzy system and the empirical model in 
terms of performance indicators, RMSE, STD, Correlation 
coefficient R, and the accuracy. An improvement of 7.14% in 
the root mean square error, 3.57% in the standard deviation of 
relative error is achieved. Moreover, the accuracy of 90% and 
95% are obtained by 99.6% and 96.9% of test data 

respectively. For further work, the remarkable capabilities of 
deep learning approaches will be invoked to achieve more 
accuracy in predicating FBHP. 
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