
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 1, 2019

An Efficient Algorithm for Enumerating all Minimal
Paths of a Graph

Khalid Housni
MISC Laboratory

Department of Computer Sciences
Faculty of Sciences, Ibn Tofail University

University Campus, BP 133 Kenitra, 14000, Morocco

Abstract—The enumeration of all minimal paths between
a terminal pair of a given graph is widely used in a lot of
applications such as network reliability assessment. In this paper,
we present a new and efficient algorithm to generate all minimal
paths in a graph G(V, E). The algorithm proposed builds the
set of minimal paths gradually, starting from the source node
s. We present two versions of our algorithm; the first version
determines all feasible paths between a pair of terminals in a
directed graph without cycle, and this version runs in linear
time O(|V | + |E|). The second version determines all minimal
paths in a general graph (directed and undirected graph). In
order to show the process and the effectiveness of our method,
an illustrative example is presented for each case.

Keywords—Minimal path; network reliability; linked path struc-
ture; recursive algorithm

I. INTRODUCTION

The evaluation of the reliability of a system that can be
modeled as a network can be made in terms of either minimal
cuts (MCs) or minimal paths (MPs) [1], [2], [3], [4], [5], [6],
[7], [8], [9], [10]. In [11], [10], [12], [13], [14] it was shown
that the set of all minimal paths can be used for generating all
the minimal cut-sets of a graph and vice-versa.

The use of MPs and MCs for reliability assessment is well
documented in [15], [16], and for details on the use of MPs
and MCs in reliability evaluation, we refer to these papers.
In this paper, we especially focused on determination of all
minimal paths in graph. In the literature, there exists several
algorithms related to minimal paths’ problem [1], [5], [10],
[17], [18], [19], [20], [21], [9].

In [17], Al-Ghanim presents, to generate all minimal paths,
an algorithm based on heuristic programming. The algorithm
proposed produces redundant paths, and to remove them, the
author uses an extensive comparison. Al-Ghanim’s algorithm
has been improved by Yeh [18] through eliminating the pos-
sibility of generating duplicate MPs. The last two approaches,
[17] and [18], and others like[22], [19], belong to the category
of search algorithms based on augmentation. The general
principle of these approaches consists of adding arc by arc,
starting from the source until completing the target network.
After each increase, the MPs thus constructed are collected.

Another family of algorithms for MPs enumeration is
called, according to Chen [21], direct search-based algorithms
[21], [23], [24], [25], [20], [10]. These methods are based on
depth-first search (DFS). In [10], Shen introduced an algo-
rithm to enumerate all minimal paths between specified single

terminal pair of arbitrary graphs. The proposed algorithm
is based on elementary concept of graph theory and dual
principle. To improve Shen’s algorithm, Kobayashi [20] adds
some additional processes based on the level set of nodes. In
[21], Chen uses a backtracking process to generate all MPs.
Backtracking is a family of algorithms that consists of going
back on decisions made to get out of a deadlock. This process,
which is a characteristic of the descriptive software languages,
makes it possible to abandon each partial candidate which
cannot lead to a valid solution. Bai further improved Chen’s
algorithm by adding conditions for backtracking to reduce the
number of search branches [9]. To the author’s Knowledge,
currently, Bai, Tian, and Zuo’s algorithm [9] is the best known
DFS algorithm.

In this work, we present a new method to enumerate
all minimal paths in an oriented graph with no cycles. We
also give a more general algorithm which determines all the
minimal paths of a general graph.

This paper is organized as follows: In the next section we
present the basic definitions and terminology. In Section 3,
we introduce a new algorithm to find all minimal paths in an
oriented graph with no cycle. For this, we will, first, introduce
a directed graph reduction algorithm to eliminate nodes that
cannot appear in the set of minimal paths. In Section 4, we
introduce the enumeration algorithm of all minimal paths in
a general graph (oriented or not). For that, we will, first,
introduce an algorithm for the reduction of undirected graphs
allowing the elimination of the nodes which cannot appear
in any path of the set of minimal paths. In Section 5, we
provide an analysis of the complexity of our algorithms. We
also present a comparative study of our method with the recent
method developed in 2016 by Bai [9]. In Section 6, we present
all the tests we made and the results obtained. We also compare
our work to recent works. An extension to the multi-terminal
case is presented in Section 7. Finally, we will conclude with
some suggestions for future research in the field of minimal
paths’ enumeration.

II. NOTATION AND NOMENCLATURE

A. Graph Representation

There are two classical ways to represent a garph: an
adjacency matrix, or a set of adjacency lists. The choice of the
type of representation depends on the operations performed on
this structure:

www.ijacsa.thesai.org 450 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 1, 2019

Fig. 1. Example of networks indexed by nodes: (a) undirected network and its oriented representation (b).(c) reduction result of the graph b. (d) Oriented
network without cycle. (e) reduction result of the graph d.

• for the representation by the adjacency matrix, the
verification of the existence of an arc between two
given vertices is in O(1), whereas the search for the
neighbors of a given vertex is in O(n).

• for the representation by the adjacency list, the ver-
ification of the existence of an arc between two
given vertices is in O(n), whereas the search for the
neighbors of a given vertex is in O(1).

In our case, we have opted for the adjacency list represen-
tation because the most common operation is the traversal of
the list of neighbors. The graph (a) of Fig. 1 and its oriented
representation (b) will be represented by the following list: L
={(1, 2, 3), (0, 2, 3, 4, 5), (0, 1, 5), (0, 1), (1, 5, 6), (1, 2,
4, 6), (4, 5)}. L[0]=(1, 2, 3) is outgoing nodes list of node 0.
L[1]= (0, 2, 3, 4, 5) is outgoing nodes list of node 1, etc.

In this paper, we opted for using the oriented representation
of the graphs. Thus, in the case of an undirected graph, it
is necessary to convert the non-oriented edges into oriented
edges. For this, we used the traditional Hagstrom technique
that involves replacing each undirected edge by two directed
edges with the opposite direction [26].

B. Notations

Let G= (V, E) be a graph with n = |V | vertices and
m = |E| edges. One refers to source vertex by s and to
sink vertex by t. For a vertex v∈V, we denote by Γ(v),
the set of all vertices in V that are adjacent to v. In the
case of directed graph, for any vertex v∈V, the incoming
neighborhood (also called predecessors) of v is defined as
Γ−(v) = {u ∈ V/(u, v) ∈ E} and the outgoing neighborhood
(also called successors) of v is defined as Γ+(v) = {u ∈
V/(v, u) ∈ E}. We denote by Γ+∗(v) = {u ∈ Γ+(v)/∀x ∈
Γ−(u), State[x] =′ examined′} all the outgoing neighbors
of which all the incoming neighborhood are already processed.
One refers to the set of all incoming neighbors who are already
processed by Γ−∗ and by Γ+nt the set of outgoing neighbors
who are not yet processed. G/u is the vertex-induced sub graph
G(V \{v}, E′) for v∈V where E’={(p,q)∈E / p 6=v and q 6=v}.
Likewise, for edge e∈E, G/e= (V, E\{e}) is the edge-induced
sub graph. We refer to a path π=(al→a2→a3 ... →ak) by its
natural sequence of vertices (al ,a2, a3, ... , ak) such that any
two consecutive vertices xi and xi + 1 are connected by an arc
of G: ∀i , 0 ≤ i ≤ n − 1 , (xi , xi+1) ∈ E. A path
π from s to t is denoted by st-path. We noted by Pst the set
of all st-minimal paths in G. A node or edge is called invalid

if and only if it cannot appear in any path in the Pst set. An
active node is defined as any processed node having at least
one of its outgoing neighbors not yet processed.

A path π in G is called minimal if no vertex occurs more
than once (also called elementary path). In a directed graph
without cycle, all paths are minimal paths. A path can have a
single vertex and be of length 0.

C. Functions and Abbreviations

In this sub-section, we describe the functions used in our
algorithms:
push: this function adds an item to a collection.
pop: this function returns and removes an item from a stack.
AMG: this function extends a path to other nodes.
LsOC: Lines of Code.
LOC: Line of Code.

III. ENUMERATING ALL MINIMAL PATHS IN AN
ORIENTED GRAPH WITH NO CYCLES

In this section, we introduce a new minimal path enumer-
ation algorithm in a directed graph with no cycles. First, we
will introduce a graph reduction algorithm to remove edges
and nodes that cannot appear in the paths of the set of minimal
paths Pst. The aim of this operation is to reduce the execution
time that is in O(|V |+ |E|) while eliminating the invalid arcs
and nodes. In a second step, we will give our algorithm for
enumeration of minimal paths.

A. Graph Reduction

We call reduction of the graph, the operation of of remov-
ing, from the graph, all nodes and arcs that can not appear in
any path in the minimum path set Pst.

In the next two sub-sections, we detail the different steps
which will enable us to reduce the graph. Thereafter, the
complete algorithm is given in algorithm1.

1) Delete Edges from a Graph: At the beginning, we
remove all incoming arcs to the source s, {(x, s) ∈ E},
because the starting node is s and the searched paths are
minimal paths, so no arc in the set {(x, s) ∈ E} cannot
be appeared in the paths of Ps,t (a path cannot contain the
node s twice). The same applies to the arcs {(t, y) ∈ E}
because the destination node is t.

www.ijacsa.thesai.org 451 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 1, 2019

2) Delete Vertices from a Graph: All nodes in the set V \
{s, t} cannot be starting nodes, because all paths in the set Pst
start from s. Similarly, these nodes cannot be destination nodes.
From this remark, all the nodes of V \ {s, t} must have the
following two characteristics: {x ∈ V \{s}/ card(Γ−(x)) 6=
0} and {x ∈ V \{t}/ card(Γ+(y)) 6= 0}. Consequently the
nodes of V\{s, t} whose {x ∈ V \ {s} / card (Γ− (x)) =
0} or {x ∈ V \ {t} / card (Γ+ (x)) = 0} cannot be
intermediate nodes between s and t and should be deleted.

Note: When a node is deleted, the arcs linking this node
to the graph will also be deleted. So we have G\v =
G(V \{v}, E′) where E′ = {(p, q) ∈ E / p 6= v and q 6=
v}.

After each deletion of a node, the nodes’ validity testing
process will be iterated on these predecessors in the case of
the nodes’ checking {x ∈ V \ {t} / card (Γ+ (y)) =
0}, and on the successors for the nodes checking {x ∈
V \ {s} / card (Γ− (x)) = 0}.

Algorithm 1 Oriented graph reduction(G, s, t)

1: for all y ∈ Γ−(s) do
2: E ← E\(y, s)
3: end for
4: for all y ∈ Γ+(t) do
5: E ← E\(t, y)
6: end for
7: for all x ∈ V \{s} do
8: if card(Γ−(x)) = 0 then
9: To delete← To delete ∪ x

10: end if
11: end for
12: while To delete is not empty do
13: x← element fromTo delete
14: To delete← To delete− {x}
15: for all y ∈ Γ+(x) do
16: if card(Γ−(x)) = 1 then
17: To delete← To delete ∪ {x}
18: end if
19: end for
20: G← G\x
21: end while
22: for all x ∈ V \{t} do
23: if card(Γ+(x)) = 0 then
24: To delete← To delete ∪ x
25: end if
26: end for
27: while To delete is not empty do
28: x← element fromTo delete
29: To delete← To delete− {x}
30: for all y ∈ Γ−(x) do
31: if card(Γ+(x)) = 1 then
32: To delete← To delete ∪ {x}
33: end if
34: end for
35: G← G\x
36: end while

3) Illustration on an Example: Consider a graph shown in
Fig. 1(d) where the source node s=3 and sink node t=16.

Delete edges
LsOC 1,2 and 3: the arc (0,3) will be removed.
LsOC 4,5 and 6: the arcs (16,14) and (16,18) will be removed.
Delete vertices
LsOC 7, 8, 9, 10 and 11: these LsOC initialize the stack of
vertices to be deleted by all vertices that have card(Γ−) = 0,
in our case by 0, 18.
LsOC from 12 to 21: this loop treats the nodes of the stack
of vertices to delete as follows:

• a node is retired from the stack; it is noted by x.

• any element y of Γ+(x) whose card(Γ−(y)) = 1 is
added to the stack.

• delete vertices x from a graph.

Table I below gives the various iterations of the loop. A
line represents one iteration of the loop. Column 1 shows
the contents of the ’To delete’ stack at the beginning of the
loop. Column 2 shows the element removed from the stack.
Column 3 shows the nodes to be added to the stack of nodes
to be removed. The content of the stack after the addition
of these nodes is given in column 4. Column 5 shows the
accumulation of the deleted nodes. Deleting a node implies
deleting all the arcs connect to that node. Column 6 shows
the accumulation of deleted arcs.

LsOC from 22 to 26: these LsOC initializes the stack of
vertices to delete by all vertices that have card(Γ+(x)) = 0,
in our case by {20}.

LsOC 27 to 36: these LsOC treats the nodes of the stack of
vertices to delete. Table II below presents the various iterations
of the loop.

The result of the reduction process is shown in Figure 1.e.

B. The Enumeration of all Minimal Paths in Directed Graph
without Cycle

1) The principle of the algorithm: Starting from the fact
that the minimal paths linking a source node s to another node
x can be obtained from the lists of minimal paths linking s
to the predecessors of x by applying a simple increase of the
paths eq. 1, the main idea of our method is to build, little
by little, all minimal paths Pst. The algorithm starts with an
initialization of Pss by the set {(s)}. Afterwards, the algorithm
constructs all the possible paths of the outgoing neighbors of s
who’s all the predecessors are already processed. Let’s note by
Γ+∗ all the outgoing neighbors of which all the predecessors
are already processed. The process is thus repeated passing
each time to the outgoing neighbors whose predecessors are
already processed until the processing of node t.

PSX =
⋃
Y ∈Γ−(X)

⋃
π∈PSY

AGM(π, x) (1)

The construction of the possible paths for a node x from the
paths of its predecessors is made by a simple increase of these
paths (eq.2).

PSX = {AGM(π, x) for each π ∈ PSY
for each y in Γ−(X)} (2)

www.ijacsa.thesai.org 452 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 1, 2019

TABLE I. ILLUSTRATION OF THE GRAPH REDUCTION ALGORITHM (ALGORITHM 1). LINES OF CODE BETWEEN 12 AND 21.

Stack of vertices
to delete

The current
element

Vertices to add
to to delete

Stack of vertices
to delete

Accumulation of
deleted nodes

Accumulation of deleted arcs

{0, 18} 0 2 {2, 18} 0 (0,3)
{2, 18} 2 12 {12, 18} {0, 2} (2,4), (2,12), (0,3)
{12, 18} 12 - {18} {0, 2, 12} (12,11), (12,15), (2,4), (2,12), (0,3)

18 18 - {∅ } {0, 2, 12, 18} (18,17), (18,19), (12,11), (12,15), (2,4), (2,12), (0,3)

TABLE II. ILLUSTRATION OF THE GRAPH REDUCTION ALGORITHM (ALGORITHM 1). CODE LINES BETWEEN 27 AND 36.

Stack of vertices
to delete

The current
element

Vertices to add
to to delete

Stack of vertices
to delete

Accumulation of
deleted nodes

Accumulation of deleted arcs

{20} 20 15,19 {15,19} 20 (15,20), (17,20), (19,20)
{15, 19} 15 - {19} {15, 20} (17,15), (15,20), (17,20), (19,20)
{19} 19 17 {17} 19,15,20 (17,19), (17,15), (15,20), (17,20), (19,20)
{17} 17 14 {14} 17,19,15,20 (14,17), (17,19), (17,15), (15,20), (17,20), (19,20)
{14} 14 11 {11} 14,17,19,15,20 (16,14), (11,14), (14,17), (17,19), (17,15), (15,20), (17,20), (19,20)
{11} 11 - {∅ } 11,14,17,19,15,20 (4,11), (16,14), (11,14), (14,17), (17,19), (17,15), (15,20), (17,20), (19,20)

AGM is defined as follows:

if π = (x1 → x2 . . . xn) then
AGM(π, y) = (x1 → x2 . . . xn → y)

(3)

2) The proof of correction and termination: The graph is
without any cycle, which implies ∃ x ∈ V / Γ−(x) = 0.
Knowing that the graph is reduced then:
card({ x ∈ V / Γ− (x) = 0}) = card({s}) = 1.
The graph is without any cycle so the vertex-induced subgraph
G\s is also without cycle; this implies ∃y ∈ G\s such that
Γ−(y) = 0 and card({ y ∈ V \s / Γ−(y) = 0}) >= 1. Since
Γ− (y) 6= 0 in G so y ∈ Γ+ (s) (Γ−(y) = 0 is the result
of the deletion of s from G). Thus the nodes of the graph will
be explored from the source s until the last node of the graph
t whose Γ+(t) = 0.

The fact that the size of the graph is reduced from one
iteration to another, implies the termination of the algorithm.

To optimize the algorithm in terms of memory space, we
proceed as follows: let x be the current node (LOC 21: the
element extracted from To Treat) and let y ∈ Γ−∗(x). At
the level of LsOC 22 to 26, if the current node x is the last
node of the set Γ+(y) which is not yet processed, so we move
all the minimal paths of Psy , after having increased them, to
Psx. This decision is made because all these successors are
already processed, so Psy will never be used in the process of
building paths for nodes that have not yet been processed.

C. Illustration on an Example

Considering the reduced graph in Fig. 1(e) where the
source node s=3 and sink node t=16.

Firstly, we initialize the set Pss by {(s)}, in our case
P33 = {(3)} and the list of vertices to treats by all elements
of Γ+∗(s), in our case {1, 7}. Table III presents the various
iterations of the loop (iterations from 20 to 32);

• Column 1 shows the contents of the list To Treat at
the beginning of the loop.

• Column 2 shows the the node that is retrieved from
To Treat (LOC 21).

• Column 3 shows the sets Psx (LsOC from 22 to 26).

Algorithm 2 MPs DirectedGraph(G, s, t)

1: input data:
2: G=(V,E): a graph oriented without cycle;
3: s , t: node; // source and terminal node
4: local variables:
5: x,y: node;
6: To Treat: list of nodes;
7: Begin
8: Oriented graph reduction(G, s, t)
9: To Treat← {∅}

10: for all x ∈ V \{s} do
11: PSX ← ∅
12: State(x)← ”not reached”
13: end for
14: PSS ← {(s)}
15: State(s)← treated
16: for all x ∈ Γ+∗(s) do
17: push(x, To Treat)
18: State(x)← ”reached”
19: end for
20: while To Treat is not empty do
21: x← pop(To Treat);
22: for all y ∈ Γ−(x) do
23: for all π ∈ PSy do
24: Psx ← Psx ∪AGM(, π, x)
25: end for
26: end for
27: State(x)← ”examined”
28: for all y ∈ Γ+∗(x) and State(y) = ”not eached” do
29: push(y, To Treat)
30: State(y)← ”reached”
31: end for
32: end while

• Column 4 indicates the predecessors of the current
node that are not yet reached. These nodes will be
added to the To Treat set (LsOC from 28 to 31).

IV. MINIMAL PATHS ALGORITHM FOR GENERAL GRAPHS

The algorithm presented in the previous section cannot be
applied to graphs containing cycles, which also implies non-
oriented graphs. This is due to the fact that the condition
that a node must satisfy to be added to the list of nodes

www.ijacsa.thesai.org 453 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 1, 2019

TABLE III. ILLUSTRATION OF THE MPS DIRECTEDGRAPH ALGORITHM (ALGORITHM 2). CODE LINES BETWEEN 20 AND 32.

Contents of
To Treat

Current
node (x)

Psy/y ∈ Γ+(x) Paths set Vertices to add
to To TreatPsy to

duplicate
Psy to move

{1, 7} 1 P3,3 - P3,3={(3)}; P3,1={(3,1)} 4
{4, 7} 4 P3,1 P3,3={(3)}; P3,1={}; P3,4={(3,1,4)} 5
{5,7} 5 P3,4 P3,3={(3)}; P3,1={}; P3,4={}; P3,5={(3,1,4,5} -
{7} 7 P3,3 P3,3={}; P3,1={}; P3,4={}; P3,5={(3,1,4,5}, P3,7={(3,7)} 6
{6} 6 P3,5, P3,7 P3,3={}; P3,1={}; P3,4={}; P3,5={(3,1,4,5}; P3,7={(3,7)};

P3,6={(3,7,6),(3,1,4,5,6)}
8

{8} 8 P3,7, P3,6 P3,3={}; P3,1={}; P3,4={}; P3,5={(3,1,4,5)}; P3,7={}; P3,6={};
P3,8={(3,7,6,8),(3,1,4,5,6,8),(3,7,8)}

9

{9} 9 P3,8 P3,3={}; P3,1={}; P3,4={}; P3,5={(3,1,4,5)}; P3,7={}; P3,6={}; P3,8={};
P3,9={(3,7,6,8,9),(3,1,4,5,6,8,9),(3,7,8,9)}

10

{10} 10 P3,9 P3,5 P3,3={}; P3,1={}; P3,4={}; P3,5={}; P3,7={}; P3,6={} ; P3,8={};
P3,9={(3,7,6,8,9), (3,1,4,5,6,8,9), (3,7,8,9)}; P3,10={(3,1,4,5,10), (3,7,6,8,9,10),

(3,1,4,5,6,8,9,10), (3,7,8,9,10) }

13

{13} 13 P3,9, P3,10 P3,3={}; P3,1={}; P3,4={}; P3,5={}; P3,7={}; P3,6={}; P3,8={}; P3,9={};
P3,10={}; P3,13={(3,1,4,5,10,13), (3,7,6,8,9,10,13), (3,1,4,5,6,8,9,10,13), (3,7,8,9,10,13)

, (3,7,6,8,9,13), (3,1,4,5,6,8,9,13), (3,7,8,9,13) }

16

{16} 16 P3,13 P3,3={}; P3,1={}; P3,4={}; P3,5={}; P3,7={}; P3,6={}; P3,8={}; P3,9={} ;
P3,13={}, P3,16={(3,1,4,5,10,13,16), (3,7,6,8,9,10,13,16), (3,1,4,5,6,8,9,10,13,16),

(3,7,8,9,10,13,16) , (3,7,6,8,9,13,16), (3,1,4,5,6,8,9,13,16), (3,7,8,9,13,16) }

-

to be processed (the nodes whose predecessors are already
processed) is not necessarily verified at each iteration. To
overcome this problem, we propose to keep the same principle
in its general philosophy; that is, the construction of the set of
minimal paths between two given nodes s and t is done starting
from nodes s, then these neighbors, then the neighbors of the
neighbors, until the processing of the final node t. During the
process of treatment, we pass from a node to its successors
even that all their predecessors are not yet processed.
The problem: knowing that the construction of the set of
paths Psx for a given node x, is made from the sets of paths
of these predecessors, when creating Psx for a given node
x ∈ V \{s, t}, it is possible that there are nodes in Γ−(x) that
are not yet processed; therefore, Psx will not be complete (it
does not contain all minimal paths from s to x).
Suggestion: to complete the set of minimal paths of a node
x, we propose to update it as soon as we process a node that
belongs to Γ−(x). The details of update procedure are given
in the next section. It is a backtracking to update the already
processed nodes.

To optimize the memory space, we propose to adopt the
principle used in the algorithm introduced in the previous
section; if the current node x is the last node of the set Γ+(y)
which is not yet processed, then we move all the minimal paths
of Psy , after increasing them, to Psx, but for a given node x, if
all its successors are already processed, the set Psx will never
be displaced from this node to one of these successors (because
according to the hypothesis, they are already processed). To
illustrate this, consider the graph given in Fig. 1(c), if the
order of treatment of the nodes is 1, 2, 3, 4, 5 then 6, then the
set of minimal paths PS3 cannot be moved from PS3 to PS1

because node 1 is processed before 3. This implies a problem
of optimization of the memory space. To solve this problem,
at each iteration we will select from the set To Treat (LOC
21) the node that has the largest distance to t. The algorithm
we used for the determination of distances to the sink is given
in subsection 4.B.

A. Update Process

At the moment of processing a given node x, from LOC
22 to LOC 26, it is possible that there exist among its

Algorithm 3 MPs GeneralGraph(G, s, t)

1: input data:
2: G=(V,E): a graph oriented without cycle;
3: s , t: node; // source and terminal node
4: local variables:
5: x,y: node;
6: To Treat: list of nodes;
7: Begin
8: GeneralGraphReduction(G, s, t)
9: To Treat← {∅}

10: for all x ∈ V \{s} do
11: PSX ← ∅
12: State(x)← ”not reached”
13: end for
14: PSS ← {(s)}
15: State(s)← treated
16: for all x ∈ Γ+(s) do
17: push(x, To Treat)
18: State(x)← ”reached”
19: end for
20: while To Treat is not empty do
21: x ← pop(To Treat);// the element whose distance

from t is greater
22: for all y ∈ Γ−∗(x) do
23: for all π ∈ PSy do
24: Psx ← Psx ∪AGM(, π, x)
25: end for
26: end for
27: State(x)← ”examined”
28: for all y ∈ Γ+(x) and State(y) = ”not reached” do
29: push(y, To Treat)
30: State(y)← ”reached”
31: end for
32: for all y ∈ Γ+(x)and State(y) 6= ”not reached” do
33: update(y, x, card(Psx), {y}, {x})
34: end for
35: end while

predecessors nodes that are not yet reached. In this case, the
treatment of x will be made only based on the elements of
Γ−∗(x). The updating process is the operation that completes

www.ijacsa.thesai.org 454 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 1, 2019

all the minimal paths of a node x as soon as a node of
its predecessors has just been processed or updated. In the
worst case, the case where the graph is strongly connected,
the overall number of execution of the update process is equal
to 1+2+...+(|V |−2) = (|V |−3)(|V |−2)/2 (no update after
the first iteration, only one update after the second iteration,
..., (|V | − 2) update after the iteration (V − 1)).

The nodes of the sub-graph already processed will be
updated from the list of the current node paths using a list
of suffixes representing the different possibilities of reaching
these nodes from current node. These suffixes will be used in
the phase of increasing paths. To determine these suffixes, we
will explore the sub-graph already processed starting from the
current node. In the beginning, the suffix is initialized by null.
Before the update process is executed on a given node x, the
suffix is first incremented by x.

In order to optimize the update algorithm, we consider the
following assertions:

1) The updates of the successors of a given node x will
be made only based on the new paths added to PSX .

2) During the update process (the exploration of sub-
graph already processed), we do not pass from a node,
denoted by x, to these successors only if PSX was
powered by new paths.

3) In the update process, if all the successors of a node
to update are already processed, it is obvious that
the update of this node is useless, since it will not
contribute any more in the process of determination
of the PST because all their successors are already
processed. It is also obvious that the exploration of
the already processed sub-graph must continue in
order to explore all the active nodes; The purpose
of the update process is to update the active nodes
only.

Proof

Assertion 1: let c be the processed node, x a successor of
c, and y a successor of x, where x ∈ Γ−∗(c) and y ∈ Γ−∗(x).
Node x will be updated from PSC paths which do not pass
through x. The y node will be updated from PSC paths which
do not pass through x and y, i.e. the paths that have already
been added to PSX and do not pass through y.

Assertion 2: if the node x has not been fed by other paths,
forcing these successors will not be powered too (result of
assertion 1). It is therefore useless to continue the update
process.

Assertion 3: already justified.

In the last assertion, the finalized nodes will not be updated,
which will allow us to optimize the memory space, but in this
case, the exploration of sub-graph already processed will be
maximum, that on is the one hand. On the other hand, the up-
dating of the active nodes, in most cases, will be done directly
from the list of current node paths (the node from which we
started the exploration of the already processed sub-graph), and
this is very expensive. To avoid useless explorations, during
the process of updating the list of y-node paths from the list
of x-node paths, if the node y is active, then we update PSY
from paths of PSX . Otherwise, we do a simple swap of the

paths of PSX while moving the paths that can be added to
PSY (PSX paths which do not pass through the node y) at
the beginning of PSX . In the latter case, the updating process
is continued if at least one permutation operation takes place.
For more details, see update procedure given in Algorithm 4.

Algorithm 4 update(x, y, n, suffix, TMA)

1: description of input data:
This procedure will update the Psx from the n first paths
of Psy .
suffix is a sequence of nodes used in the path augmen-
tation phase.
TMA is the set of nodes already traversed from the
beginning of update process

2: local variables:
3: nbre: Integer;
4: Begin
5: if Psx 6= {∅} then
6: nbre← 0
7: for all π in the first n paths of Psy do
8: if no element of {suffix ∪

{x}} does not appear in π then
9: Psx ← Psx ∪AGM(π, {suffix ∪ {x}})

10: nbre+ +
11: end if
12: end for
13: if n 6= 0 then
14: for all zinΓ+(x) do
15: if State(z) = ”reached” and z 6∈ TMA then
16: update(z, x, nbre, {x}, TMA ∪ {x})
17: end if
18: end for
19: end if
20: else
21: nbre← 0
22: for all π in the first n paths of Psy do
23: if no element of {suffix ∪

{x}} does not appear in π then
24: MovePathAtBeginning(π, Psy)
25: nbre+ +
26: end if
27: end for
28: if n 6= 0 then
29: for all z in Γ+(x) do
30: if State(z) = ”reached” and z 6∈ TMA then
31: update(z, x, nbre, {x}, TMA ∪ {x})
32: end if
33: end for
34: end if
35: end if

B. The Distance between Node Pair

In graph theory, the distance between two nodes of a graph
is the length (in number of edges) of a shorter path between
these two nodes. The calculation of this distance can be done
by a simple BFS (Breadth First Search) algorithm proceeding
as follows: the starting node will be initialized by 0. During the
process “graph traversal”, each node x reached from a given
node y will have the distance of y plus one. Another technique
for calculating node distances from t can be found in [9]. In

www.ijacsa.thesai.org 455 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 1, 2019

this work, we used the BFS algorithm to determine the distance
of each node from the sink.

C. Undirected Graph Reduction

The reduction of the graphs used in this part consists only
of eliminating the arcs outgoing from sink t {(t, y) ∈ E}
and the incoming arcs to the source s {(x, s) ∈ E} . The
justification for this treatment is already given in section 1.3.3.

D. A Numerical Illustration of Minimal Paths Algorithm for
General Network

Consider the reduced graph of Figure 1.c with s = 0 and t
= 6.
Initialization
Psx = {∅} for x=1, 2, 3, 4, 5, and 6.
PSS = P00 = {(0)}
LsOC from 16 to 19:
To Treat← {3, 1, 2}, State[3]← reached,
State[1]← reached, State[2]← reached
Graph exploration
Iteration N1:
LOC 21: we retrieve node 3 from To Treat (element whose
distance to the sink is the largest). To Treat becomes {1, 2}.
LsOC 22 to 26: feeding of PS3 by the elements PSX where
x in Γ−(3) which are already processed and which are in our
case {P00}. PS3 becomes {(0, 3)}.
LOC 27: State[3]← examined.
LsOC from 28 to 31: all successors of 3 are already reached,
so no item will be added to To Treat.
LsOC from 32 to 34: since Γ−∗(3) = {∅}, there is no update
to make.
Iteration N2:
LOC 21: we retrieve node 1 from To Treat. To Treat
becomes {2}.
LsOC from 22 to 26: feeding of PS1 by the elements of Γ−(1)
which are already processed and which are, in our case:

• node 3: since Γ+nt(3) = {1}, PS3 will be moved
after increase to PS1. PS1 becomes {(0, 3, 1)} and
PS3 becomes empty. After this operation, the state
of node 3 will be changed to finalized (State[3] ←
Finalized).

• node 0: PS1 becomes {(0,1), (0, 3, 1)}.

LOC 27: State[1]← Examined
LsOC from 28 to 31: feeding of To Treat by the successors
of node 1 whose state is not reached, in our case node 4 and
node 5. To tarit becomes {2, 4, 5}.
LsOC from 32 to 34: call to the update procedure for all
element in Γ−∗(1) = {3}.
Call N1: update(3, 1, 2, {3},{1})
Since node 3 is finalized, we will move the paths which do not
pass through node 3 at the beginning of the PS1 list; Moving
of (0, 1) at the beginning of PS1. PS1 becomes {(0,1), (0, 3,
1)}.
Since the set {x ∈ Γ+(3)/(State[x] = Examined or
State[x] = finalized) and x 6∈ {1, 3}} = {∅}, there is no
recursive call.
Iteration N3
LOC 21: we retrieve node 2 from To Treat. To Treat

becomes {4, 5}.
LsOC from 22 to 26: feeding of PS2 by the elements of Γ−(2)
which are already processed and which are, in our case:

• node 0: since Γ+nt(0) = 2, PS0 will be moved after
increase to PS2. PS2 becomes {(0, 2)} and PS0 be-
comes empty. After this operation, the state of node 0
will be changed to finalized (State[0] = Finalized).

• node 1: PS2 becomes {(0,1,2), (0,3,1,2), (0, 2)}.

LOC 27: State[2]← Examined
LsOC from 28 to 31: all successors of 2 are already reached,
so no item will be added to To Treat.
LsOC from 32 to 34: call to the update procedure for all
element in Γ−∗(2) = 1.
Call N 1: Update(1, 2, 3, {1},{2})
Since node 1 is active, PS1 will be updated from PS2 paths.
PS1 becomes {(0, 2, 1), (0, 3, 1), (0,1)} (number of paths
added is 1).
Since the set {x ∈ Γ+(1)/(State[x] = Examined or
State[x] = finalized) and x 6∈ {1, 2}} = {3}, we’ll make
the following recursive call: [call N 1.1:Update (3, 1, 1, {3},
{2,1})].
Call N 1.1: Update(3, 1, 1, {3}, {2, 1})
Since node 3 is finalized, we will move the paths of PS1 (only
the first path that was added to PS1 during the last update is
affected by this operation) which do not pass through the node
3 at the beginning.
Moving of (0, 2, 1) to the beginning. PS1 becomes {(0, 2, 1),
(0,1), (0, 3, 1)}.
Since the set {x ∈ Γ+(3)/(State[x] = Examined or
State[x] = finalized) and x 6∈ {1, 2, 3}} is empty, then there
is no recursive call.
Iteration N4
LOC 21: we retrieve node 4 from To Treat. To Treat
becomes {5}.
LsOC from 22 to 26: feeding of PS4 by the elements of Γ−(4)
which are already processed and which are, in our case:

• node 1: PS4 becomes {(0,2,1,4), (0, 1, 4), (0,3,1,4)}.

LOC 27: State[4]← Examined
LsOC form 28 to 31: feeding of To Treat by the successors
of node 4 whose state is not reached, in our case, node 6.
To tarit becomes {5, 6}.
LsOC from 32 to 34: call to the update procedure for all
element in Γ−∗(4) = {1}.
Call N1: Update(1, 4, 3, {1}, {4})
Since node 1 is active, PS1 will be updated from PS4 paths.All
PS4 paths go through node 1, so no PS4 path can be added to
PS1 and therefore no recursive update call.
Iteration N5
LOC 21: we retrieve node 5 from To Treat. To Treat
becomes {6}.
LsOC from 22 to 26: feeding of PS5 by the elements of Γ−(5)
which are already processed and which are, in our case:

• node 2: since Γ+nt(2) = 5, PS2 will be moved after
increase to PS5. PS5 becomes {(0,1,2,5), (0,3,1,2,5),
(0,2,5)} and PS2 becomes empty. After this operation,
the state of node 2 will be changed to finalized
(State[2]← Finalized).

www.ijacsa.thesai.org 456 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 1, 2019

• node 4: PS5 becomes {(0,2,1,4,5), (0, 1, 4,5),
(0,3,1,4,5), (0,1,2,5), (0,3,1,2,5), (0,2,5)}.

LOC 27: State[5] = Examined
LsOC from 28 to 31: all successors of 5 are already reached,
so no item will be added to To Treat.
LsOC from 32 to 34: call to the update procedure for all
element in Γ−∗(5) = 2, 4 [call1:Update(2,5,6,{2}, {5}),
call2:Update(4, 5,6,{4},{5})].
Call N1: Update(2, 5, 6, {2},{5})
Since node 2 is finalized, we will move the paths of PS5 which
do not pass through the node 3 at the beginning.
Moving of (0, 1, 4,5) to the beginning of PS5. PS5 be-
comes {(0, 1, 4,5), (0,2,1,4,5), (0,3,1,4,5), (0,1,2,5), (0,3,1,2,5),
(0,2,5)}
Moving of (0,3,1,4,5) to the beginning of PS5. PS5 be-
comes {(0,3,1,4,5), (0, 1, 4,5), (0,2,1,4,5), (0,1,2,5), (0,3,1,2,5),
(0,2,5)} .
Since the number of displacements is different from zero
(equal to 2) and since the set {x ∈ Γ+(2)/(State[x] =
Examined or State[x] = finalized) and x 6∈ {5, 2}} = {1},
then we will make the following recursive call: [Update (1, 5,
2, {2,1}, {5,2})].
Call N1.1: Update(1, 5, 2, {2,1},{5,2}).
Since node 1 is finalized, we will move, among the first two
paths of PS5, the paths that do not contain node 1 to the
beginning of PS5.
The first two paths of PS5 go through node 1, so none of them
can be added to PS1 and therefore no recursive sub call.
Call N2: Update(4, 5, 6, {4},{5})
Since node 4 is active, PS4 will be updated from PS5 PS4

becomes {(0,2,5,4), (0,3,1,2,5,4), (0,1,2,5,4), (0,2,1,4), (0, 1,
4), (0,3,1,4)} (number of paths added is 3)
Since the set {x ∈ Γ+(4)/(State[x] = Examined or
State[x] = finalized) and x 6∈ {5, 4}} = {1}, then we will
make the following recursive call 2.1: [Update (1, 4, 3 , {1},
{5,4})].
Call N2.1: Update(1, 4, 3, {1},{5,4}).
Since node 1 is finalized, we will move, among the three paths
of PS4, the paths that do not contain node 1 to the beginning
of PS4.
Moving of (0,2,5,4) to the beginning of PS4. PS4 be-
comes {(0,2,5,4), (0,3,1,2,5,4), (0,1,2,5,4), (0,2,1,4), (0, 1, 4),
(0,3,1,4)}
Since the displacement number is different from zero (equal
to 1) and since the set {x ∈ Γ+(1)/ (State[x] = Examined
or State[x] = finalized) and x 6∈ {5, 4, 1}} = {3, 2}, then
we will make the following recursive calls: [Update (3, 4, 1,
{1,3}, {5,4,1}) and Update (2, 4, 1, {1,2}, {5,4,1})].
Call N2.1.1: Update(3, 4, 1, {1,3},{5,4,1})
Since node 3 is finalized, we will move, among the first path
of PS4, the paths that do not contain node 3 to the beginning
of PS4. Moving of (0,2,5,4) to the beginning of PS4. PS4

becomes {(0,2,5,4), (0,3,1,2,5,4), (0,1,2,5,4), (0,2,1,4), (0,1,4),
(0,3,1,4)} Since the set {x ∈ Γ+(3)/(State[x] = Examined
or State[x] = finalized) and x 6∈ {5, 4, 1}} is empty, then
there is no recursive call.
Call N2.1.2: Update(2, 4, 1, {1,2},{5,4,1})
Since node 2 is finalized, we will move, among the first path
of PS4, the paths that do not contain node 2 to the beginning
of PS4.
The first path of PS4 goes through 2 so no movement will be

made. Therefore no recursive sub call.
Iteration N6
LOC 21: we retrieve node 6 from To Treat. To Treat
becomes {∅}.
LsOC from 22 to 26: feeding of PS6 by the elements of Γ−(6)
which are already processed and which are, in our case:

• node 4: since Γ+nt(4) = {6}, PS4 will be moved
after increase to PS9. PS9 becomes {(0,2,5,4,6),
(0,3,1,2,5,4,6), (0,1,2,5,4,6), (0,2,1,4,6), (0,1,4,6),
(0,3,1,4,6)} and PS4 becomes empty. After this
operation, the state of node 4 will be changed to
finalized (State [4] = Finalized).

• node 5: since Γ+nt(5) = {6}, PS5 will be moved
after increase to PS9. PS9 becomes {(0,3,1,4,5,6),
(0, 1,4,5,6), (0,2,1,4,5,6), (0,1,2,5,6), (0,3,1,2,5,6),
(0,2,5,6), (0,2,5,4,6), (0,3,1,2,5,4,6), (0,1,2,5,4,6),
(0,2,1,4,6), (0,1,4,6), (0,3,1,4,6)} and PS5 becomes
empty. After this operation, the state of node 5 will
be changed to finalized (State [5] = Finalized).

LOC 27: State[6] = Examined
LsOC from 28 to 31: all successors of 6 are already reached,
so no items will be added to To Treat.
LsOC from 32 to 34: since the destination node has been
processed, the program stops at this point.
Paths found: {(0, 3, 1, 4, 5, 6), (0, 1, 4, 5, 6), (0, 2, 1, 4, 5,
6), (0, 1, 2, 5, 6), (0, 3, 1, 2, 5, 6), (0, 2, 5, 6), (0, 2, 5, 4, 6),
(0, 3, 1, 2, 5, 4, 6), (0, 1, 2, 5, 4, 6), (0, 2, 1, 4, 6), (0, 1, 4,
6), (0, 3, 1, 4, 6)}

V. COMPLEXITY ANALYSIS

A. Enumeration of Minimal Paths in an Oriented Graph
without Cycles (Algorithm 1 and 2)

For the graph reduction algorithm (Algorithm 1), the ex-
ecution time depends on the number of nodes to be deleted;
in the worst case O(|V | − 2). The memory space used by the
algorithm is in the order of O(2 ∗ (|V | − 1)) with respect to
one input list O(V −1), one list of nodes to delete O(|V |−2).

For the path enumeration algorithm in an oriented graph
without cycles (Algorithm 2), the execution time complexity is
in the order O(|V |+ |E|); each node is visited once O(|V |).
At each node, the search for successors whose predecessors
are already processed runs in O(deg(node)), which gives
O(|E| in the worst case). Let λ denote the average number
of nodes in a MPs, and π denotes the total number of MPs.
The memory space required for the execution of the algorithm
is O(3(|V | − 1) + λ ∗ π), with respect to the buffer memory
used for storing paths O(λ∗π), one input list O(|V |−1), one
list used for storing the items to be processed O(|V |−1), and
one list that contains the state of each node O(|V | − 1).

B. Enumeration of Minimal Paths in the General Graph
(Algorithm 3 and 4)

The maximum time complexity, in number of tests, for
the minimal paths enumeration algorithms based on BFS/DFS
(Breadth First Search / Depth First Search) is O(λ ∗ π + C)

www.ijacsa.thesai.org 457 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 1, 2019

where λ indicates the average number of links for each
minimal path, and π denotes the total number of minimal paths.
This complexity is the result of the exhaustive traversal of all
possible branches starting from the source node. This is the
case in [21] where the author has used a exhaustive traversal
and principle of backtracking which consists of going back as
soon as a cycle is detected or when there are no more outgoing
neighborhoods. In [9], the same principle is used with the
addition of a condition on backtracking. This condition has
made it possible to reduce the number of cycles visited, which
implies the reduction of number of tests to O(λ∗π+C). In our
algorithm, no test is performed when building the PSX sets
from the predecessors. The tests are performed at the update
level. In this case, a large number of paths will be built without
doing any test. Let π be the number of paths built at the update
level. Consequently, the time complexity of our algorithm can
be written as follows: O(λ ∗ π + C) where λ indicates the
average number of links for each π. The advantage of our
algorithm can be seen as follows, O(λ ∗ π) � O(λ ∗ π).

The memory space required by the minimal paths enumer-
ation algorithm (Algorithm 3 and 4) O(4|v| + (λ ∗ π) − 6)
with respect to one input list O(V − 1 in length), one
list used for storing the items to be processed O(|V | −
1 in the worst case), the buffer memory used for storing
paths O(λ ∗π in length), one list of distances to the terminal
O(V − 1 in length), and one list used for storing the suffix
O(V − 3 in the worst case), where the suffix is an ordered
subset of nodes used in the path-augmentation phase at the
update level.

The storage complexity of G. Bai et al’s algorithm [9]
is O(4(|V | − 1)), with respect to one input list L(|V | −
1 in length), one path buffer P (|V | in the worst case),
one distance list Q(|V | − 1 in the worst case), and one
distance checking list S(|V | − 1 in the worst case). The
time complexity of its algorithm is O(η ∗ (π + c)), where c
denotes the number of cycles in the network who are visited
by its algorithm.

The storage complexity of G. Bai et al’s algorithm is less
than ours. But in order to compare our algorithm to that of
Bai, and not to count the execution time necessary for output
immediately each path found (screen display or storage in a
file or others), when an minimal path is found, it will be kept
in memory until the end of the execution. This makes the
memory space necessary for the execution of the Bai algorithm
O(3(|V | − 1) + λ ∗ π).

VI. BENCHMARKS AND TEST

A. Benchmarks

To test our algorithm, we have used a set of networks taken
in the literature. The network presented in Fig. 2 is taken from
[1]. A classical grid network, used in [9], [21], is shown in
Fig. 3. We have implemented and tested our algorithm using
C language. All tests were performed on a personal computer
equipped with CPU being an Intel Core i3 1.7 GHz, and with
4Gb RAM.

In order to compare our method to that of Bai which allows
to enumerate all the minimal paths in the general graphs, we
used our second algorithm (Algorithm 3) in all the tests we
performed.

Fig. 2. The benchmark network used in [21], [9], [27]

Fig. 3. The benchmark network used in [21], [9]

B. Comparison with G. Bai et al’s Algorithm

In order to show the effectiveness of our algorithm, we
compared it with that of G. Bai [9]. For that, we are inter-
ested in the required execution time with respect to different
networks. The first test presented in this study is done using
the benchmark network given by Luo and Trivedi [27], as
shown in Fig. 2. Using the proposed algorithm, the number
of minimal paths found is 780, which agrees the result in [9]
and in [21]. The execution time for the proposed algorithm and
the Bai’s algorithm are 0.4320ms and 2.668ms, respectively.
The ratio, which is defined as the ratio of the CPU time of the
Bai’s algorithm to the proposed algorithm, is about 6.1759,
indicating that the proposed algorithm is 6.1759 times faster
than Bai’s algorithm in finding all the minimal paths of the
benchmark network.

In the second test, we used the classical grid networks.
A typical example of 12 nodes and 17 edges is shown in
Fig. 3. On all the networks tested in this experiment, the
two algorithms generate the same sets of minimal paths.
Fig. 4 shows a comparison of the average CPU times (in
milliseconds) of 14 grid networks for the Bai’s algorithm,
and our second algorithm. In order to illustrate the difference
between these two algorithms according to the size of the
network, the ratio of the CPU time of the Bai’s algorithm
over the proposed algorithm is given in Fig. 5. As we can see,
as the network size increases, the efficiency of our algorithm
increases accordingly.

www.ijacsa.thesai.org 458 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 1, 2019

2
5

3
0

3
5

40 45 5
0

55 60 6
5

7
0

75 80 85 90 95

1
00

0

0.5

1

·104

E+V

Ti
m

e
co

m
pl

ex
ity

Bai’s algorithm
Our algorithm

Fig. 4. Comparison of the CPU time of the Bai’s algorithm to the proposed
algorithm.

12
x1

7
15

x2
2

16
x2

4
18

x2
7

20
x3

1
24

x3
8

25
x4

0
28

x4
5

30
x4

9
32

x5
2

33
x5

2
35

x5
8

36
x5

9
36

x6
0

3

5

7

9

11

E*V

R
at

io
n

Fig. 5. Ratio of the CPU time of the Bai’s algorithm to the proposed
algorithm.

VII. ENUMERATION OF MPS FOR NETWORKS WITH
MULTIPLE SOURCE/SINK NODES

As introduced in [28], a multi-terminals network is said to
be operative if there exist operating paths between each pair
of node (s, t) such that s belongs to the set of source nodes
and t belongs to the set of sink nodes.

The simple way to extend the minimal paths enumeration
algorithm introduced previously to the multi-terminals’ case is
to convert the multi-terminals network into a simple binary
network. To do this, we can use the classical technique
introduced in [28]. The technique is as follows: first, we add
two nodes that will play the role of the two terminals in the
new network, naming these nodes artificial source and artificial
sink. The second step is the addition of artificial direct links
from artificial source node to the source nodes. The latest step

Fig. 6. (a): Multi-terminal network (sources s={1,2} sinks t={9, 10, 11})
from [21] and its binary form (b).

consists of adding the artificial direct links from sink nodes to
the artificial sink node. Fig. 6 shows the benchmark network
from [21] and its transformation. This technique is also used
by Bai [9].

To test this technique, we used the network shown in Fig.
6. Using the proposed algorithm, the number of minimal paths
found is 145, which agrees with the results in [21] and the same
number is obtained using Bai’s algorithm. The execution time
for the proposed algorithm and the Bai’s algorithm are 0.052ms
and 0.135ms, respectively, and the ratio is about 2.5961.

VIII. CONCLUSION

In this paper, we have proposed a new method that finds all
the minimal paths in the graph. We started by presenting a ver-
sion for graphs without cycles. This version was subsequently
extended to the general case (oriented, undirected and mixed
graphs). We also presented an algorithm for graph reduction.
For the case of graphs with multi-terminals, we adopted, as in
[21], [9] and others, the method introduced in [28].

The analysis of the complexity of our algorithm and the
comparison with that of Bai’s algorithm show that the proposed
method herein is very efficient.

Another advantage of our algorithm is the possibility to
implement a large part of the algorithm, such as update
operations, using parallel programming. This will allow us to
further improve the effectiveness of our approach.

www.ijacsa.thesai.org 459 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 1, 2019

ACKNOWLEDGMENT

The author would like to thank Youssef Laaraj (ELT
Researcher at Mohammed V University, Rabat, Morocco) for
its linguistic revision of the manuscript.

REFERENCES

[1] B. Roberts, “Estimating the Number of s-t Paths in a Graph,” Journal
of Graph Algorithms and Applications, vol. 11, pp. 195–214, 2007.

[2] Y.-K.Lin and P. C. Chang, “Maintenance reliability estimation for a
cloud computing network with nodes failure,” Expert Systems with
Applications, vol. 38, pp. 14–185, 2011.

[3] S. G. C. Lin, “On performance evaluation of ERP systems with fuzzy
mathematics,” Expert Systems with Applications, vol. 36, pp. 6362–
6367, 2009.

[4] S. G. Chen, “Optimal device planning and performance evaluation in
AMS,” in APARM 2010, Wellington, New Zealand,2010, 2010, pp. 113–
120.

[5] Y.-K.Lin and C. T. Yeh, “Determine the optimal double-component
assignment for a stochastic computer network,” Omega, vol. 40, no. 1,
pp. 120–130, 2012.

[6] S.Rai and S. Soh, “A computer approach for reliability evaluation
of telecommunication networks with heterogeneous link—capacities,”
IEEE Trans. Reliability, vol. 40, pp. 441–451, 1991.

[7] Y. K. Lin, “A novel algorithm to evaluate the performance of stochastic
transportation systems, Expert Systems with Applications,” Expert
Systems with Applications, vol. 37, no. 2, pp. 968–973, 2010.

[8] P.Doulliez and J. Jamoulle, “Transportation networks with random arc
capacities,” Recherche Operationnelle, vol. 3, pp. 45–60, 1972.

[9] G. H. Bai, Z. G. Tian, and M. J. Zuo, “An improved algorithm for
finding all minimal paths in a network,” Reliability Engineering and
System Safety, vol. 150, pp. 1–10, 2016.

[10] Y. Shen, “A New Simple Algorithm for Enumerating all Minimal Paths
and Cuts of a Graph,” Microelectronics and Reliability, vol. 35, no. 6,
pp. 973–976, 1995.

[11] S. Rai and K. K. Aggarwal, “On complementation of pathsets and
cutsets,” IEEE Trans. Reliab, vol. 29, pp. 139–140, 1980.

[12] D. R. Shier and A. E. Whited, “Algorithms for generating Minimal
Cutsets by Inversion,” IEEE Transactions on Reliability, vol. R-34,
no. 4, pp. 314–319, 1985.

[13] S. S. Elias, N. Mokhles, and S. A. N. Ibrahim, “A New Technique in
a Cutset Evaluation,” Microelecfironics & Realiability, vol. 33, no. 9,
pp. 1351–1355, 1993.

[14] H. schabe, “An Improved Algorithm For Cutset Evaluation From Paths,”
Microelecfironics & Realiability, vol. 35, no. 5, pp. 783–787, 1995.

[15] W. Yeh, “A new approach to evaluate reliability of multistate networks
under the cost constraint,” Omega, vol. 33, pp. 203–209, 2005.

[16] ——, “Multistate network reliability evaluation under the maintenance
cost constraint,” Int J. Production Economics, vol. 88, pp. 73–83, 2004.

[17] A. M. Al-Ghanim, “A heuristic technique for generating path and
cutsets of a general net-work,” Computers & Industrial Engineering,
vol. 36, pp. 45–55, 1999.

[18] W. C. Yeh, “A simple heuristic algorithm for generating all minimal
paths,” IEEE TransReliab, vol. 56, no. 3, pp. 488–494, 2007.

[19] W. Yeh, “Search for minimal paths in modified networks ,” Reliability
Engineering & System Safety, vol. 75, pp. 389–395, 2002.

[20] K. Kobayashi and H. Yamamoto, “A new algorithm enumerating all
minimal paths in aspars enetwork,” Reliability Engineering and System
Safety, vol. 65, no. 1, pp. 11–15, 1999.

[21] S. Chen and Y. K. Lin, “Search for all minimal paths in a general large
flow network,” IEEE TransReliab, vol. 61, no. 4, pp. 949–956, 2012.

[22] J. Nahman, “Enumeration of mps of modified networks,” Microelec-
tronics and Reliability, vol. 34, pp. 475–484, 1994.

[23] S. Chen, Y. C. Guo, and W. Z. Zhou, “Search for All Minimal Paths
With Backtracking,” in The 16th ISSAT International Conference on
Reliability and Quality in Design. Washington DC USA, 2010, pp. 425–
429.

[24] S. Chen, “Search for all minimal paths in a general directed flow
network with unreliable nodes,” International Journal of Reliability and
Quality Performance, vol. 2, no. 2, pp. 63–70, 2011.

[25] C. Colbourn, The combinatorics of network reliability. New York, NY:
Oxford University Press, 1987.

[26] J. Hagstrom, “Note on independence of arcs in antiparallel for network
flow problems,” Networks, vol. 14, pp. 567–570, 1984.

[27] T. Luo and K. S. Trivedi, “A improved algorithm for coherent-system
reliability,” IEEE Trans. Reliability, vol. 47, no. 1, pp. 73–78, 1998.

[28] M. Ball, C. Colbourn, and J. Provan, “Network reliability,” in Hand-
books in operations research and management science, vol. 7, 1995, p.
673–762.

www.ijacsa.thesai.org 460 | P a g e

