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Abstract—Diverse malware programs are set up daily 

focusing on attacking computer systems without the knowledge 

of their users. While some authors of these programs intend to 

steal secret information, others try quietly to prove their 

competence and aptitude. The traditional signature-based static 

technique is primarily used by anti-malware programs in order 

to counter these malicious codes. Although this technique excels 

at blocking known malware, it can never intercept new ones. The 

dynamic technique, which is often based on running the 

executable on a virtual environment, may be introduced by a 

number of anti-malware programs. The major drawbacks of this 

technique are the long period of scanning and the high 

consumption of resources. Nowadays, recent programs may 

utilize a third technique. It is the heuristic technique based on 

machine learning, which has proven its success in several areas 

based on the processing of huge amounts of data. In this paper 

we provide a survey of available researches utilizing this latter 

technique to counter cyber-attacks. We explore the different 

training phases of machine learning classifiers for malware 

detection. The first phase is the extraction of features from the 

input files according to previously chosen feature types. The 

second phase is the rejection of less important features and the 

selection of the most important ones which better represent the 

data contained in the input files. The last phase is the injection of 

the selected features in a chosen machine learning classifier, so 

that it can learn to distinguish between benign and malicious 

files, and give accurate predictions when confronted to 

previously unseen files. The paper ends with a critical 

comparison between the studied approaches according to their 
performance in malware detection. 
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I. INTRODUCTION 

Every day, the AV-TEST1 institute registers over 250000 
new malware. As Windows is one of the most universally 
used operating systems nowadays, it becomes an attractive 
target for malicious attacks. In this paper, we focus on 
researches built for the detection of malware designed for 
Windows operating systems. 

Since novel malicious codes change constantly their 
signatures, static methods are not suitable to detect them. In 
the last two decades, the introduction of machine learning 
techniques has contributed significant value in detecting new 
malware, due to their generalization ability. Machine learning 
models are based on two stages: training and prediction, as 

illustrated in Fig. 1. The training stage relies on a training 
dataset that contain samples of benign and malicious files. It 
involves three phases. The first phase consists of extracting a 
large number of features from the different files in the training 
dataset. The second phase consists of rejecting non-pertinent 
features based on appropriate selection techniques. The third 
phase consists of using one or more classification models that 
will learn to distinguish between malicious and benign files. 
These models subsequently become able to give accurate 
predictions dealing with new executable files in the prediction 
stage. The choice of both appropriate input features and 
classification model leads to the improvement of prediction 
rates. 

In this article, multiple kinds of input features used for 
malware detection will be reviewed. Different machine 
learning classification techniques deployed in the field of 
security will be examined and classified. The results will be 
analyzed. 

II. FEATURE EXTRACTION 

The choice of input features is a primary task in every 
machine learning research. In malware detection field, these 
features can either be raw information contained in the files 
that will be examined, or the result of processing raw 
information. Both benign and malicious files are considered 
for the training of the chosen machine learning model. 

So, which features are worthy to adopt? In this section, we 
will elucidate this issue by reviewing the most extracted 
features in machine learning researches for malware detection. 

A. Signatures Extraction 

Traditional commercial anti-malware programs basically 
rely on the signature-based static technique. This technique 
iteratively considers a known malware file, extracts code from 
its header, or calculates a numerical value from it, like a hash 
code for instance. The obtained attributes, called signatures, 
are stored in a database to check each new scanned file against 
them. Although this technique generates no false positive, 
which is to say no benign file can be wrongfully designed as 
malicious, it would never detect new threats, as they use novel 
signatures. 

Schultz et al., in their study in 2001 [1], used machine 
learning for malware detection. As baseline, they utilized the 
signatures extraction technique. Signatures were calculated as 
follows: they analyzed all the files available in the training set, 
then took the byte-sequences that were existent in the 

1
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malicious files and missing in the benign ones. Later, these 
byte-sequences were concatenated together to construct a 
unique signature for each malicious file. The final data mining 
model [1] had a detection rate double than the detection rate of 
this signature-based scanner, while dealing with new binaries. 

B. DLL Function Calls Extraction 

Multiple researches rely on the extraction of the 
information related to the Microsoft Windows libraries DLLs 
and the API functions [1, 3, 5, 7, 13, 15, 20]. 

According to Schultz et al. [1], it is impossible to perfectly 
predict the behavior of a program without running it. 
However, it is possible to estimate what it can eventually do.  
They assumed that the information directing the behavior of 
the binary file is worthy to be extracted. They thereby 
extracted the following features in one of their three models: 

 The list of DLLs used by each binary file 

 The list of DLL functions called by each file 

 The number of functions called from each DLL 

These features were introduced using three different 
approaches. The first approach, illustrated in Fig. 2, 
considered 30 DLL libraries. The feature vector included 30 
Boolean values indicating whether a file imports a DLL or 
not. 

In the second approach, illustrated in Fig. 3, each feature 
was constructed as a conjunction of a DLL file name and an 
API function called from that DLL. The feature vector 
consisted of 2229 Boolean values. 

 

Fig. 1. Machine Learning Stages: Training and Prediction. 

-advapi32 ˄ avicap32 ˄ … ˄ winmm ˄ -wsock32 

Fig. 2. First Feature Vector: Conjunction of DLL Names [1]. 

dvapi32.AdjustTokenPrivileges() 

˄ advapi32.GetFileSecurityA() ˄ … 

    ˄ wsock32.recv() ˄ wsock32.send() 

Fig. 3. Second Feature Vector: Conjunction of DLLs and Function Calls [1]. 

  advapi32 = 2 ˄ avicap32 = 10 ˄ … 

˄   winmm = 8 ˄ wsock32 = 2 

Fig. 4. Third Feature Vector: Conjunction of DLLS and the Number of 

Functions Called from Each DLL [1]. 

“…”; “call KERNEL32.LoadResource”; “…”; “call 

USER32.TranslateMessage”; “…”; “call USER32.DispatchMessageA” 

Fig. 5. Part of a Disassembled File (Only DLL Calls Taken into Account) 

[3]. 

(1)“KERNEL32.LoadResource, USER32.TranslateMessage” 

(2)“USER32.TranslateMessage, USER32.DispatchMessageA” 

Fig. 6. „2-Gram‟ DLL Sequences [3]. 

In the third approach, they took each file in the training 
set, and counted the number of API functions called per 
imported DLL. In this case, the vector of features included 30 
integer values. Fig. 4 gives an example of a feature vector 
illustrating this approach. 

Masud et al., in their study in 2007 [3], used the Windows 
P.E. Disassembler tool to disassemble the binaries. They 
extracted DLL function calls from the disassembled files, by 
omitting all other instructions. They subsequently built n-gram 
sequences. Each n-gram was defined as a sequence of n 
consecutive DLL calls, appearing in a disassembled file. A 
feature vector corresponding to an executable is a binary 
vector having one bit for each feature. The bit‟s value is „one‟ 
to signify that the feature is present in the file, otherwise it is 
„zero‟. 

The list of instructions shown in Fig. 5 represents a part of 
a disassembled file by omitting all the instructions from the 
code and reserving only DLL calls. Fig. 6 shows the two 
corresponding 2-gram DLL sequences. 

C. Binary Sequences Extraction 

In a first approach of this technique, one takes the 
hexadecimal code of each file contained in the training 
dataset. The hexadecimal code can be seen as lines of code. 
Each single line, which is a sequence of sixteen consecutive 
bytes, is therefore considered as a single feature. Schultz et al. 
[1] used the hexdump utility (Miller, 2000) to convert each 
executable into hexadecimal code and extract the different 
binary sequences. Fig. 7 shows an example of a hexadecimal 
code. 

A second approach of this technique consists of converting 
binary sequences to n-grams [2, 14, 15]. Kolter and Maloof 
[2] used the hexdump utility (Miller, 1999) to convert each 
executable to hexadecimal code. They produced n-grams 
choosing n=4, by combining each sequence of four 
consecutive. 

Bytes in a single term; for instance, the following sequence 
(ff 00 ab 3e 12 b3) corresponds to the following three 4-gram 
sequences: (ff00ab3e), (00ab3e12) and (ab3e12b3). Each n-
gram is considered as a Boolean attribute that can be either 
present (True) or absent (False) in the scanned executable. 

Barker et al. similarly chose to extract byte sequences from 
the benign and malicious files in their study in 2017 [10]. 
Some bytes are intrinsically closer to each other, they might 
be seen to have a close interpretation. This interpretation is 
considered false a priori, since the meaning of the bytes 
depends on the context. For that reason, Barker et al. decided 
to avoid raw byte values. They used an embedding layer to 
map each byte to a feature vector of fixed and learned length, 
instead of considering raw byte values as features. 
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D. Assembly Sequences Extraction 

Opcode sequences or assembly sequences are used by 
several researches to learn and detect malicious functionalities 
in the executable files [3, 4, 16, 19]. 

After disassembling the binaries, Masud et al. [3] extracted 
all the n-grams from the assembly instructions. In order to 
illustrate there approach, they took the sequence of assembly 
instructions represented by Fig. 8. For n=2, the extracted 
features from this sequence were the two 2-gram assembly 
sequences shown in Fig. 9. 

Siddiqui et al. opted for disassembling the binary files to 
extract features in their study for Trojans detection in 2008 
[4]. The disassembly was obtained using Data rescues' IDA 
Pro disassembler. They defined a sequence as a succession of 
assembly instructions until the arrival to a conditional or 
unconditional branch instruction, and/or a limit function is 
obtained. 

To illustrate this approach, Siddiqui et al. took the 
assembly code shown in Fig. 10. The extracted features from 
this piece of code are shown in Fig. 11. 

1f0e 0eba b400 cd09 b821 4c01 21cd 6854 

7369 7020 6f72 7267 6d61 7220 7165 6975 

6572 2073 694d 7263 736f 666f 2074 6957 

646e 776f 2e73 0a0d 0024 0000 0000 0000 

454e 3c05 026c 0009 0000 0000 0302 0004 

0400 2800 3924 0001 0000 0004 0004 0006 

000c 0040 0060 021e 0238 0244 02f5 0000 

0001 0004 0000 0802 0032 1304 0000 030a 

Fig. 7. Example of Hexadecimal Code [1]. 

“push eax”; “mov eax, dword [0f34]”; “add ecx, eax” 

Fig. 8. Assembly Instructions Sequence [3]. 

(1) “push eax”; “mov eax, dword[0f34]” 

(2) “mov eax, dword[0f34]”; “add ecx, eax” 

Fig. 9. „2-Gram‟ Assembly Sequences [3]. 

mov dword ptr [ebp-4], 4 

lea eax, [ebp-24h] 

mov [ebp-84h], eax 

mov dword ptr [ebp-8Ch], 4008h 

mov dword ptr [ebp-94h], 8 

mov dword ptr [ebp-9Ch], 3 

push 10h 

pop eax 

call __vbaChkstk 

lea esi, [ebp-8Ch] 

mov edi, esp 

movsd 

movsd 

movsd 

movsd 

push 10h 

pop eax 

    call __vbaChkstk 

Fig. 10. Portion of a Disassembled Trojan [4]. 

(1) mov lea mov mov mov mov push pop call 

(2) lea mov movsd movsd movsd movsd push pop call 

Fig. 11. Assembly Sequences Extracted from the Disassembled Trojan [4]. 

E. PE File Header Fields Extraction 

The portable executable (PE) format is a file format for 
executable files and object files under the Windows family of 
operating systems. It is a data structure that encapsulates the 
information necessary for the Windows operating system 
loader to manage the wrapped executable code. 

The header of the PE file consists of several fields. These 
fields contain structural information of the executable file. 
This includes dynamic library references for binding, API 
import and export tables, different sections contained in the 
file, source management data, thread local storage data (TLS), 
and different types of metadata. Recent studies exploit the 
values of the PE file headers in order to train machine learning 
models and detect new malware [5, 6, 8, 11, 13, 19]. 

In their data mining study in 2009 [5], Shafiq et al. were 
able to extract initially, 189 PE features, as represented on 
Table 1. 

In regard to Kumar et al., they opted for the use of an 
integrated feature set in 2017 [11]. They used the values of PE 
header fields as inputs for their model. The set of integrated 
features included 68 values, consisting of 28 raw features, 26 
Boolean features (expressing the existence or absence of 
certain values), and 14 derived features. The derived features 
were constructed through the validation of raw values 
according to a set of rules that they specified. For instance, the 
raw value of the Time Date Stamp field is simply an integer 
indicating the number of seconds since 1969. According to 
them, using this raw value would not be a powerful feature. 
Thereby, the value of this field was compared to valid dates 
(from December 31, 1969 at 4:00 pm until the date of the 
experiment). The resulting Boolean output was taken as a 
feature. Table 2 summarizes all the derived features 
considered and their raw counterparts. 

TABLE I. LIST OF FEATURES EXTRACTED FROM THE PE FILE [9] 

Feature Description  Type Quantity 

DLLs referred binary 73 

COFF file header Integer 7 

Optional header – standard fields Integer 9 

Optional header – Windows specific fields Integer 22 

Optional header – data directories Integer 30 

.text section – header fields Integer 9 

.data section – header fields Integer 9 

.rsrc section – header fields Integer 9 

Resource directory table & resources Integer 21 

Total 189 
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TABLE II. RAW AND DERIVED FEATURES [11] 

Feature Raw Value 
Derived Value 

Type Value 

Entropy Binary value Integer [-1,0-8] 

Compilation Time Integer Boolean [0,1] 

Section Name String Integer - 

Packer Info NA Boolean [0,1] 

FileSize Integer Integer - 

FileInfo String Integer [0,1] 

ImageBase Integer Boolean [0,1] 

SectionAlignment Integer Boolean [0,1] 

FileAlignment Integer Boolean [0,1] 

SizeOfImage Integer Boolean [0,1] 

F. Machine Activity Metrics Extraction 

Several researches use performance metrics to reveal the 
process behavior [12, 18]. These metrics can be obtained by 
executing the samples in a sandbox or in a virtual 
environment. 

Burnap et al. extracted some system-level activity metrics 
in their study in 2017 [12], by executing samples of malicious 
and benign executables in a sandbox environment. These 
metrics are: 

 CPU User Use (percentage) 

 CPU System Use (percentage) 

 RAM use (count) 

 SWAP use (count) 

 received packets (count) 

 received bytes (count) 

 sent packets (count) 

 sent bytes (count) 

 number of processes running (count) 

These features are continuous values. They allow the 
ability to be more flexible with the classification of samples 
than discrete features such as DLL calls and PE header fields. 
At the same time they are more difficult to obfuscate through 
cyber-attacks, according to Burnap et al. 

Abdelsalam et al. [18] executed the samples in a virtual 
machine. Then, they collected 28 features from the following 
eight categories: 

 Status 

 CPU information 

 Context switches 

 IO counters 

 Memory information 

 Threads 

 File descriptors 

 Network information 

G. Entropy Signals Extraction 

The entropy measures the randomness in a given set of 
values. The higher the entropy, the more random the data and 
thus the higher the content of information. For binary data, 
given that the values of a byte vary from 0 to 255, the formula 
used for the entropy is represented by (1): 

H =  ∑           
   
                (1) 

Where, Pi is the probability of i in the code. 

Various researches represent the content of the executable 
file as an entropy stream, where each value denotes the 
entropy of a small piece of code in a specific location in the 
file [9, 21]. 

Wojnowicz et al., in their work in 2016 [9], relied merely 
on the entropy analysis. For each training file, several levels of 
detail or resolution were chosen. For each level of resolution, 
the file was divided into chunks of code, and the entropy was 
calculated for each chunk, resulting in one discrete entropy 
signal per level of resolution. For instance, for the level of 
resolution 2, the file will be divided into 22 = 4 chunks, so 4 
entropy values will be generated, producing a signal of 4 
discrete values. Subsequently, all the obtained signals are 
considered as the features extracted in this first step. 

III. FEATURE SELECTION TECHNIQUES 

After the first feature extraction step, researchers usually 
follow a second selection step. This step is essential for 
dimensionality reduction, for getting rid of redundant data, for 
reducing the learning and test times of the classifier, and thus 
for improving the accuracy of new malware detection. The 
feature selection techniques, frequently used with machine 
learning for malware detection, are described below. 

A. Information Gain 

Information gain has been widely used for feature 
selection [3, 14, 20]. Its notion is related to the entropy notion. 
It informs about the importance of a given attribute in the 
corresponding vector. One therefore must look for attributes 
with a high information gain. 

After the application of the information gain to the list of 
n-grams and DLL calls, Masud et al. [3] reserved 500 binary 
n-grams, 500 assembly n-grams, and 500 DLL function calls. 
Masud et al. represented the equations of the entropy and the 
information gain by (2) and (3) respectively. 

Entropy(S) 

=  
    

         
    (

    

         
)   

    

         
     

    

         
       (2) 

Gain(S, A) = Entropy(S) - ∑
|  |

| |
                          (3) 

Where, 
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S: training data 

p(s): total number of positive instances  

n(s): total number of negative instances  

values (A): set of all possible values for attribute A 

|S| = p(s) + n(s) 

Sv: subset of S where A= v 

|Sv| = pv + nv  

pv: total number of positive instances in Sv 

nv: total number of negative instances in Sv 

For the case of binary and assembly n-grams, an n-gram 
may be either present or absent. So each attribute A has only 
two possible values: v ɛ {0,1}. 

B. Redundant Feature Removal (RFR) 

The redundant feature removal technique eliminates both 
the features that do not vary at all and the ones that show a 
significant variation. These features have an approximately 
uniform-random behavior. Using this technique, all the 
entities whose values are either constant or have a variance 
greater than a given threshold, will be deleted [5]. 

In the PE-miner study [5], Shafiq et al. employed this 
technique among others. Unfortunately, they did not specify 
the number of features obtained after its application. 

C. Principal Component Analysis (PCA) 

The principal component analysis is a procedure for 
reducing the number of variables and making the information 
less redundant. It uses an orthogonal transformation to convert 
a set of observations of possibly correlated variables into a set 
of uncorrelated variables. It is at the same time a geometric 
approach (the variables are represented in a new space, 
according to maximum inertia directions) and a statistical 
approach (the research focuses on independent axes that best 
explain the variability or variance of the data). 

Siddiqui et al. [4] used this technique in their process of 
reducing the initial set of data. They started with 877 
variables. After the application of PCA, they retained solely 
the variables that explained 95% of the full variance of the 
data set. As a result, they obtained 146 variables, a 
considerable reduction of the number of features. 

After using the information gain as a first feature selection 
technique, Zhang et al. [20] utilized the PCA as a second 
feature selection technique in their research in 2018. They 
finally retained 50 features to train their classification model. 
They didn‟t specify the initial number of features. 

D. Random Forest 

The random forest technique is a prominent technique for 
classification and regression. Nevertheless, it is a notable 
feature selection technique as well.  For feature selection, it 
calculates the importance of an attribute by removing it from 
the model, then calculating the decrease in either accuracy or 
Gini index. These two metrics are used to evaluate the 
classification models and to explain their performance. The 

chosen attributes are the ones that imply a significant decrease 
in the chosen evaluation metric when removed. 

For the selection of features, Siddiqui et al. [4] used both 
PCA and random forest techniques, in two different 
approaches. Using the random forest, they rejected the 
variables where the average decrease in accuracy was less 
than 10%. Thereby, they retained only 84 variables from 877. 

Pablo et al. [12] took advantage of this technique as well. 
They combined it with another technique called Chi-Squared. 
They used the Chi-Squared method first, which allowed them 
to retain 68,800 features from a total number of 682,936 initial 
features, which is 10% of the entire set. Then, they applied the 
random forest technique. They chose the ranking made by 
accuracy decrease. The reduction passed by successive stages. 
They went from 68,800 features, to 10,000 features, then to 
5000, 1000, 300, 100, 30, 10, and finally to 9 features 
uniquely. 

E. Calculation of Accuracy by Considering Each Attribute 

Separately 

Karthik Raman, in his feature selection study [6], 
considered the fields‟ values of the PE file header as features 
for the training of his classifier. He was convinced that the 
different parts of the PE file header will be less correlated 
between them. Subsequently, the most important variables and 
the least correlated ones will be the variables generating the 
most important individual accuracy in each part of the header. 
The seven different parts of the PE header are: Data Directory, 
Optional Header, Imports, Exports, Resources, Sections, and 
File Header. The study of Karthik Raman revealed that the 
seven fields generating the highest accuracy from each part 
are respectively: Debug Size, Image Version, IatRVA, 
ExportSize, ResourceSize, VirtualSize2, and 
NumberOfSections. He retained solely these seven features to 
train his machine learning algorithm. 

F. Self-Organizing Feature Map (SOFM) 

Self-organizing feature maps (SOFMs) form a class of 
neural networks. They can be used for either classification or 
dimensionality reduction. Burnap et al. [12] used SOFMs to 
reduce the features dimensionality. Once a sample is received, 
it runs through a virtual environment for 5 minutes. The 
chosen nine machine activity metrics, mentioned in section 
II.F, are taken every second, producing 300 vectors of nine 
values for each sample, in the 5-minute time window. Then, 
SOFMs are used to transform each 9-dimensional vector to a 
2-dimensional vector. Therefore, 300 vectors of x-y 
coordinates are used as features for the training of the model. 

G. Wavelet Transform 

Various researches use the Wavelet Transforms for 
dimensionality reduction [9, 21]. Wojnowicz et al. [9] applied 
the wavelet transform to the entropy signals at different levels 
of resolution. For each level of resolution, each training file 
was divided into chunks of code, then the average entropy of 
each chunk was calculated, resulting in a discrete entropy 
signal. This signal was then multiplied by appropriate wavelet 
functions to get values called wavelet coefficients. After that 
the spectral energy was calculated as the sum of the wavelet 
coefficients squares. The spectral energies gathered from each 

https://en.wikipedia.org/wiki/Orthogonal_transformation
https://en.wikipedia.org/wiki/Correlation_and_dependence
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level of resolution were used as input features for the machine 
learning classifier. For the highest level of resolution, the files 
were divided into code chunks of 256 bytes each. For 
example, if a file size is 32 * 256 bytes, since 32 = 25, the file 
will be decomposed 5 times; to 21, 22, 23, 24, and 25 pieces, 
giving 5 levels of resolution. It subsequently generates 5 
features which are the spectral energies E1, E2, E3, E4 and E5. 
In addition to these spectral energies, Wojnowicz et al. 
integrated additional string features and entropy statistics for 
the training of their model. 

IV. MACHINE LEARNING CLASSIFIERS 

A. Support Vector Machine (SVM) 

A support vector machine is a well-known supervised 
learning model for both linear and non-linear problems. For 
linear classification, the technique is based on finding the 
optimal hyper plane that separates the data into two categories. 
This hyper plane is the one that maximizes the margin 
between two parallel hyper planes which separate the two 
classes of data, in our case benign and malicious files. Its non-
linear classification is obtained by applying a kernel function, 
which is a mapping function, to map the original input space 
to a high-dimensional feature space, creating a linear problem. 

Masud et al. [3] used SVM as a single classification 
technique in their model. Siddiqui et al. [4], Shafiq et al. [5], 
and Ninyesiga and Ngubiri [15] used SVM in addition to other 
classifiers, one at a time in order to make comparisons 
between the obtained results. Li et al. [13] used SVM and 
neural networks with different types of features to conclude 
the best combination between features and classification 
model. Their best results were obtained using SVM with 
features derived from the filename, path, static properties of 
the file, and imported functions. As for Pablo et al. [8], they 
chose to make comparisons between combinations of several 
models. They ultimately kept the combination of SVM and 
neural networks in their model, which was the combination 
that obtained the highest accuracy rate. 

B. Random Forest 

A random forest is an ensemble learning method used for 
classification and regression. It is constructed from a 
collection of decision trees. Each tree determines the class 
label of an unlabeled instance and then gets its classification. 
Each tree is divided at each node taking into account random 
features. Therefore, the model selects the most chosen class 
among all trees. The larger the number of trees, the more 
accurate is the result. Siddiqui et al. [4] built their model with 
100 classification trees. The number of variables tested at each 
division was ranged from 6 to 43, depending on the number of 
selected variables in the data set. They formed several 
combinations presenting several experiments, such as: 

 Random forest for classification using all the 877 
initially extracted features 

 Random forest for classification using 146 features 
retained by PCA feature selection technique 

 Random forest for classification using 84 features 
retained by random forest feature selection technique 

The best results were obtained using random forests for 
both feature selection and classification. Bai et al. [7] also 
obtained the best results using random forests as classification 
model, they compared it to other decision tree models. 

C. Neural Network 

A neural network or an artificial neural network (ANN) is 
a brain-inspired system intended to replicate the way that we 
humans learn. It is constructed from interconnected nodes. 
These nodes are represented in three forms of layers. An input 
layer consisting of input features, hidden layers that process 
the input information and transform it to something that the 
output layer can use, and an output layer which is responsible 
for giving the answer. An ANN is based on a number of 
parameters, which are updated iteratively in the learning 
phase. At each iteration, the ANN makes a prediction, then the 
error between its prediction and the correct answer is 
calculated based on a chosen cost function, after that the 
parameters are adjusted according to a learning rule like 
Gradient Descent and Backpropagation. The iterations are 
repeated until obtaining a minimum error [22]. ANNs revealed 
their effectiveness as a strong classification technique in many 
areas, especially in dealing with a huge amount of data. 

The classification model of Pablo et al. [8] was constituted 
from neural networks in combination with support vector 
machines and random forests. After multiple tests of the three 
techniques, they opted for the following procedure. They 
started with a pretreatment of their selected nine features. 
After that, they transformed all the original data by applying 
SVM kernels, which are mapping functions, to each feature. 
That is to say transform the feature vector space into another 
space easily separable. Then, they simultaneously used three 
sets of data to constitute the input layer of the neural network 
classifier. These three sets are: 

 The initial set of data, built of nine features 

 The set of features transformed by SVM kernels 

 The results of the SVM classifier applied to the initial 
set of nine features 

Their model gave an increase in both accuracy and speed 
of training. The training time lessened from few hours to few 
minutes. 

Barker et al. [10] chose neural networks as well. After the 
input layer, they introduced an embedding layer, followed by 
convolutional layers, recurrent neural networks RNNs, and 
finally a fully connected layer. Convolutional neural networks 
CNNs are widely used in image processing because of their 
ability to learn the existence of a feature regardless of its 
position. Barker et al. found that the MS-DOS header is the 
only component of the PE file that has a fixed position. The 
other parts like the PE header, the code and the resources can 
be placed anywhere. To better capture such a high-level 
localization invariance, they chose to use a convolutional 
neural network architecture. 

Multiple other researchers utilized convolutional neural 
networks in their works.  Abdelsalam et al. [18] and Yan et al. 
[19] chose to represent each sample as an image (2D matrix) 
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which will be the input to a convolutional neural network. 
They obtained great results. 

Boydell et al. [17] used a generic image scaling algorithm, 
where the raw malware byte code is interpreted as a one 
dimensional „image‟ and is scaled to a fixed target size. 
According to them, their approach is simpler than converting a 
malware binary file to a 2D image before doing classification 
since one doesn‟t have to make the decision about the height 
and the width of the image. The raw static byte code is used as 
input to a convolutional neural network followed by a 
recurrent neural network. However their work was intended to 
identify the malware class from nine classes and not to decide 
if a file is benign or malicious. 

V. CLASSIFICATION OF THE STUDIED RESEARCHES 

There are several indicators to measure the performance of 
a given classifier. For the classification of the different studied 
researches, this paper was interested in the accuracy rate of 
each one of them. Accuracy is defined as the number of 
malicious files classified as malicious, plus the number of 
benign files classified as benign, divided by the total number 
of files. Table 3 shows our results taking into account the most 
important researches. 

We should mention that Burnap et al. [12] didn‟t calculate 
the accuracy in their experiments. They used instead the 
precision rate. It is the number of malicious files classified as 
malicious, divided by the number of all the files classified as 
malicious. 

Several researches investigated in this paper use the k-fold 
cross-validation. It is a resampling procedure used to evaluate 
machine learning models on a limited data sample. The 

technique partitions the existing dataset into iterative learning 
and test subsets. It is applied to estimate the efficiency of a 
machine learning model on unseen data. However, since it 
does not use a completely new subset for the final test of the 
model, this can lead to an overfitting of the training data, the 
model subsequently would fail to perfectly generalize to 
previously unseen data. Therefore, an important factor is to 
check whether a classification model could generalize from 
previously seen data in the model training, to new data 
exclusively used for the last test phase. 

Burnap et al. [12] performed their first experiment using 
10-fold cross validation. In a second experiment, they used a 
new unseen set of data for the final test. By comparing the two 
experiments, we remark that the results of the random forest 
model decreased by more than 12% from the first experiment 
to the second one, whereas those of the ANN model decreased 
by 2.45% only. That shows that a model based on an ANN 
provides more stability between training and test datasets. 

Pablo et al. [8] also made such a comparison. In the first 
experiment they obtained an accuracy of 99.60%, and after the 
application of their model to new malicious files, whose date 
of appearance was located after the date of the files used for 
training, the new accuracy was 98.40%. The results of the 
ANN model decreased in this case by just 1.20%. 

As for Abdelsalam et al. [18], their best model considered 
performance metrics collected over a time interval as inputs to 
a convolutional neural network. They obtained an accuracy of 
97% with the validation dataset, this result dropped to 90% 
while testing with the new test dataset. Here we see that the 
accuracy rate of the results of the convolutional neural 
network model decreased by 7%. 

TABLE III. CLASSIFICATION OF THE OBTAINED RESULTS 

Ref Features Feature Selection Machine Learning Classifier Accuracy 

[12] 
300 vectors of 9 machine activity metrics (taken each 

second in a 5-minutes time window). 

SOFMs. 300 vectors of x-y coordinates 

obtained 
Random forest 86.70% 

[18] 
128 vectors of 28 performance metrics (taken each 10 

seconds in a 30-minutes time window) 
None CNN 90% 

[10] Byte (mapped) sequences taken from the file bodies None CNN + RNN + ANN 90.90% 

[4] 877 assembly n-grams from the file bodies Random forest: 84 features retained Random forest 94.00% 

[12] 
300 vectors of 9 machine activity metrics taken in a 5-

minute time window. 

SOFMs. 300 vectors of x-y coordinates 

obtained 
Logistic regression 94.60% 

[3] 
Binary n-grams, assembly n-grams and DLL function 

calls 

Information gain: 1500 features 

retained 
SVM 96.30% 

[8] 
682936 features: PE info, DLLs and other static and 

dynamic information from VirusTotal website 

Chi-squared, random forests. 9 features 

adopted 
SVM and ANN 98.40% 

[9] 
Most common strings observed in file corpus + 

entropy statistics + file entropy signals 

Wavelet transform of the entropy 

signals 
Logistic regression 98.90% 
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The references [8], [9], [10], [12] and [18] are the only 
malware detection researches in this paper that used unseen 
data for the final tests, yet they are the ones that have 
frequently achieved the best results. 

In Table 3, the results of [3] and [4] were taken into 
account for comparison reasons, knowing that it is very likely 
that their accuracy rates will decrease while using unseen data 
for the final performance tests. 

VI. CONCLUSIONS 

The transformation of the input dataset into another easily 
exploitable space brings a great gain in both data processing 
time and performance measures. This is illustrated in this 
paper through the use of either SOFMs, or the wavelet 
transform of the entropy signal, or the kernel functions defined 
by SVMs. 

The use of random forest for feature selection provides a 
significant benefit in reducing both the size of the dataset and 
the processing time, and in increasing the accuracy rate as 
well. 

The logistic regression model, in its relative simplicity, has 
shown its efficacy in the researches that used it in this paper. 
Several reasons could be indicators for an exceeding success 
by using neural networks and deep learning instead of logistic 
regression. Neural networks are based, in several cases, on the 
sigmoid function as activation function between the layers of 
the network. This function is the same used in logistic 
regression. Deep neural networks have a major aptitude of 
generalization and are very powerful as shown in the best 
results of Table 3. It can be a very good way to design a smart 
anti-malware program. 

The metrics taken from system-level activities could very 
well train the classification models. The introduction of such 
features into anti-malware programs might be slightly 
difficult, because of the high execution time and the 
significant consumption of resources. Besides, the use of deep 
neural networks has an intense computational requirement. 
However, faster and more powerful processors are showing up 
continuously allowing the application of the above-mentioned 
techniques in more ease. 
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