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Abstract—The diversity and heterogeneity of real-world 

systems makes it impossible to naturally model them only with 

existing modeling languages. For this reason, models are often 

constructed using domain specific modeling languages as 

metamodels, which must themselves be specified by meta-

metamodels. In this paper we present a new approach, based on 

the category theory, to specify metamodels. A grammar for 

modeling processes (PN, CSP, EPC, etc.) syntactically defines 

processes and then presents a set of reaction rules that model the 

behavior of the system. We will see that the categorical sketch is 

sufficiently expressive to be able to support the constructions 

needed to visually define the syntax of a graphical modeling 

language. The category theory also provides appropriate 

structures to model the behavioral rules of a real system. 
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I. INTRODUCTION 

In the theory of systems, we can distinguish between the 
structure of a system and the behavior of the system. The 
structure is the internal organization of a system. The 
operational aspect of the structure is given by a set of objects 
that are invariant to transformations. 

An important method of mathematical modeling of the 
behavior of a dynamic system is provided by the process 
concept [9]. We understand a process as a behavioral model of 
a dynamic system at a certain level of abstraction. The 
behavior of the system generally consists of processes and 
data. 

Processes are control mechanisms for data manipulation. 
Processes are dynamic and active, data is static and passive. 
The data of a process is generally expressed by ontologies that 
allow for inference, and processes through directed graphs 
whose nodes are states and arcs are actions. 

While a sequential system performs a single step at a time 
and can therefore be characterized by a single current state, 
the different components of a concurrent system may be in 
different local states at a time, which together make up the 
global state of the system at a time [12]. Furthermore, 
intermediate states are as important as the initial state and the 
final state, as they determine the behavior of larger systems 
that may include the considered system as a component. 

The behavior of the system is given by several processes 
that are executed simultaneously (parallel and distributed), 
where these processes exchange data to influence each other's 
evolution. 

Due to the different component execution speeds, the way 
the components interact with each other, and the programming 
policies adopted, the behavior of these competing systems 
may present interesting situations such as non-determinism in 
the end result or in the actual calculation. Consequently, it is 
not appropriate to describe the behavior of these systems by a 
function from inputs to outputs, as in the classical theory of 
systems [12,13]. 

A process is a sequence of steps that define behavior. 
There are several approaches to the notion of step, which leads 
to as many different types of behavior. Most often, the process 
models visually describe how real systems work [2,3,4,5]. 

The grammar of a visual language defines the syntax 
generation rules and the semantic interpretation rules of 
graphical elements in a process model, as well as the rules of 
composition of atomic components to model the behavior of 
the real system. It is important that the rules of syntactic 
construction be such that any model generated on their basis 
allows for a detailed syntactic analysis, that is, to allow the 
determination of the sequence of syntactic rules that generated 
the model. This succession of syntactic rules allows semantic 
interpretation of the model. [4,11,14]. 

Different modeling grammars tend to emphasize different 
aspects of processes, i.e. a Petri Net model of a real problem 
looks different from an EPC model of the same real problem. 
Consequently, the choice of modeling grammar is an essential 
decision when the modeling activity begins [11,14]. 

Generally, building a model begins with an informal 
model, used for discussion and documenting, and ends with an 
executable model useful for analyzing, simulating, or actually 
executing the process [11,14]. 

Informal models are easy to understand but suffer from 
ambiguity, while executable models are too detailed to be easy 
to understand by all the parties involved in building the model. 

This conflict between the informal and the executable 
model largely reflects a certain incompatibility between the 
metamodel and the modeled object, and therefore is mainly 
due to the insufficient alignment between the metamodel and 
reality. 

The diversity and heterogeneity of real-world systems 
makes it impossible to naturally model them only with 
existing modeling languages [4,14]. 

The metamodel requires an abstract version of reality, 
focuses on the common behavior of the real systems in 
question, and therefore the metamodel cannot cover 
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satisfactorily only a small percentage of the actual cases that 
its authors consider to be representative [10]. 

Of course, these drawbacks can be solved by successive 
upgrades of existing metamodels with new structures, 
concepts and algorithms, but these additions often exceed the 
initial logic of the metamodel. Therefore this method of 
solving the drawbacks leads to difficult to master graphical 
languages. 

On the other hand, a modeling grammar can be specific to 
certain aspects of processes, such as flow of activities, 
allocation of resources, communication between processes, 
etc. Obviously, the solution to this problem, if costs are 
acceptable, is given by the languages specific to each 
modeling domain that may contain elements representative of 
the concepts involved in a particular modeling domain. 

This approach requires powerful and flexible 
metamodeling tools to support the specification and 
generation of domain specific modeling languages with 
acceptable costs. The specification of such a metamodel 
should contain enough information to allow the automatic 
generation of a tool to verify and build models subject to the 
syntax of the described formalism. 

In this paper we will show that the sketches from the 
category theory offer a language with a well-defined syntax 
and semantic to describe mathematical objects, that can 
rigorously represent the syntax of domain-specific modeling 
languages. 

We will see that categorical sketches are mathematical 
objects with well-defined syntax and semantics that represent 
meta-metamodels capable of capturing the basic elements that 
can be used to design a metamodeling formalism. In this 
context, a metamodel is represented by a mathematical object, 
a sketch, and a model is a functor that is also a mathematical 
object. 

The fact that the sketch is a graphical specification makes 
the metamodel specification process intuitive, accessible and 
reduces the time to develop a modeling tool. 

In section 2 we present the theoretical foundations and 
notations in the category theory. Section 3 presents the use of 
the categorical sketch of the process model concept. Section 4 
defines the metamodel as a functor, and section 5 completes 
the model with the execution and simulation part. 

II. THEORETICAL FOUNDATIONS AND NOTES 

Definition 1. [1,6,7,9] A category 𝓒 consist of a set of 
objects, a set of arrows between these objects, and a partial 
operation of arrows composition. We will denote the category 
objects with uppercase letters A, B, ..., the set of all objects we 
will denote with ob(𝓒), the set of arrows between two objects 
X and Y with 𝓒(X,Y) and the partial operation of arrows 
composition with ∘. The set of arrows of a category 𝓒 along 
with the arrows composition operation form a monoid 

structure, i.e. it is associative: for all arrows f𝓒(X,Y), 

g𝓒(Y,Z) and h𝓒(Z,W)(h∘g)∘f=h∘(g∘f)𝓒(X,W), and for 

each object X in ob(𝓒) there is an identity arrow idX:XX 

with the property idX∘f=f, g∘idX=g where X,Y,Uob(𝓒),  

f𝓒(Y,X) and g𝓒(X,U). 

Definition 2. [1,7,8,9] A functor  is an application 
between two categories 𝓒 and 𝓓 that maps the objects of 
category 𝓒 into objects of category 𝓓 and the arrows of 
category 𝓒 in arrows of category 𝓓 with the preservation of 

the structure, i.e.: A,B:𝓒(A,B)𝓓((A),(B)) for all objects 

A,Bob(𝓒) and (1A)=1(A), (fg)=fg where 

X,Y,Zob(𝓒), g𝓒(X,Y), f𝓒(Y,Z). 

If we consider each category an object and each functor an 
arrow between these objects we get a category that is usually 
denoted with Cat. 

Definition 3. [1,7,8,9] A natural transformation is an 

application between two functors  and  which have the 
same domain 𝓒 and the same codomain 𝓓 consisting of a 

family of arcs A:AA (A𝓒) such that for each arrow 

f:AB in 𝓒, the naturality condition is respected 

(f)∘A=B∘(f). 

A small category could be defined as a graph 𝓖 to which a 
structure is added, i.e. an arc composition operation and an 
identity arc for each node. In this way, any graph 𝓖 generates 
a category called the free category generated by the graph 𝓖. 
This is very important for visual models because they are 
generally graphs generated on the basis of the syntactic rules 
imposed by the corresponding grammars. Therefore, any 
process model generates a free category. 

The operation of generating the free categories from 
graphs also involves the extension of graph homomorphisms 
to the corresponding functors between the free categories 
generated by them. Based on this observation, to simplify the 
exposure, we will use the functor designation for graphs as 
well. However, we must note that if there is always a functor 
between two categories (at least one constant functor), there is 
not always a homomorphism between two graphs. 

Definition 4. [1,7,8] A diagram is a functor D defined on a 
graph 𝓖 with values in another graph 𝓟 or with values in a 
category 𝓒. The domain of D is called shape graph of diagram 
D. 

Definition 5. [1,7,8] A commutative cone in category 𝓒 

with the vertex C𝓒 and the base a diagram D:𝓖𝓒 is a 

natural transformation p:CD where C is the constant 

diagram  C:𝓖𝓒. 

A morphism between two cones p and p' is an arrow 

f:CC’ with the property that for any node a of the graph 𝓖 
we have pa=   

 f. The set of cones together with these 
morphisms form the cone category generated by diagram D. 

Definition 6. [1,7,8] The limit of a diagram D:𝓟𝓒 is a 
terminal object in the cone category generated by diagram D. 

Definition 7. [1,7,8] A commutative cocone in the 

category 𝓒 with the vertex C𝓒 and the base a diagram 

D:𝓖𝓒 is a natural transformation p:DC where C is the 

constant diagram C:𝓒. 
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Definition 8. [1,7,8] A morphism between two cocones p 

and p' is an arrow f:CC’ with the property that for any node a 
of the graph 𝓖 we have   

 =fpa. The set of cocones along with 
these morphisms form the cocone category generated by 
diagram D. 

Definition 9. [1,7,8] The colimit of a diagram D:𝓖𝓒 is 
an initial object in the cocone category generated by diagram 
D. 

Definition 10. [1,7,8] A categorical sketch 𝓢 is a tuple (𝓖, 
𝓓, 𝓛, 𝓚) where 𝓖 is a graph, 𝓓 is a set of diagrams, 𝓛 is a set 
of cones and 𝓚 a set of cocones. 

Definition 11. [1,7,8] A model generated by sketch 𝓢=(𝓖, 

𝓓, 𝓛, 𝓚) is a functor M:𝓖Set that maps the diagrams D to 
commutative diagrams, the cones 𝓛 to cone limits and the 
cocones 𝓚 to cocone colimits in Set. 

III. CATEGORICAL SKETCH OF THE PROCESS MODEL 

Essentially, a visual model of a process defines first the 
syntax of the process that represents the virtual and physical 
entities of the model and then the semantics of the process 
represented by a set of reaction rules that represent the 
behavior of these entities [10]. 

The syntax of a process can be represented by graphs that 
have as nodes specific concepts and as arcs the 
interdependencies between these concepts. Often the syntax of 
the model can be represented by a single graph. When models 
of a real systems imply a space concept, an additional graph is 
used that has the same nodes as the first, thus reaching the 
notion of bigraph [10]. In this paper we will only deal with 
processes that can be represented by a graph. 

In the Set category, a graph is defined by two sets X,  and 

two parallel functions ,  defined as in Fig. 1. To specify the 
syntax of a graphical metamodel we will use a categorical 
sketch, which in turn is represented in a graphical language 
[10]. 

Sketches are not designed as a notation, but as a 
mathematical structure that incorporates an exact formal 
syntax and semantics. We will use the same notations for the 
arcs of the graph of the sketch and the functions from Set, and 
the nodes from the graph of the sketch we will denote with 
lowercase letters and the objects from Set we will denote with 
upercase letters. 

We could therefore consider the starting point in defining a 
sketch corresponding to the concept of process a graph with 

two nodes x,  and two parallel arcs  and . However, this 
sketch is too general and does not in any way account for the 
specifics and restrictions of each metamodel. 

Therefore, we will need to introduce a series of helper 
objects and functions in the Set category to impose the 
constraints specific to each metamodel. These helper objects 
will be reflected in the sketch components (the graph of the 
sketch, commutative diagrams, cones and cocones). 

Below we will present some of these possible 
constructions and we will also present a relevant example. 

 

Fig. 1. Graph Sketch. 

 

Fig. 2. Commutative Diagram. 

 

Fig. 3. Pullback Diagram. 

A. It's a Simple Graph, not a Multigraph 

A simple graph is a graph with the property that for any 
pair (a, b) of vertices there is no more than one arrow with 
source a and target b. In order to impose this condition in the 

Set category, we need the Cartesian product XX and the 

function  defined as shown in Fig. 2. The functions 1 and 2 
are the two projections. 

To get a sketch that specifies only simple graphs, we add 
an object x×x and the discreet cone needed to convert this 
object into a formal product. Then we have a single arc 

between any two vertices if and only if :X×X is a 

monomorphism. But the function  is a monomorphism in Set 

if and only if the pullback of  with  is equal to , i.e. if and 
only if the diagram in Fig. 3 is a pullback diagram. The effect 

of this is to make the monic arrow  become a pair <s,t> in a 
model so that there are no two arrows to have the same pair 
source, destination. 

B. The Graph must be Connected 

In order to constrain the graph corresponding to a model to 

be connected, we will define a function :XU that 
associates to each object in X the connected component to 
which it belongs. So U is the set of connected graph 

components. But this  is a coequalizer for the functions  and 

. 

A coequalizer :XU must satisfy the equality ◦ = ◦. 

The pair (, ) determines a relation *X×X which is 
obtained by the reflexive, symmetrical and transitive closure 

of the relation ={((t), (t))|tX}. 

Obviously we have ◦ = ◦ if and only if (t1)=(t2) for 

all (t1, t2)*. 
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Fig. 4. Coequalizer. 

We will define U=   , i.e. the set of equivalence classes 

determined by  and :XU is the function that associates to 
an element from X its equivalence class, i.e. the connected 

component to which it belongs. But the function  is a 

coequalizer of  and  (Fig. 4). 

Therefore, U is the colimit of a diagram with two nodes , 

x and two arcs ,  and it will supply the connected 
components of our graph. But we want the graph to be 
connected and therefore to have only one connected 
component [7,8]. 

For this we will put the condition that U is the vertex of a 
cone with an empty base. Thus, U will become an object in 
our model from Set, i.e. a set with a single element, which 
guarantees that our graph will be connected. 

Another method to specify that a graph is connected is that 
the diagram from Fig. 5 has to be a pushout diagram. That is, 

the pushout of  with  is  (a terminal object in Set). 

1) The types of objects determine a partition on the set of 

the graphs vertices: X=X1X1 and X1X2= . In the model 

sketch, the disjoint union X is the colimit of a discrete diagram 

(cocone). 

2) The types of arcs determine a partition on the set of 

arcs of the graph: =1 2
 
and 1 2=. In the sketch of 

the model the disjoint union  is the colimit of a discrete 

diagram (cocone). 

3) The maximum or minimum number of arcs coming out 

of a vertex or entering a restricted vertex. We will denote by  

x={ y|(x,y) } and with 
-1

x={ y|(y,x) }. 

The sequential routing involves the activation of an 
activity in a process, always, after completing another activity 
in the same process. 

The sequence model is used to model consecutive steps in 
a process, whatever the case, and is supported by all available 
process management systems. In most cases, two activities 
that execute sequentially depend on each other in the sense 
that the second one uses the result of the first one. Typical 
implementation involves tying two activities with an 
unconditional control arrow [12,13,14]. 

From a syntactical point of view, the sketch corresponding 
to the metamodel will require to put a constrain that the first 
activity be the source of a single arrow and the second one to 
be the target of a single arrow. 

That is, if we have two sets of activities X1 and X2 so that, 
always, an activity of X1 is followed by a single activity from 
X2 and only that, i.e. it complies with the sequential routing, 
then in the metamodel sketch we will have a diagram of the 

form Fig. 6 with the property that  and  are monomorphism. 

 
Fig. 5. Pushout Diagram. 

 

Fig. 6. Sequential Routing. 

 

Fig. 7. Pullback Diagram. 

 

Fig. 8. Pullback Diagram. 

In the metamodel sketch we will have to impose the 

condition that  and  are monomorphisms, i.e. an object in 
X1 can be followed by a single object and an object in X2 can 
be preceded by a single object. 

But,  and  are monomorphisms if and only if the 

pullback of  with  is 1,2 and the pullback of  with  is 

1,2, i.e. the diagrams in Fig. 7 and Fig. 8 have to be pullback 
diagrams. 

The condition that a concept from the set X1 can be 
followed by any number of concepts from X2 and a concept 

from X2 can be preceded by a single concept from X1 is that  

be a monomorphism, i.e. the pullback of  with  is 1,2. (Fig. 
8). 

The condition that a concept from the set X1 can be 
followed by a single concept from X2, and a concept from X2 

can be preceded by any number of concepts from X1 is that  

be a monomorphism, i.e. the pullback of  with  is 1,2. (Fig. 
7). 
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If we do not put constraints on a subgraph like the one in 
Fig. 6 from the graph of the sketch, then an object from X1 can 
be followed by any number of objects from X2, and an object 
from X2 can be preceded by any number of objects from X1. 

Example 1. Medical Laser Manufacturing Systems 
(MLMS). 

At a medical lasers company, a software tool is required 
for modeling and simulating a manufacturing cell that 
assembles multiple devices simultaneously. The assembly 
process also contains common operations on such devices. 

A cell can have a set of input buffers XI (entry station), a 
set of output buffers XO (exit station), a set of workstations, 
w0, w1, …, wn-1, a set of test stations and a set of buffers to 
collect faulty components. These workstations are loaded and 
unloaded by a set of specific conveyors. 

The manufacture of each device is made in accordance 
with its process plan. There are several types of devices with 
specified process plans. 

The primary components of a device reach an entry 
station. Once the primary components reach this point, they 
are inserted into the assembly system when possible. They 
will be transported and assembled in workstations, in 
accordance with the process plan and then leave the system 
via an exit station or through a collection station for faulty 
components. 

Each workstation wi has an input buffer Bi and an output 
buffer Bo that have limited capacities. A workstation works 
asynchronously if it has raw material in the input buffer and 
enough space in the output buffer. If one of these conditions is 
not met, the station stops and starts automatically when the 
conditions are met. The assembly operation has a certain 
duration. 

Each test station Xt has an input buffer Bi and an output 
buffer Bo with limited capacities. A test station works 
asynchronously if it has raw material in the input buffer and 
enough space in the output buffer. If one of these conditions is 
not met, the station stops and starts automatically when the 
conditions are met. The test operation has a certain duration. 

Each conveyor  has a limited transport capacity and can 
carry several types of components in specified quantities. A 
conveyor works asynchronously if it has sufficient 
components in the output buffer of the source workstation and 
also has enough space in the input buffer of the target 
workstation. If one of these conditions is not met the conveyor 
stops and starts automatically when the conditions are met. 
The transport operation has a certain duration. 

Each input buffer Xi has the ability to store several types 
of components in limited quantities, and we assume it is 
continuously supplied from the outside of the model. Each 
output buffer Xo has the ability to store, in limited quantities, 
more types of finished products and we assume it is emptied 
from the outside of the model. Also, each buffer for collecting 
faulty components Xd has the ability to store, in limited 
quantities, a number of defective components and we assume 
it is emptied from the outside of the model. 

The purpose of the model is to evaluate the performance of 
the manufacturing cell or to investigate different programming 
policies in order to optimize the manufacturing process. For 
this purpose, information was included in the model, such as 
the duration of operations, the stop time of the actions in order 
to locate the process delay points. The model also allows 
optimizing the size of the buffers in order to eliminate 
stagnation due to downstream or upstream defects. 

As a result of the analysis, we find that in order to 
graphically specify such processes we need 6 types of 
concepts, namely: input buffers with primary components, 
output buffers with finished products, faulty components 
collection buffers, assembly stations, test stations and 
conveyors. 

The workflow also includes the following routing rules: 

At the beginning of the manufacturing process, the 
primary components will pass through a test station. 

After each assembly station, a test station will be required. 
Components assembled in a workstation will always go to the 
same test station. 

In the test station the components will be sorted into 
accepted and defective. Accepted components will follow the 
assembly flow and the defective components will be 
transported to a collection buffer for faulty components. 

We will define an MLMS as a graph with a set of syntactic 
restrictions. The mechanisms used to introduce the syntactic 
constraints of the models are those from the sketch definition, 
i.e. commutative diagrams, limits and colimits. 

Definition 12. A MLMS model is a directed graph  

𝓖 = (X, , , ) where 

X is a set of objects (concepts in our model) that represent 
the nodes of the graph. 

 is a set of arcs (conveyors in our model). 

And which satisfies the following properties: 

1) 𝓖 is a connected graph 

2) There is only one arc between any two nodes. 

3) On the set of nodes X we have a partition: 

X=Xi⊔Xo⊔Xd⊔Xw⊔Xt 

Where 

Xi is a set of input buffers for the primary components; 

Xo is a set of output buffers for finished products; 

Xd is a set of collection buffers for faulty components; 

Xw is a set of assembly stations; 

Xt is a set of testing stations. 

4)  and  are functions ,:X which assigns to each 

arc r the source and target objects (r), (r)X. 

(XiXt)(XtXw)(XwXt)(XtXo)(XtXd) 

=it⊔tw⊔wt⊔totd 

5) x|=1 for any xXw, i.e. the components assembled in 

a workstation will all go to the same test station. 
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As we can see the syntactic definition of an MLMS, 
introduces a series of partitions on the set of nodes, 
subpartitions on the set of events, connectors, and arcs. Also, 
the definition includes connection constraints and number of 
arcs between different types of nodes. 

So far we have built the sketch of the graph into several 
components that can be aggregated in a related graph as in 
Fig. 9. As we notice, we have introduced all the nodes and 
arcs in the graph of the sketch so that we can define the 
components 𝓓, 𝓛 and 𝓚 that introduce the constraints specific 
to our metamodel. Any model of the resulting sketch will 
comply with these constraints. 

Graph 𝓖 has 14 nodes and 27 arrows. These will be 
interpreted in a model as follows: (1) x - all object X in a 
MLMS model, (2) Xi – is a set of input buffers for the primary 
components, (3) Xo is a set of output buffers for finished 
products, (4) Xd is a set of collection buffers for faulty 
components, (5) Xw is a set of assembly stations, (6) Xt is a set 

of testing stations (7) xx - the Cartesian product of the set X 

with X, (8)  represents a terminal object in Set, (9)  - 

represents all relations  between the objects of the model, 

(10) it - represents the subset of relations it that links Xi 

objects with Xt objects, (11) tw - represents the subset of 

relations tw that links Xt objects with Xw objects, (12) wt - 

represents the subset of relations wt that links Xw objects with 

Xt objects, (13) to - represents the subset of relations to that 

links Xt objects with Xo objects, (14) td - represents the subset 

of relations td that links Xt objects with Xo objects. We have 
numbered these nodes to refer to them in the shape graph of 
the diagrams. 

 

Fig. 9. The Graph of the Sketch. 

In the following we will introduce the elements 𝓓, 𝓛 and 
𝓚 which impose the constraints specific to our metamodel 
[7,8] as follows: 

1) G is a connected graph. The pushout of  with  

introduces an equivalence class that defines the set of 

connected components of the graph [7]. For the graph to be 

connected we must have only one equivalence class, i.e. the 

set of equivalence classes is a terminal object in Set. 

For this we will introduce into our sketch a cocone K1. The 

vertex of this cocone will be  and the shape graph of this 
diagram is in Fig. 10. and the functor k1 corresponding to 

these diagram is defined as follows: k1(9)=; k1(1)=x; 

k1(1’)=x; k1()=; k1()=. 

The node denoted with  in the graph will become the 
limit of a cone L1, with an empty base, i.e. a terminal object 
from Set. 

2) There is only one arc between any two nodes. This 

entails a monomorphism between the set of relations  and the 

set XX. We will have to define this Cartesian product as the 

limit of a discrete diagram. We will specify the Cartesian 

product through the discrete cone L2. 

The graph shape of diagram L2 is defined by the nodes 1 
and 1' and the component functor I2 is defined as: I2(1)=x; 
I2(1’)=x. The limit of this diagram in Set is the Cartesian 

product XX. 

The monomorphism :XX is defined by commutative 

diagram D1. Defining the function : XX, can be done by 
the commutativity of the diagram D1. The shape graph of this 
diagram is in Fig. 11. The functor d1 is defined as follows: 

d1(9)=; d1(1)=x; d1(7)=xx; d1(1’)=x; d1()=;d1()=; 

d1()=; d1(
1
)=

1
; d1(

2
)=

2
. 

The condition that is required in this commutative diagram 
to have no more than one arc between any two nodes is that 

the function  becomes a monomorphism in Set. But  is a 

monomorphism if and only if the pullback of  with  exists 

and is equal to . 

 

Fig. 10. Shape Graph of Pushout Diagram. 

 

Fig. 11. Shape Graph of Commutative Diagram. 
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Fig. 12. Shape Graph of Pullback Diagram. 

The pullback of  with  is the limit of cone L3. The shape 
graph of this diagram is in Fig. 12. and the functor l3 

corresponding to this diagram is defined as: l3(9)=; l3(9’)=; 

l3(7)=xx; l3()=. The limit of this diagram in the Set 

category will have to be . 

3) On the set of nodes X we have a partition: 

X=Xi⊔Xo⊔Xd⊔Xw⊔Xt. That is, the set of objects X is the 

disjoint union of five subsets of objects. This means that X is 

the coproduct of a discrete diagram formed by five nodes and 

with the vertex X, which in Set will become the colimit of this 

discrete diagram. 

We will specify the partition introducing in the sketch of 
the model the cocone K2. The shape graph of this diagram is 
made up of nodes 3 and 2 and the functor k2 corresponding to 
this diagram is defined as: k2(2)=xi; k2(3)=xo; k2(4)=xd; 
k2(5)=xw; k2(6)=xt. The limit of cone K2 requires that X be the 
disjoint union of all objects of a model with all adjacent 
constraints imposed by the other constructs. 

4) ,:X are functions that associate to an arc, a 

source and a target. The additional notations it, tw, wt, to, 

td, and it, tw, wt, to, td, will also be reflected in the graph 

of the sketch because they are operators of the sketch. 

 is a set of arcs divided into five subsets 

=it⊔tw⊔wt⊔totd. Therefore, the set of arcs  is the 

disjoint union of the five subsets of arcs. This means that  is 
the coproduct of a discrete diagram formed by five nodes. 

In the sketch we will specify that X is the colimit of the 

discrete diagram formed by nodes it, tw, wt, to, and td 
through the cocone K3. The shape graph of this diagram is 
made up of nodes 10, 11, 12, 13, 14 and the functor k3 

corresponding to this diagram is defined as: k3(10)=it; 

k3(11)=tw; k3(12)=wt; k3(13)=to; k3(14)=td. Therefore, the 

node denoted with  in the graph of the sketch will become in 

the Set category the set  which will be the colimit of this 
discrete diagram. 

|x|=1 for any xXw, i.e. the components assembled in a 
workstation will all go to the same test station. For this we 

have to make sure that the function wt:wtXw is a 

monomorphism, i.e. the pullback of wt with wt has to be wt. 
For this we will introduce a cone L4 in the metamodel sketch. 
The shape graph of this diagram is in Fig. 13. and the functor 

l4 corresponding to this diagram is defined as: l4(12)=wt; 

l4(12’)= wt; l4(5)= xw; l4(wt)= wt. The limit of this diagram 

in the Set category will have to be . 

So we’ve got the sketch of a MLMS, we denote it with 
L

1
(MLMS)=(𝓖, 𝓓, 𝓛, 𝓚) where:  𝓖 is the graph from Fig. 9, 

𝓓={D1}, 𝓛={L1,L2,L3,L4} and 𝓚={K1,K2,K3}. 

 

Fig. 13. Shape Graph of Pullback Diagram. 

IV. THE METAMODEL 

A correct model in relation to the sketch L
1
 = (𝓖, 𝓓, 𝓛, 𝓚) 

must be the image of a functor defined on the graph 𝓖 in Set 
which complies with the conditions imposed by the 
components 𝓓, 𝓛 and 𝓚 of the sketch. 

From the way we constructed the L
1
 sketch, it follows that 

this sketch specifies the same mathematical object that is also 
defined by definition 1. An important advantage of the sketch 
is that it provides a graphical specification of the metamodel. 

We observe two advantages of using the sketch for 
specifying metamodels, the first is that they are defined in a 
graphical language and the second is that the constraints 
imposed by the sketch will be respected by all the models 
generated on it. The sketches are not designed as notations, 
but as a mathematical structure incorporating a formal syntax 
expressed by the semantics of constructions from the category 
theory. 

We note that all the concepts of a model, both the entities 
involved in the model and the associations between them, are 
represented by the nodes of the sketch. The arcs of the sketch 
are not concepts of the model, they are sketch operators and 
are used to interpret the syntax of the models. These operators 
will be implemented as algorithms in the metamodel. 

The sketch objects that represent the atomic elements of 
the models will be part of the modeling tool and will then be 
put on PaletteDrawers to visually serve the models definition 
procedure. 

For this we will define a functor: :  Sets that associate 
to each visual object of the sketch an instance that will be 
hosted by the modeling tool palette. 

Example 2. For example 1, the modeling tool palette will 
have to host the concepts represented by the nodes of the 
subsketch from Fig. 14. Only these concepts will serve to 
visually define the models specified by the sketch L

1
. 

 

Fig. 14. Subsketch of basic Concepts. 
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The sketch L
1
 = (𝓖, 𝓓, 𝓛, 𝓚) is the MLMS metamodel, 

that is, the syntax of the modeling language. The image of this 
sketch through a functor in Set is a model with an imposed 
syntax. Therefore, specifying a syntactically correct MLSM is 

equivalent to defining a functor   :  Set that transforms 
the sketch nodes into sets of classes that preserve the node 
type. 

The operators of the sketch will be transformed into 
functions with the same role of operators with the same name 
and that respect the conditions imposed by the sketch. 

Obviously there are models among which we can define a 
certain similarity of structures in the sense of homomorphism. 
This similarity is defined by a natural transformation 

:  
   

  which becomes a graph homomorphism between 

the models generated by the sketch L
1
. 

If we consider each model   
 , k0 generated by the L

1
 

sketch an object and each natural transformation between two 

models    
  and   

  as an arrow we will get a category that we 

call the category of models generated by the sketch L
1
 which 

we denote with Mod(L
1
, Set). All models in this category are 

syntactically correct. The dynamic behavior of a model is 
given by a sequence of instances associated with each model 
as we will see in the next section. 

V. THE DYNAMIC BEHAVIOR OF A PROCESS MODEL 

The semantics of a process model represents the dynamic 
behavior of the modeled real system. This is accomplished by 
performing procedures according to the interaction rules of the 
real system components. It is therefore essential that the 
procedures associated with the model's activities be as faithful 
as possible to the interaction rules of the components of the 
real system. The sequence of executed procedures involves the 
state sequence of the model [12,13,14]. 

Simulating a process model involves a collection of 
functions that exploit its knowledge base to enable this 
information to be treated in such a way as to obtain a similar 
behavior to that of the simulated system. These functions 
change the state of the system, i.e. it produces a set of events 
that in turn determines the execution of other activities [2,3,4]. 

The basic sketch of a metamodel introduces a series of 
invariants of a model such as the fact that we cannot have in a 
model only atomic elements of the types specified by the 
sketch objects. These invariants make it possible to define the 
possible states of the model by attribute values at a given time. 
The transition of the model from one state to another will be 
done through specific reaction rules called macrotransitions 
[7,10,11]. 

A macrotransition that causes the model to pass from the 
state represented by a vector V

1
 to the state represented by a 

vector V
2
 through the reaction rules p can be symbolized by a 

triplet (V
1
, p, V

2
). 

Since states are often values of the attributes distributed 
over time, the term event is used instead of the state vector 
and as a result a macrotransition is symbolized by (E

1
, p, E

2
) 

with a meaning similar to the one above. 

In the case of our model we will introduce another 
invariant, namely that any instance of a model will contain 
only one instance for each object of the model. We can thus 
define a transition in the form (𝕴1

, p, 𝕴2
) where 𝕴1

 and 𝕴2
 are 

instances and p is a natural transformation as we will see 
below. 

In a transition system, if we know the state of the system at 
one point, we can describe the evolution of the system without 
the states through which the system passed until it reached its 
current state [10,12]. 

We will denote with L
2
= H

2
(L

1
) a model generated by the 

L
1
 sketch. Each object of the model L

2
 is a set of classes that 

have the corresponding node type of the L
1
 sketch. The arcs of 

the model L
2
 represent the model operators. 

 

Fig. 15. Example of a MLMS Model. 

m1  m2  m3  m4  m5  m6 

10   20   10   24    10   30 

 

R       BI      I       O    BO  

m1     10      1      1       5 
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m9    -       -    1     4 

R     BI    I       O    BO  
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If we denote with M the graph model corresponding to the 
model L

2
, then M=J(L

2
) where J is a functor defined on the set 

of models generated by the L
1
 sketch with values in the graph 

category J:Mod(L
1
,Set)Graph. The functor J maps each 

model to the resulting graph by interpreting sketch operators 
and natural transformations between models in graph 
homomorphisms. 

Example 3. In example 1, a model L
2
 limited to the atomic 

elements represented in Fig. 14, which are necessary and 
sufficient for the visual representation of the model, could be 
that generated by the functor defined as follows: 

   xi) =Xi={I1} is a set of concepts of type xi; 

   xo) =Xo={O1 } is a set of concepts of type x0; 

   xd) =Xd={D1 } is a set of concepts of type xd; 

   xw) =Xw={W1, W2, W3, W4, W5} is a set of concepts of 

type xw; 

   xt) =Xt={T1, T2, T3, T4, T5, T6} is a set of concepts of type 

xt; 

   it)=it={  
 } represents the subset of relations of type it; 

   tw)=tw={   
 ,    

 ,    
 ,    

 ,    
 ,    

 ,    
 ,    

 } 

represents the subset of relations of type tw; 

   wt)=wt={  
 ,   

 ,   
 ,   

 ,   
 } represents the subset 

of relations of type wt; 

   to)=to={  
 ,   

 } represents the subset of relations of 

type to; 

   td)=td={  
 ,    

 ,    
 ,    

 ,    
 ,    

 } represents the 

subset of relations of type td; 

it:itXi associates to each relation from it the source node 

from Xi: it(  
 )=I1; 

it:itXt associates to each relation from it the target node 

from Xt: it(  
 )= T1; 

tw:twXt assigns to each relation from tw the source node 

in Xt: tw(  
 )=T1; tw(  

 )=T1; tw(  
 )=T1; tw(  

 )=T1; 

tw(  
 )= T2; tw(  

 )=T3; tw(  
 )=T4; tw(  

 )=T4; 

tw:twXw assigns to each relation from tw the target node 

in Xw: tw(   
 )=W1; tw(   

 )=W2; tw(   
 )=W4; 

tw(   
 )=W5; tw(  

 )=W3; tw(   
 )=W3; tw(   

 )=W4; 

tw(  
 )=W5; 

wt:wtXw assigns to each relation from wt the source node 

in Xw: wt(   
 )=W1; wt(   

 )=W2; wt(   
 )=W3; 

wt(  
 )=W4; wt(  

 )=W5; 

wt:wtXt assigns to each relation from wt the target node in 

Xt: wt(  
 )=T2; wt(  

 )=T3; wt(  
 )=T4; wt(  

 )=T5; 

wt(  
 )=T6; 

to:toXt assigns to each relation from to the source node in 

Xt: to(  
 )= T5; to(  

 )= T6; 

to:toXo assigns to each relation from to the target node in 

Xo: to(  
 )= O1; to(  

 )= O1; 

td:tdXt assigns to each relation from td the source node in 

Xt: td(   
 )=T1; td(   

 )=T2; td(   
 )=T3; td(   

 )=T4; 

td(  
 )=T5; td(  

 )=T6; 

td:tdXd assigns to each relation from td the target node in 

Xd: td(  
 )=td(  

 )=td(  
 )=td(  

 )=td(  
 )=td(  

 )=D1; 

Then the MLMS model is like in Fig. 15. 

The instantiation of the model L
2
 is represented by a 

functor :  Sets that maps each set of classes of the model 
L

2
 to a set of instances of the same type. 

Each instance of the model L
2
 is a configuration that the 

process can adopt as a state. 

If we now consider every instance of the model L
2
 an 

object and every natural transformation between these 
instances as an arrow we get a category that we call the CIT 
category, that is, the category of instances and natural 
transformations of the model L

2
. 

The CIT category offers the contextual routes of evolution 
of a process model and represents the possible interactions 
between the process and its environment. It is often possible to 
analyze the dynamics of a process only through the transitions 
offered by the CIT category. But the execution of the model 
will be based on the reaction rules specific to each process in 
the context of admissible routes from the CIT category. The 
set of reaction rules determines a reaction relation between the 
admissible states that are represented by the instances of the 
model [11]. 

A process configuration is a state of the process and is 
characterized by the values of the attributes associated to each 
atomic element, as well as by its structure within the 
boundaries offered by the natural transformations that 
coincide with homomorphisms between the corresponding 
graphical models. Thus, the macrotransitions resulting from 
this combination represent the actual behavior of the system 
modeled in interaction with a given context [10,11,14]. 

If the configuration 𝕴' is obtained from the configuration 𝕴 
by applying the reaction rules of the model, then we say that 
between 𝕴 and 𝕴' there is a reaction relation from 𝕴 to 𝕴' 

which we denote by 𝕴𝕴'. If the application of the reaction 

rules is done in the context of a natural transformation  then 

we will denote this with 𝕴 


→  𝕴’. 

In this context, the execution of a process becomes a 
sequence of reaction rules in the context of natural 
transformations, a path in the CIT category. 

𝕴0 
 

→  𝕴1 
 

→  … 𝕴n 
 

→  … 

 

Fig. 16. Execution of a Model. 
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Of course that each model can support a set of different 
executions in different contexts. All these executions can be 

specified by functors that map the category  defined as 
follows: 

: 0 
 
→  1 

 
→  … k

 
→   … 

In the CIT category. Each corresponding functor 

:CIT orders a set of model configurations over time and 
is defined as follows (Fig. 16) 

 (i)= 𝕴i for all i0;  (i)= 
i
 for all i0 

Example 4. In example 1 the state of an instance is given 
by the values of the attributes representing the current 
quantities in input buffers Xi (entry stations), output buffers 
XO (exit station), faulty components buffer Xd, and 
respectively in the input and output buffers of every 
assembling and testing stations Xw and Xt. Natural 
transformations between model instances are represented by 
macro-transitions triggered by the state of each instance. The 
trigger rules are specific to each concept. A transport action, 
represented by the arcs of the model, is performed if at the 
source buffer there are at least as many parts as the transport 
capacity and in the exit buffer there is enough storage space. 
An assembly action triggers if all the required parts are in the 
input buffer and there is storage capacity in the output buffer. 
A test action is triggered if there are necessary parts in the 
entry buffer, and there is storage capacity in the output buffer. 

In order to optimize the workflow, execution time 
proportional to real time was included for each action. 

The MLMS metamodel was implemented in MM-DSL 
then translated and executed in ADOxx. Also, to demonstrate 
the concept, we also implemented the PN grammar. 

VI. CONCLUSION 

In this paper we presented a new approach based on the 
category theory in specifying metamodels. The visual 
specification of the model facilitates the involvement of 
specific field experts in the metamodel specification and 
validation process. 

There is a natural link between process models and 
category theory. The category theory provides a representation 
of a metamodel as a mathematical object, a sketch, and a model 
as a functor that is also a mathematical object, thus simplifying 
the way to think of a process model. In this way, all theoretical 
results in the category theory can help solve some classic 
problems in modeling processes. 

A modeling tool is more than a programming language, it 
can be understood as a modeling method [1]. A modeling tool 
usually contains a visual language and a set of mechanisms 
and algorithms. 

In the categorical model from this paper the grammar of 
the language is specified by a categorical sketch. Mechanisms 
and algorithms represented by natural transformations. 
Universal constructions in the category theory allow for the 
implementation of mechanisms and algorithms with a high 
degree of generality at the level of the metamodels. 

It is not too hard to see that defining models as functors 
creates a framework for addressing model migration issues 
and multi-paradigm modeling. We will address these issues in 
future papers. 

The CIT category represents the admissible routes of any 
process at the metamodel level. Of course these routes are 
then conditioned and thus validated or invalidated by the 
execution rules of each model. 

The natural transformations from the CIT category are 
objects that also have a certain state and can therefore 
aggregate information about process progress over time, 
execution frequency of each activity, execution times, costs, 
etc. Also, these objects can be endowed with artificial 
intelligence to make decisions and learn the best performing 
routes in relation to various criteria. All these features can be 
implemented at the metamodel level. 
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