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Abstract—In this paper, a new approach is presented based 

on ant colony algorithm with time windows in order to optimize 

daily activity chains with flexible mobility solutions. This 

flexibility is realized by temporal and spatial change of activities 

achieved by travellers during one day. With the injection of 

flexibility concept of time and locations, the requirements for 

such a transport system are high. However, our method has 

shown promising results by decreasing 10 to 20% the total travel 

time of travellers based on combining and comparing different 

transport modes including the private transport as well as the 

public transport and by choosing the optimal set of activities 
using our method. 
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I. INTRODUCTION 

When planning daily travels, recent geospatial information 
systems support travellers to schedule their activities. 
However, these systems do not consider multiple aspects 
related to the preferences of the users and constraints of the 
activity locations (e.g. opening hours, duration needed, …) 
that travellers find useful or interesting. Travellers tend to 
combine the use of private and public transport services with 
the purpose to capitalize on the strengths of the various 
systems while avoiding their weaknesses. These combinations 
need to take up the challenges related to the inherent 
complexity of urban transportation networks as well as the 
range of dynamic elements [1] implicated in such systems. 
Furthermore, the high growth of web based applications and 
its user base have become source for large volume of data 
available online which may be helpful to generate some 
service suggestions in real time for users by collecting their 
interests, locations and preferences. Meanwhile, the growing 
of mobility demands and the need for cheaper and less 
intrusive ways to collect activity based travel diaries have 
defined new and innovative directions of transportation 
research which aim is to decrease the journey time and 
distance of travellers, to improve the quality and efficiency of 
transportation services and to optimize all aspects of 
transportation planning process in an automated and 
intelligent way [2-5]. 

Travel behaviour can be seen from another perspective by 
considering some parameters that affect greatly the trip 
characteristics as efficient tools of reducing travel distance, 
travel time and mobility needs of citizens and by the same to 
feed the activity-based models. We can distinguish generally 
three main parameters: 1) transport and land use policies [6], 
2) spatial development patterns [7], and 3) socio-economic 
and demographic factors [8]. This can be realized by 
implementing intelligent activity planning methods, especially 
the organization of daily activity chains. For example, in [9], 
authors have shown the effects of several life-cycle events on 
the changes in time allocation in activities and associated 
travel. Other researchers [10] have presented the development 
of a mobility assistance system, which gathers information 
from timetables and real time information systems in public 
transportation. This system is connected to mobility services 
like car sharing, knows the users schedule and only presents 
relevant information for the ongoing situation. It supports the 
user’s travel behaviour by providing information on mode, 
route or alternative starting times of trips. In [11], 
characteristics and limits of the methods used by current trip 
planners for path generation were presented. According to 
authors, experiments confirm that the use of individual, 
instead of average (group), utility path functions improve the 
path advice performance. 

More recently, some authors have paid more attention to 
the organization of daily activity chain using the agent-based 
simulation in order to introduce individual decision making, 
flexible interaction between agents and multi-level modelling 
and simulation. For example, in [12], researchers have 
presented a simulation toolkit MATSIM to capture the 
patterns of people’s activity scheduling and participation 
behaviour in order to optimize the locations of secondary 
activities like shopping and leisure. Travel time and costs are 
evaluated in this work using a fitness function and optimized 
by means of genetic algorithms. In [13], the authors proposed 
a model for an intelligent agent for adapting daily activity 
schedule with respect to external events, by introducing the 
necessity of flexible human decision making for producing 
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realistic daily plans. Other works in the same field can be 
found in [14-16]. 

The purpose of this paper is to propose an application of 
the ant colony optimization meta-heuristic algorithm in order 
to resolve the traveling salesman problem with time windows 
by finding the minimum cost tour in which all point of 
interests are visited only once within the time windows 
required, involving the constraint of flexibility in time and 
space. Based on these, this paper is organized as follows: 
Section II presents a state of art of the main concepts proposed 
by researchers to solve the daily activity chain problem, in 
addition to the both concepts used in our model, traveling 
salesman problem and the ant colony algorithm. Section III 
details the proposed approach and describes the developed 
algorithm. Section IV shows the data used in our model and 
the experimental results. Concluding remarks are given in 
Section V. 

II. TRAVELING SALESMAN PROBLEM 

The traveling salesman problem (TSP) is one of the most 
intensively studied problems in optimization. It’s a N-P hard 
algorithmic problem [17] which consists on a salesman who 
wishes to find the shortest path between a set of points or 
locations that all of them must be visited with the challenge of 
finding the minimum total distance (i.e. cost, time, …) 
travelled. The salesman is supposed to visit each city only 
once, by starting from a certain location (e.g. hometown) and 
returning to the same place. The TSP can be represented by a 
complete weighted graph G= (V, E) with V being the set of n 
nodes (locations of activities) and E being the set of edges 
linking the nodes in the graph G.  Thus, each edge E is 

associated with a given weight Dij which represents the 
distance between cities i and j. In symmetric TSP, it may be 
important to emphasize that the distances between towns/cities 
are the same and independent of the direction of traversing the 
edges, which mean that Dij=Dji for every pair of nodes 
forming an undirected graph. However, in the asymmetric 
TSP, distances may be different in both directions, due to one-
way or other reasons, forming a directed graph. Hence, the 
TSP can be formulated as the following formulation: 

We consider a graph as defined in this section, let: 

V: set of nodes,    ,       and   i,j = 1,..., n 

We assume that the following data is available: 

ijd :   distance (weight) of arc from node i to node j 

We can label the activity locations with numbers 1,…,n 
and define: 

    {
                                                   
                                    

 

Then we can define the TSP problem as: 

   ∑ ∑                              (1) 

Subject to the constraints: 

∑                        (2) 

∑                       (3) 

TABLE I. TSP 

Method    Works 

Ant colony optimization [18,19] 

Genetic algorithms [20,21] 

Neural networks [22,23] 

Memetic algorithm [24,25] 

The objective function (1) minimizes the total cost of all 
travels. Constraint (2) describes that only one activity location 
can be visited at each step of the day. Constraint (3) stipulates 
that every node is visited one and only one time during all the 
circuit. 

Recently, many different approaches have been applied for 
solving the TSP. Table 1 shows the main methods used by 
researchers in order to solve the TSP. 

III. ANT COLONY OPTIMIZATION 

Ant Colony Optimization (ACO) is a population-based 
metaheuristic which was introduced in the early 1990s by 
Marco Dorigo and colleagues as a new technique for solving 
hard combinatorial problems [26]. The development of this 
algorithm was inspired by the behaviour of real ants which 
utilizes the pheromone communication medium, known as 
stigmergy, to search for the best path between the nest and a 
source of food. It’s known as an indirect way to communicate 
through a chemical substance which is evaporative and 
accumulative. The representation of the ACO meta-heuristic 
in pseudo-code is as follows: 

Procedure ACO_Metaheuristic 

              Initialization 

  While (not_termination) 

generateSolutions () 

daemonActions ()  

pheromoneUpdate() 

                end while 
end procedure  

At the initialization step, all dij which represent the 
euclidean distance between an activity location I and J are 
initialized to a constant value τ0. After that, each ant presents 
a solution for the problem asynchronously and concurrently 
via the generateSolutions function by moving on the graph 
through adjacent intersections and by building paths. Thus, at 
each iteration i of the algorithm, each ant applies a local 
decision of its current state proportional to the quality of the 
solution represented. The probability for an ant K at an 
activity location I to choose to move to J is by applying the 
following probabilistic transition rule: 

{
   
 ( )   

(   ( )
 )(   )

 

∑ (   ( ))
 
(   )

 
   

           ( )

                                                                 

 

where     is the heuristic visibility of edge (i, j) which 

equals to 1/   , where     is the distance between an activity 

location i and j. V is a set of cities which remain to be visited 
when the ant is at an activity location i. α and β are are two 
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adjustable positive parameters that control the relative weights 
of the pheromone trail and of the heuristic visibility. 

The ants tend generally to choose the shorter path with a 
higher probability on which the pheromone trail increase 
faster and have a greater amount of pheromone than the longer 
one. However, some ants can choose the longer path with a 
lower probability. This concept which make the algorithm 
avoid a local optimum, and always search and try some 
different feasible solutions. At the end of each iteration, the 
total travelling time is reduced by minimizing the objective 
function: 

  ( )   ∑∑   

 

 

 

 

 

After all ants have built their tours, and the objective 
function is evaluated, the pheromone is updated on all arcs as 
the following rule: 

      ( )    (1-  ).    ( )        

Where, τij (t) is the quantity of pheromone at time t on the 
arc (i, j); ρ is a parameter controlling pheromone decay such 
that 0 < ρ < 1; and τ0 is the initial value of pheromone on all 
arcs. 

After all ants have finished their tour, the pheromone 
evaporation process starts on all arcs. Each ant k deposits a 

quantity of pheromone ∆    
  (t) on each arc by the following 

rule: 

∆    
  (t)  =  {

 

  ( )
        (   )        ( )

                         
 

Where     ( ) is the tour completed by an ant k at iteration 
t, and L(t) is its length. The evaporation process has the 
advantage of delaying and avoiding the convergence towards a 
locally optimal solution. This process makes the algorithm 
able to explore different paths during the search process. 

A. Use of ACO in Solving TSP with Time Windows 

The traveling salesman problem with time windows 
(TSPTW) is the problem of finding a minimum cost path that 
visits each of a set of destinations exactly once, where each 
activity location must be visited within a given time window, 
considering the duration needed to perform the activities that 
the traveller may find useful or interesting. The main purpose 
of TSPTW is to minimize the sum of travel time on the path 
suggested. Many constraints are required in a TSPTW 
problem which can be formulated as: 

(        )                  (i,j), 

where       {0, 1} is a decision variable with a value of 1 

if arc (i, j) is visited and 0 otherwise;    = max{  ,   }, with 
   indicating the time the agent arrives at node i;    indicates 
the time point at which the agent can start to serve the node i; 
and    is the service time at node i. 

In this study, we developed our algorithm with two main 
objectives g, h. One is to respect the time window for all steps 
of the travel by avoiding to violate the deadlines. The other is 

to minimize the tour duration. For this purpose, we consider a 
new transition rule based on the Equation II represented as:  

{
   
 ( )   

(   ( )
 )(   )

 
(   )

 

∑ (   ( ))
 
(   )

 
(   )

 
   ( )

           ( )

                                                                 

 

Where       are controlled parameters set respectively by 

realizing many tests to define their value.     presents the 

constraint that an ant should visit the node with an arrival time 
closer to its upper time-window constraint, in order to avoid 

the lateness. However,     represents the amount of the 

waiting time at a node j where the ant wants to visit. The 
pheromone is then updated as follows: 

Procedure ACS-TSPTW 

/*Initialisation*/ 

       Set BestCost := ∞;  

       Set τij := τ0; for all (i,j)  

       Set all ant at the depot 

       Set for all (i,j)  τij (t) = 0  

 

/*Iterative loop*/ 

For every ant k=1 to m  *                     +                          
 

/*Construct a Solution*/ 

          Compute local heuristics         

          Choose the node j to move to based on the probability(I) 

          Delete j from the next destinations 
          Cost := Cost of the current solution;     

    If (Cost < BestCost)  

   BestCost := Cost;  

               BestSol := current solution;  

        EndIf  

    EndFor     

 

/*Local pheromone updating*/  

   For each move (i, j) in solution BestSol  

              Update the trail level τij (III);  

    EndFor  
 

/*Evaluation*/     

If the stop criterion is met then stop, otherwise go to (1) 

   
Where, BestCost is the entire travel time of solution 

BestSol which refer to the best tour computed by an ant k. The 
process is repeated by starting again with all ants until the stop 
criterion is met. 

IV. EXPERIMENTAL RESULTS AND DISCUSSION 

In this section, we present the numerical results obtained 
by our method. First, the data used in our model is described. 
Then ACO-TSPTW settings and results are discussed. 

A. External Database 

In this study, the Budapest Maps is downloaded for an 
offline use in our local storage. Different information were 
collected (i.e. longitude, altitude, type, description, opening 
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and closing time) from several databases (i.e. Google Maps, 
POI services, OSM, …) for the functioning of the system. All 
this data is summarized in a central database. For each task the 
processing time required is provided to achieve it. Table 2 
shows an example of a daily activity chain used in our 
approach. 

In addition, the Google API is used to get the directions 
between locations. It receives a direction request and returns 
the whole path. The travel time is the main parameter to be 
optimized, but other parameters such as distance, number of 
turns are also taken into account. It provides 2500 free 
requests per day, computed as the total of client-side and 
server-side queries. When using Google API, we needed to 
specify the transportation mode to use. The following travel 
modes are all supported [27]: 

 DRIVING (Default) indicates standard driving 
directions using the road network. 

 BICYCLING requests bicycling directions via bicycle 
paths   & preferred streets. 

 TRANSIT requests directions via public transit routes. 

 WALKING requests walking directions via pedestrian 
paths & sidewalks. 

B. Design of Experiment 

Our ACO-TSPTW metaheuristic framework was 
implemented in Matlab and all runs were taken on a PC (3,2 
GHz CPU and 1G RAM). We tested our approach up to 50 
time in order to reach the best configuration possible for our 
settings. After many trials, the optimum combination of  
parameters was found is as follows: number of iteration is 
100, number of ants is 25,   is 0.1,         ,   is 0.85, 
          . We tried to get the fewest number of ants and 
iterations. These factors impact directly the solution quality 
and the CPU time which represent an important means of 
measuring the performance of the algorithm. 

C. Simulation Results 

The simulations are implemented based on two main 
scenarios. The first one is the basic one where only the fix 
schedule with fix activities in time and space is considered. 
However, the second one introduces the flexibility concept in 
time and space. For this purpose, we affect label 1,2,3 or 4 to 
each task as seen in Table 3, in order to define the fixed and 
flexible activity locations. 

After running our algorithm many times, Fig. 1 reports the 
relativity time needed to perform a whole of a same daily 
activity chain. We can distinguish that flexibility in time or 
space can reduce the time needed to visit all activity locations 
by around 15% less than the fix schedule. Thus, the combined 
mode using an ideal version of free floating car-sharing (i.e. 
an available car reachable within 5 minutes walking) and 
public transport at the same day is always the optimum 
solution. However, the processing time to achieve these results 

reveals that the combined mode is extremely higher than the 
other modes as seen in Table 4. 

Table 4 shows the results of our ACO-TSPTW using the 
different data sets in order to evaluate the robustness of our 
algorithm. The average of the total travel time of 5 
replications is summarized with the CPU time required for 
each instance. In addition to, we represent a caption of our 
framework results in Fig. 2. 

TABLE II. DAILY ACTIVITY CHAIN EXAMPLE 

Point 

of 

interest 

Latitude Longitude 
Opening  

time 

Closing 

time 
Duration 

Sports 

Center 

47.47976 

 
19.057713 

 

06 :00 :00 23 :00 :00 45 min 

Hair-

dresser 

47.483183 

 
19.053911 

 

09 :00 :00 20 :00 :00 20 min 

School 
47.478556 

 
19.056560 

 

07 :00 :00 19 :00 :00 360 min 

Mall 
47.436183 

 
19.041442 

 

09 :30 :00 20 :30 :00 60 min 

Pub 
47.47914 

 
19.08833 

 

16 :30 :00 02 :00 :00 120 min 

Home 
47.433035 

 
19.075762    

TABLE III. FLEXIBILITY LABELS 

Label Flexibility 

0 None 

1 Space 

2 Time 

3 Space and time 

 
Fig 1. Comparison Simulation Results. 
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TABLE IV. PERFORMANCE COMPARISON OF OUR SIMULATION RESULTS 

Problem 

instances 

CAR Public Transport Combined 

Fix Flexible Fix Flexible Fix Flexible 

 CPU Average CPU Average CPU Average CPU Average CPU Average CPU Average 

R101 24s 93min 62s 82min 22s 112min 60s 102min 45s 75min 92s 70min 

R102 21s 79min 55s 56min 18s 88min 62s 80min 42s 73min 102s 68min 

R103 31s 83min 70s 72min 17s 92min 55s 81min 47s 78min 110s 65min 

R104 21s 102min 68s 93min 19s 90min 67s 86min 41s 63min 104s 59min 

R105 25s 89min 63s 70min 22s 88min 70s 75min 38s 65min 120s 55min 

R106 26s 90min 83s 81min 20s 96min 72s 87min 41s 68min 107s 62min 

 
Fig 2. Daily Activity Chain Example using a Car. 

D. Discussion 

This study focuses on the comparison of the Ant colony 
algorithm performances when solving the complex activity 
chain problem with the inclusion of flexibility in time and 
space. From our experiments, we realized that the flexibility 
concept decreases around 10% to 20% the total time needed to 
perform a whole of a daily activity chain in all cases. In 
addition to, the combined mode can be considered much faster 
than the others, but it requires more processing time by around 
100% to 400% than the car and the public transport modes. 
However, these results don’t depend only on the time and 
location of activities, but it can also depend on some other 
parameters (i.e. weather, peak hours, the cities size, …) that 
can change from a city to another one and can enormously 
impact the total travel time needed, although the processing 
time will dramatically increase. 

V. CONCLUSION 

The aim of this study is to present a new daily activity 
chain approach based on ant colony algorithm with time 
windows. The new concept of flexibility in time and space is 
introduced, which considerably decreases the total travel time 
by 10 to 20%. However, the CPU time needed to perform the 

introduction of flexibility concept has increased dramatically 
but remains reasonable and manageable. Regarding the 
obtained results, working on an online mode can be really 
interesting and innovative. Improvements of these first results 
are in progress. 
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