
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 1, 2019

Implementation, Verification and Validation of an
OpenRISC-1200 Soft-core Processor on FPGA

Abdul Rafay Khatri
Department of Electronic Engineering,

QUEST, NawabShah, Pakistan

Abstract—An embedded system is a dedicated computer
system in which hardware and software are combined to per-
form some specific tasks. Recent advancements in the Field
Programmable Gate Array (FPGA) technology make it possible
to implement the complete embedded system on a single FPGA
chip. The fundamental component of an embedded system is
a microprocessor. Soft-core processors are written in hardware
description languages and functionally equivalent to an ordinary
microprocessor. These soft-core processors are synthesized and
implemented on the FPGA devices. In this paper, the OpenRISC
1200 processor is used, which is a 32-bit soft-core processor and
written in the Verilog HDL. Xilinx ISE tools perform synthesis,
design implementation and configure/program the FPGA. For
verification and debugging purpose, a software toolchain from
GNU is configured and installed. The software is written in C
and Assembly languages. The communication between the host
computer and FPGA board is carried out through the serial RS-
232 port.

Keywords—FPGA Design; HDLs; Hw-Sw Co-design; Open-
RISC 1200; Soft-core processors

I. INTRODUCTION

The field of microelectronics has revolutionary changes
due to research and development in System on Chip (SoC)
technology. This technology plays a vital role in the design of
various embedded systems. Embedded systems are involved in
medical applications, automotive, home appliances, industrial
control system and many more. A general embedded system
consists of a microprocessor for processing, memory for
storage, output and input devices for displaying output and
take inputs from the outside world respectively [1]. Fig. 1
shows the simple and general block diagram of an embedded
system. A processor is the heart of an embedded system and
processors are classified into two categories hard-core and
soft-core processors. The complexity of integrated component
inside the embedded system increased drastically, and it is
not possible to design a microprocessor for every specific
application. Therefore, it requires to develop the embedded
application using a soft-core processor which reduces the time
to market and cost for the design.

For that purpose, it is a good idea to use soft-core processor
having reconfigurable, predefined and pretested Intellectual
Property (IP) cores. It is an alternative solution. The use of
IP cores or soft-cores designing using Hardware Description
Languages (HDL) reduce the cost and time to market for the
design of embedded systems. These cores can be realised to
any FPGA devices from any vendor. The OpenRISC 1200
(OR1200) processor is also soft-core processor written in
Verilog HDL. It is a 32-bit Reduced Instruction Set Computer

Fig. 1. General block diagram of embedded systems.

(RISC) processor. This processor consists of all necessary
components which are available in any other microproces-
sor. These components are connected through a bus called
Wishbone bus. In this work, the OR1200 processor is used
to implement the system on a chip technology on a Virtex-5
FPGA board from Xilinx. The communication between host
computer and the OR1200 processor on the FPGA device
is carried out through a Universal Asynchronous Receiver
Transmitter (UART) serial communication (RS-232).

The OR1200 processor core is available at open source
community opencores.org [2]. This soft-core processor
is used to develop a system on a chip. The soft-core processor
is technology independent which means, it is implemented on
any FPGA device or board. To develop and implement the
embedded system with the OR1200 processor on Virtex-5, we
used Xilinx ISE 12.4 to make a project. The synthesis, design
implementation and bit file are generated through the same
software. Also, in this work, the software platform is developed
using the GNU toolchain so that the C and assembly programs
can be compiled, linked and executed on this processor and
UART communication is achieved for display output of the
programs.

The organisation of the paper is as follows: Section II
describes the detail about the available commercial and open
source core processors. The architecture of OpenRISC 1200
processor is described, along with the detail description of
various components in Section III. Section IV describes the
development of a hardware platform and software platform.
Section V explains the serial communication perform between
OpenRISC processor and UART core. In the end, Section VI
concludes the paper.

II. SOFT CORE PROCESSORS

Soft-core processors are microprocessors that can be ad-
equately described by programming usually in HDL, mainly
Verilog or VHDL. This code can be synthesized using different

www.ijacsa.thesai.org 480 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 1, 2019

tools depending on the manufacturer and can be implemented
on FPGAs. Soft-core processors are provided by many com-
panies and can be categorised into two ways:

• Commercial cores

• Open source cores

A. Commercial Cores

The three influential providers for commercial soft-core
processors are Altera, Xilinx and Tensilica. They provide Nios
II, Micro-Blaze, Pico-Blaze and Xtensa cores respectively
[1], [3]. The sequel describes the feature of each soft-core
processor available in the market.

1) Nios II: The Nios II embedded processor belongs to the
family of soft-core processors, which is designed and devel-
oped by Altera Corporation [1]. The Nios II processor system
is equivalent to the micro-controller system or “computer on
a chip” which includes I/O devices, memory (on-chip and off-
chip) and processor with their interfaces can be implemented
on the single Altera chip [4]. This processor is based on
Load/Store RISC architecture and has flexibility for the users
to choose between 16/32 bit data path for the customisation of
design parameters [5]. It means many parameters like registers,
cache, custom instruction and data bus size can be chosen at
the time of design for speeding up the customise hardware.
This processor has 5-integer pipeline with RISC architecture of
32-bit and has 512 general purpose registers [6], along with it
has the capability for handling the instruction and data caches,
hardware multiplication and division, interrupts handling and
floating point precision operations. Software tools provided by
Altera Corporation can do this all. Software toolset includes
GNU C/C++ compiler along with Eclipse IDE and is called
Nios II software Integrated Development Environment (IDE)
[7].

2) MicroBlaze: MicroBlaze is also from the one of the
reconfigurable processors family designed and provided by
Xilinx. Just like Nios II, it can also be customised with I/O
devices and memory configurations [8], [9]. This soft-core
processor has a Harvard 32-bit RISC architecture with 32
(32-bit) wide general purpose registers, three stages pipeline
with variable length flexibilities, 32-bit full address bus and
two interrupt handlers optimised for Xilinx FPGA boards [1],
[7], [8]. It has two addressing modes. There are also some
advanced features such as barrel shifter, divider, multiplier,
instruction and data caches, exception handling, debug logic,
single precision Floating-Point Unit (FPU), interfaces and
many others [8], [10]. It also has on-chip and off-chip memory
for MicroBlaze to provide single cycle access to memory
and they formed a bus known as on-chip peripheral bus and
used to interface different peripheral and memory devices with
MicroBlaze [1]. The size of memory and the number of I/O
devices are attached to the system by the user, and it depends
on the application under development. As this is soft-core
processor so any feature which is not required, do not need
to implement. To build a complete soft-core processor system
with MicroBlaze processor, we require some interfaces like
UART, Ethernet, Serial Peripheral Interfaces (SPI) and some
other cores but they are implemented on the single chip of
FPGA [5].

3) PicoBlaze: PicoBlaze is also a soft-core processor also
provided by Xilinx. PicoBlaze is a compact, capable, cost-
effective and efficient 8-bit micro-controller like Intel 8051
targeting simple data processing applications [11]. This micro-
controller is optimised for Spartan and Virtex families [1].
It has the capability of interrupt handling but it does not
perform division, multiplication and floating point operations
[9]. PicoBlaze micro-controller is available in the form of syn-
thesizing and configurable VHDL code and can be download
from Xilinx website. The tools for programming the PicoBlaze
processor are assembler and C compiler with integrated de-
velopment environment and simulator for VHDL [9]. It also
supports Xilinx system generator development environment. It
has 16-bit wide general purpose data registers, 8-bit ALU with
two flags carry and zero, 64 byte internal RAM and 256 inputs
and 256 outputs ports for expansion and interfacing [11].

4) Xtensa: Xtensa is a soft-core, configurable microproces-
sor design and provided by Tensilica’s Inc. [12]. It is designed
by keeping in mind the ease of integration, customisation and
extension. This processor is famous for its two main features
[12]:

• Configurable: - It offers features to the designer a set
of predefined parameters which are used to configure
the processor for some applications.

• Extendable: - It also offers extendibility to the designer
to invent some custom instruction and integrate logic
very smoothly for the specific applications.

This Xtensa soft-core processor is written in Tensilica
Instruction Extension (TIE) language which is similar to
Verilog HDL language [1]. The TIE compiler compiles the
code written in TIE. There is an advanced compiler available
for this purpose such as XPRES which can also generate and
compile code for TIE and HDL. There are two versions of this
processor are available from Tensilica, the Xtensa LX, FLIX
and the Xtensa-9 [1], [13].

B. Open Source Cores

Open source community provides the open source IP cores
components for the development of an embedded system for
both academic and research. Open source offers LEON and
OpenRISC1000 soft-core processors. Sun micro-systems also
produce soft-core processor OpenSPARC, which is widely
used in Application Specific Integrated Circuits (ASICs) im-
plementations. The sequel describes the summary of open
source soft-core processors [1].

1) Leon SPARC: Leon SPARC (Scalable Processor Ar-
chitecture) is the IP core processor based on the SPARC
V8 architecture. The providers of this core are the European
Space Agency and Gaisler Research [6]. Leon SPARC is most
widely available in two versions namely LEON 2, LEON
3 and LEON 4 [1], [29]. LEON 2 and LEON 3 are 32-
bit open source VHDL model having 5-stage integer and 7-
stage pipeline respectively [1]. They also have divide, multiply,
MAC units, 32-bit PCI bridge with optional DMA and FIFO,
UARTs, timers & watchdog, GPIO port, interrupt controller,
status registers, general purpose registers (2 to 32), CAN 2.0
interfaces, advanced on-chip debug support unit, JTAG/TAP

www.ijacsa.thesai.org 481 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 1, 2019

controllers and floating point unit. All these parts are in-
terconnected through a bus called AMBA-AHB (Advanced
Micro-controller Bus Architecture-Advanced High-speed Bus
standard provided by the ARM and it is included in GRLIB
[14]. This bus provides support for many master interfaces and
achieving high bandwidth operations. GRLIB is an IP library
based on the collection of VHDL libraries and is designed
to enable the vendor to include their libraries for specific
applications. It provides IP cores for functional and logistical
interfaces for the development of SoC (System on Chip) [14].

2) OpenSPARC: OpenSPARC is also called UltraSPARC
launched by Sun Micro-systems in December 2005. The Sun
Micro-systems surprised the industry by distributing it as
an open source processor in 2006. After one year in 2007,
they launched another UltraSPARC, which is more advanced
than the first processor and named as OpenSPARC T1 and
OpenSPARC T2 [15]. The OpenSPARC is designed for aca-
demics as well as commercial use. In academics, OpenSPARC
can be taught to the students in different course regarding com-
puter architecture, VLSI design, compilation and generation
of code. The commercial use of this processor is to provide
a springboard for the design of new custom processors with
the complete and fully verified suite, which reduces the time
drastically to market factor. OpenSPARC T1 and OpenSPARC
T2 architectures are based on UltraSPARC architecture in 2005
and 2007, respectively [15]. The general features of this soft-
core processors include a linear 64-bit address space, few
addressing modes, 32-bit full instructions, floating point unit,
fast trap handlers, multiprocessor synchronisation instructions,
hardware trap stack. These features are also compatible with
SPARC V9. Some features which are only available in Ul-
traSPARC are dominant mode; Chip Level Multi-threading
(CMT), extended instruction set, multiple levels of global
registers and many more. . . Tools for OpenSPARC T1 and
OpenSPARC T2 are mostly the same. EDA simulation tools
include VCS and NCVerilog from Synopsys and Cadence
respectively. EDA synthesis tools required to perform Verilog
Register Transfer Level (RTL) are designed compiler from
Synopsis, Synplicity Pro from Synplicity and Xilinx Synthesis
Technology (XST) from Xilinx. FPGA tools are required to
download bit-stream and emulate it. Those tools are Embed-
ded Development Kit, Integrated Synthesis Environment (ISE)
from Xilinx and Modelsim from Mentor graphics [15], [16].

3) OR1200 OpenRISC: The most widely used soft-core
processor from open source community opencores.org
is OR1200 processor. This processor optimises to zero cost,
smaller power consumption, higher performances, and versa-
tility in various modern applications such as networking, home
appliances, and embedded automotive consumer products. This
processor belongs to the OR1000 family of microprocessors,
and it has 32/64-bit scalar RISC Harvard architecture [17]. The
features include 5-integer pipeline, separate memory for data
and instruction, virtual memory caches and DSP capabilities.
This processor can be synthesized and downloaded on both
Xilinx and Altera FPGA boards. The architecture, features and
performance are described. The OR1200 soft-core processor
is compatible with a real-time OS such as Linux, Windows
(Cygwin). The software can be written and compiled in C/C++.
This processor is wishbone bus compatible [1], [18], [19], [20].

Fig. 2. Block diagram of OpenRISC 1200 processor architecture.

C. Advantages and Disadvantages

There are certain advantages and disadvantages of both
commercial and open source cores. The sequel describes few
merits and demerits of soft-core processors.

1) Advantages: There are many advantages of using soft-
core processors in the embedded design on FPGAs. Some of
them described below [1], [4], [21].

1) Flexible and easily customizable for a specific appli-
cation.

2) Technology independent hence can be synthesized
and implemented on an ASIC and FPGA technology.

3) Soft-core processor’s architecture and behaviour are
described by HDL at higher level of abstractions
hence are easy to understand the overall design.

4) Peripherals in the processor can be changed, add and
remove as per requirement with ease.

5) Reduced obsolescence risk.

2) Disadvantages: There are also some disadvantages of
using soft-core processors. Significant trade-offs are described
below [1], [7], [18].

1) Size and area is large
2) Power consumption is large
3) Performance is lower than ASICs

III. OPENRISC (OR1200) ARCHITECTURE

OpenRISC 1200 processor is an implementation of the
OR1000 family of open and free soft-core processors [19],
[22]. The OpenRISC 1000 processor is a development of the
open cores modern architecture and is a base for the family
of 32/64 bit RISC and DSP processors [20]. The OR1200
processor is the 32-bit scalar RISC with Harvard micro-
architecture. OpenRISC 1200 processor consists of 5 stages
integer pipeline, virtual memory support, two default caches
for data and instruction physically tagged together, MMUs are
implemented, high-resolution tick timer, power management
unit, a programmable interrupt controller (PIC) and debug unit
for interfacing and real-time debugging facilities as shown
in Fig. 2. OR1200 can run on any operating system and is
used into the development of System on a Chip, embedded
application and networking application. Each block describes
their features below in detail [17], [22], [23].

www.ijacsa.thesai.org 482 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 1, 2019

A. CPU/FPU/DSP

The primary and central processing part of OR1200 pro-
cessor is CPU/FPU/DSP. CPU/DSP uses the architecture of
OR1000 processor family and implements 32-bit operations
while 64-bit is not realised for OR1200. Also, vector and
floating point operations are not developed. Fig. 3 shows the
block diagram of OR1200 CPU/DSP.

Fig. 3. Block diagram of OpenRISC 1200 CPU architecture.

1) Instruction Unit: Instruction unit inside the CPU im-
plements the basic pipeline instructions, fetching instructions
from memory and executing them in the proper order. It also
performs some conditional jump and branch instructions. The
instruction unit of OR1200 processor handles only ORBIS32
class while this architecture does not support other classes
ORFPX32/64 and ORVDX64.

2) General Purpose Registers: There are 32 general pur-
pose registers (GPRs). Each GPR is 32-bit wide and is imple-
mented in OR1200 architecture. Two synchronous dual port
memories are implemented in OR1200 from GPR with the
capacity of 32 words by 32 bits per word [19]. In ORBIS
instructions these registers can be accessed as source and
destination registers. They are used to hold scalar data, pointers
and vectors [20], [22].

3) Load/Store Unit: The Load/Store Unit is abbreviated as
LSU and is used to load data from memory or to store data
to the memory. It is an independent execution unit. It may
also be used in vector processing. All load/store instructions
are implemented in hardware. Those instructions define the
addressing modes of operands. The operand may be located
in address register operands, source data register operand for
store instructions and destination data register operands for the
load instruction.

4) Integer Execution Pipeline: The following instructions
are a 32-bit integer and implemented in this core. Most of the
instructions take one cycle of time during execution.

• Arithmetic instructions

• Logical instructions

• Compare instructions

• Shift and rotate instructions

5) MAC Unit: This unit is responsible for DSP MAC
operations which are 32x32 with the 48-bit accumulator. It
can accept new MAC operation in each new clock cycle and
is fully pipelined.

6) System Unit: This unit provides the interfaces to those
signals to the CPU/DSP which cannot be connected through
instruction and data interfaces. This unit implements the sys-
tem’s special purpose registers, e.g. Supervisor Registers.

7) Exceptions: The core exception can be generated when
exception handling occurs. In the OR1200 processor, there are
some causes for exceptions to happen and given below.

1) Illegal op-codes
2) External interrupt request
3) System call
4) Breakpoints exceptions (internal exceptions)
5) Memory access conditions

Exceptions take place in the supervisor mode. When it occurs,
control transfers to exception handler at an offset depends on
the type of encountered exceptions.

B. Data Cache & MMU

The OR1200 is based on Harvard architecture; it means
data and instruction caches are separate entities. The default
cache configuration for data is 8 K byte which is 1-way direct-
mapped data cache for rapid access of data for the core. This
configuration can be changed in many ways, e.g. 1 K byte, 2
K byte, 4 K byte and 8 K byte per set.

Data MMU is separated from Instruction MMU. The
OR1200 implements a virtual memory management system.
The primary function of MMU provides the memory access
and translation from useful addresses to physical addresses.

C. Instruction Cache & MMU

The instruction cache is a separate entity. The default cache
configuration for instruction is also 8 K byte which is 1-way
direct mapped instruction cache for rapid access of instruction
for the core. This configuration can be changed in some ways,
e.g. 1 K byte, 2 K byte, 4 K byte and 8 K byte per set.
The Least Recently Used (LRU) replacement algorithm is
implemented in each set of this cache.

Instruction MMU is also a separate entity. The OR1200
also implements a virtual memory management system. It
provides the memory access and translation from effective
addresses to physical addresses. The page size is also 8 K
bytes and has a comprehensive page protection scheme. The
following configuration of 1-way direct mapped hash based
Translation Look-aside Buffer (ITLB) can be implemented as
16, 32, 64 (default) and 128 entries per way or ITLB entries.
Hash-based design provides the higher performance.

D. Power Management Unit

The primary function of this unit is to optimise the power
consumption by deactivating or activating specific internal
modules which are not in use. OR1200 implements this feature.
There are three modes namely slow/idle mode, sleep mode and
doze mode. The low power dividers are available in external

www.ijacsa.thesai.org 483 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 1, 2019

clock generation circuitry. The slow/idle mode takes advantage
of those dividers. It enables the functionality but on less
frequency and hence the power is reduced. Both the sleep
and doze mode are left to normal mode by the occurrence
of a pending interrupt. In the sleep mode, all the internal units
of OR1200 are disabled and clock gated while in doze mode
software operation is suspended. The clock signal to all RISC
modules/units is disabled except tick timer. The other modules
on the chip can continue their functions as in the normal mode.

E. Tick Timer

The primary function of the tick timer is to measure time
and schedule system tasks. It is used by operating system and
driven by RISC clock. The tick timer facility is implemented
in OR1200. Tick timer has a maximum timer count of 232

clock cycles and a maximum period of 228 clock cycles during
interrupts. The interrupt for tick timer can be masked. It is a
single run, restartable or continuous timer.

F. Debug Unit

The purpose of a debug unit in the OR1200 is very
significant because it provides a means to interact with the host
computer for debugging our programs and check the status of
various registers during the process. It can also help to load
program to the internal memories with the help of JTAG cable.
Basically, in OR1000 architecture more features are available
such as watch-points, breakpoints and flow controlling but
the debug unit implemented in OR1200 supports for basic
debugging.

G. Programmable Interrupt Controller

The task of an interrupt controller is to receive interrupts
from external sources and peripherals and send them to the
CPU so that it can activate the corresponding interrupt han-
dler according to their LOW and HIGH priorities. The PIC
implemented in OR1200 has three special purpose registers
(SPRs), and 32 interrupts lines. The interrupt line ‘0’ and ‘1’
are always enabled by connecting with a HIGH and LOW
priority interrupt inputs respectively. Remaining interrupts can
be programmed and masked as well.

H. Wishbone Interfaces

Wishbone bus provides an interface to connect OR1200
to different modules, memory subsystem, and external periph-
erals. The width of this bus is 32-bit wide, and it does not
support other sizes. The OR1200 is compatible with wishbone
SoC interconnection Rev. B specifications.

I. UART Core

This soft-core is a free available from open source com-
munity opencores.org [2]. UART stands for Universal
Asynchronous Receiver/Transmitter. This core provides com-
munication capabilities with the modem or external devices
like PC using RS-232 protocol or serial cable. This core
is maximum compatible with the national semiconductors’
16550A industry standard devices [24]. The core consists of
transmitter unit TX, receiver unit RX, interrupt block, modem
logic block, wishbone interface bus block and various registers

[25]. This core is attached with OR1200 processor with the
wishbone SoC interface bus. It is compatible with an 8-bit
data bus [24]. When this core is connected to the OR1200
based system, the transmitter unit converts parallel data into a
serial form to the host while receiver unit process that serial
data [25]. Following are some general features of this core,

• Wishbone bus width is selectable 8-bit or 32-bit modes
for this module.

• Perform only FIFO (First In, First Out) operations.

• 32-bit debug interface.

IV. DEVELOPMENT OF HARDWARE AND SOFTWARE
PLATFORMS

Embedded systems require high reliability, high perfor-
mance, low power consumption and low cost. Embedded
systems are developed on FPGAs or ASICs platforms by soft
IP cores. When different IP cores are integrated into a single
FPGA chip, it is called System on a Chip (SoC) design.
Soft-core processors and IP core components described earlier
are freely available under the license of Lesser GNU Public
License (LGPL) for open source community.

There are two major HDL languages, Verilog HDL and
VHDL. The soft IP cores are written in different languages.
The core used in this paper is written in Verilog HDL.
The opencores.org provides a project named MinSoC
(Minimal OpenRISC System on Chip) contains soft IP cores
for OpenRISC 1200 processor, UART, Ethernet MAC (Media
Access Control), debug unit, start-up module, JTAG tap mod-
ule and SPI. This generic core is provided with a synthesizable
core which can be downloaded to every FPGA and also
compatible with every FPGA without the changing of its code.
Only minor changes have to do.

A. Hardware Platform

The board used is equipped with Virtex-5 (XC5VLX110T)
FPGA device. The configuration bit-stream is downloaded
to this board. The hardware consists of an FPGA board,
Xilinx platform cable with JTAG cable and RS-232 serial null
modem cable. To download the configuration, several steps
have to perform to make the configuration file, i.e. *.bit
file. The Virtex-5 board from Xilinx is shown in Fig. 4 used
to implement the work. The device utilisation summary for
the implementation of Open RISC 1200 processor is shown in
Fig. 5.

1) Programming FPGA with JTAG: The Xilinx software
ISE 12.4 is used to synthesize, design implementation and
generation of bit file to configure FPGA. The iMPACT tool
is also available with ISE package. The iMPACT tool is used
to download the bit file into FPGA chip. This programming
required a PC with iMPACT tool, Xilinx platform cable and
JTAG cable is needed to make a physical connection with the
board. The following steps take place for the configuration of
FPGA.

• Double click on iMPACT.

• Double click on boundary scan chain.

www.ijacsa.thesai.org 484 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 1, 2019

Fig. 4. Virtex 5 Board from Xilinx used in this work.

Fig. 5. Device utilisation summary of OR1200 with UART core processor.

• There are three configuration mode select DIP
switches mode [2:0], the mode select must be at value
1 0 1.

• Right click and initialize chain.

• Bypass each device to reach at FPGA chip and con-
figure it with the bit file.

• When it will ask to add SPI flash device, and ignore
it.

• Right click on the FPGA chip and programmed it. It
takes some time and shows program successful.

In this way, FPGA can be programmed by downloading bit
file into it.

2) Programming FPGA with SPI Flash: Serial Peripheral
Interface (SPI) is a four wire, synchronous serial data bus and
is used by SPI flash memories. This serial communication is
now used to configure the Xilinx FPGAs. This system consists
of a master and a slave device.

In this work, the SPI flash memory has been programmed
using the in-direct system programming method. This method
involves the use of iMPACT tool with the graphical user
interface. We need to generate SPI flash PROM image file
whose extension is *.mcs file. When *.mcs file is created
then nearly same procedure is used to configure SPI flash. SPI
flash is programmed and when we turn the power OFF and
ON the SPI loads the configuration file into FPGA device and
the design is implemented.

B. Software Platform

Once the hardware flow completes, then we need to de-
velop the software platform. Hardware can not work alone.
Software toolchain needs to be configured and installed to
cross-compile the firmware for the specific architecture, i.e.
OR32-elf. This toolchain includes the GNU Binutils, GCC,
GDB, and or1ksim. GNU toolchain is required to convert
the C or Assembly source code into the executable Open-
RISC instructions. To install these toolchains, Cygwin runs on
Windows operating systems which provides the LINUX-like
environment [26]. It is a little bit easier to install these GNU
tools on Cygwin environment.

1) Cygwin Environment: In 1995 Cygnus solution de-
veloped Cygwin. It is now part of Red Hat Inc. Cygwin
is a Linux-like environment for Windows. It consists of a
dynamic link library named Cygwin1.dll which acts as an
emulation layer providing a collection of tools. It provides
a Linux look & feel and POSIX system call functionality.
Cygwin works with all x86 and AMD Windows NT and XP.
Cygwin contains many UNIX utilities, and they are used from
bash shell or windows command prompt. Adding more to
it, it allows programmers to write Win-32 console or GUI
applications and those applications can use standard Microsoft
Win and Cygwin API. So it is possible to port many significant
programs. The program includes the configuring and building
of GNU tools. Cygwin supports both path styles POSIX and
Windows NT. Installation of Cygwin is straightforward only a
few steps are required. The setup.exe for the current version is
available at www.cygwin.com. Download the setup.exe file
and double click to install. To configure and build the GNU
toolchain on Cygwin, we need the following packages to install
with Cygwin. Those packages are util-linux, wget, subversion,
patch, gcc, make, libncurses-devel, ioperm, libusb-win32, flex,
bison, and zlib-devel etc.

2) GNU Toolchain: The GNU toolchains are used to create
a cross-compiling environment for the target OR1200 archi-
tecture. OpenRISC toolchain is available with 32-bit GNU
toolchain supported by C and C++ which used to convert C
or Assembly source file into an executable file for the specific
target. All these tools are freely available from open source
community under LGPL license. In this work, these tools are
configured, built and installed for target OR1200 architecture
[26], [27], [28]. The OpenRISC toolchain is available in two
forms:

• Based on newlib library for metal bare use.

• Based on µClibc library for Linux applications.

3) OR1KSIM: The or1ksim is the low-level simulator
which simulates the behaviour of OpenRISC processor based
on the executable file. C source code level debugging can
be performed by or1ksim because through it we can debug
the target [26]. The configuration, building and installation of
or1ksim are done with the same procedure by running the
configure file with a specific target and root directory. Fig. 6
shows a general procedure to install the toolchains.

4) Software Development Flow: The software develop-
ment flow consists of the tools, which converts the C and
Assembly source files to executable files for the target
or32-elf. Firstly install all the toolchains for this OpenRISC

www.ijacsa.thesai.org 485 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 1, 2019

. / c o n f i g u r e −− t a r g e t =or32−e l f −−p r e f i x = / o p t /
o r32 −−enab l e−l a n g u a g e s =c

make a l l
make i n s t a l l

Fig. 6. General commands for installing toolchains.

processor. This paper describes the step by step process to
create executable files. This project also provides us C source
codes for drivers, support and UART interfacing with a make-
file. Those makefile files work according to the flow. First,
the or32-elf-gcc compiler converts C source codes into the
object files. Using linking operation, the codes are converted
into executable files (*.or32). Before it, all object codes are
combined by an or32-elf-ar utility. The index for object codes
after ar utility is produced by running an or32-elf-ranlib utility.
Some files are also linked with the linker to generate an
executable file. This file is enough to run on the machine to
debug the processor. Two more utilities or32-elf-objcopy and
bin2hex are run to create binary file and hex file respectively.

V. RESULT AND DISCUSSION

In this paper, two ways are presented to program FPGA
using configuration bit-stream file. Firstly, the OR1200 pro-
cessor interfaced with the UART module. The iMPACT tool
downloads the bit file into the FPGA. In the second method,
the configuration is done by SPI flash.

A. Serial Communication using UART

After successful completion of hardware and software
toolchain flow, now we can debug the processor by running the
small C code on the OR1200 processor. The communication
between the OR1200 and the host PC is carried out using
RS-232 null modem cable on the FPGA board. Once this is
completed, the following steps are used to debug or run the
“Hello World” example on processor and output is displayed
on Windows hyper terminal. The steps are shown in Fig. 7
whereas, the output appears on the terminal window as shown
in Fig. 8.

1) Open cygwin t e r m i n a l
2) A d v j t a g b r i d g e −b / d i r e c t o r y xpc usb and

p r e s s E n t r e .
3) Open a n o t h e r t e r m i n a l o f cygwin
4) Go t o t h e d i r e c t o r y o f p r o j e c t
5) make a l l
6) or32−e l f −gdb u a r t . o r32
7) s e t r e m o t e t i m e o u t 10
8) t a r g e t remote : 9999
9) l o a d
10) s e t $pc =0x100
11) c
12) Open HyperTermina l w i th t h e f o l l o w i n g

s e t t i n g 57600−8−N−1.

Fig. 7. Debugging commands of OpenRISC 1200 for software platform.

Fig. 8. Serial communication outputs on hyper terminal.

VI. CONCLUSION

In this paper, soft-core processors are studied, and Open-
RISC 1200 processor from opencores.org is discussed in
detail. The OR1200 processors with its peripheral components
are implemented on a Virtex-5 FPGA device. With the help
of Xilinx ISE tools, the project is created. All source code
files for OR1200 and UART core are attached to the project.
Xilinx ISE also does the synthesis, design implementation
and bit file generation processes. FPGA is configured through
two methods JTAG port and SPI serial flash, and successfully
implemented. The software platform is created, configured
and installed. The toolchains GNU GCC, GDB, or1ksim are
installed on Cygwin which provides easy installation of these
tools. The software is written in C and assembly languages.
After making a successful connection between FPGA board
and PC, “Hello World” program is run along some other
programs like the addition of two numbers in hex are also
tested successfully.

REFERENCES

[1] J. G. Tong, I. D. L. Anderson, and M. A. S. Khalid, “Soft-Core
Processors for Embedded Systems,” in 2006 International Conference
on Microelectronics. IEEE, 2006, pp. 170–173. [Online]. Available:
http://ieeexplore.ieee.org/document/4243676/

[2] Open source community, “Home :: OpenCores.” [Online]. Available:
https://opencores.org/login

[3] A. R. Khatri, N. Nizamani, E. Ali, and A. S. Saand, “Selecting
Right FPGA for the Right Application : A Technical Survey for
Xilinx FPGAs,” Quaid-e-Awam Univeristy of Engineering, Science and
Technology, vol. 15, no. 1, pp. 46–49, 2016.

[4] Altera Corporation, “Nios II Processor Reference Handbook,” Tech.
Rep., 2014. [Online]. Available: https://www.intel.co.jp/content/dam/
altera-www/global/ja JP/pdfs/literature/hb/nios2/n2cpu nii5v1.pdf

[5] F. Plavec, “Soft-Core Processor Design,” Ph.D. dissertation, University
of Toronto, 2004. [Online]. Available: https://pdfs.semanticscholar.org/
f44e/9931f3182c44f4290b70d8cc8ea53a64333a.pdf

[6] Matthew Jonathan Andrew D’Souza, “Embedded Bluetooth
Stack Implementation with Nios Softcore Processor - Final
Year Thesis,” Ph.D. dissertation, University of Queensland,
2001. [Online]. Available: https://www.finalyearthesis.
com/embedded-bluetooth-stack-implementation-with-nios-/
softcore-processor/

[7] P. B. Minev and V. S. Kukenska, “Implementation of Soft-core Proces-
sors in FPGAs,” in INTERNATIONAL SCIENTIFIC CONFERENCE 23
– 24 November 2007, GABROVO, nov 2001, pp. 1–4.

www.ijacsa.thesai.org 486 | P a g e

http://ieeexplore.ieee.org/document/4243676/
https://opencores.org/login
https://www.intel.co.jp/content/dam/altera-www/global/ja_JP/pdfs/literature/hb/nios2/n2cpu_nii5v1.pdf
https://www.intel.co.jp/content/dam/altera-www/global/ja_JP/pdfs/literature/hb/nios2/n2cpu_nii5v1.pdf
https://pdfs.semanticscholar.org/f44e/9931f3182c44f4290b70d8cc8ea53a64333a.pdf
https://pdfs.semanticscholar.org/f44e/9931f3182c44f4290b70d8cc8ea53a64333a.pdf
https://www.finalyearthesis.com/embedded-bluetooth-stack-implementation-with-nios-/softcore-processor/
https://www.finalyearthesis.com/embedded-bluetooth-stack-implementation-with-nios-/softcore-processor/
https://www.finalyearthesis.com/embedded-bluetooth-stack-implementation-with-nios-/softcore-processor/

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 1, 2019

[8] R. Jesman, F. M. Vallina, and J. Saniie, “Creating a Simple Em-
bedded System and Adding Custom Peripherals Using Xilinx EDK
Software Tools,” Embedded Computing and Signal Processing Labo-
ratory, Illinois Institute of Technology, Tech. Rep. [Online]. Available:
http://ecasp.ece.iit.edu

[9] Sijmen Woutersen, “The X32 Softcore A top-down approach on pro-
cessor design,” Ph.D. dissertation, Delft University of Technology.
[Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=
10.1.1.127.9809{&}rep=rep1{&}type=pdf

[10] Xilinx Inc., “MicroBlaze Processor Reference Guide,” Tech. Rep.
[11] ——, “PicoBlaze 8-bit Embedded Microcontroller User Guide,” Tech.

Rep., 2004.
[12] Tenilica Inc., “Xtensa Customizable Processors,” Tech. Rep., 2012.
[13] R. Gonzalez, “Xtensa: a configurable and extensible processor,” IEEE

Micro, vol. 20, no. 2, pp. 60–70, 2000. [Online]. Available:http://
ieeexplore.ieee.org/document/848473/

[14] “Dual-Core LEON3FT SPARC V8 Processor User’s Manual,” Tech.
Rep., 2018. [Online]. Available: www.cobham.com/gaisler

[15] D. L. Weaver, OpenSPARC™ Internals OpenSPARC T1/T2 CMT
Throughput Computing, 1st ed. The address: Sun Microsystems, Inc,
2008.

[16] I. Sun Microsystems, “Opensparc™ t1 processor design and verification
user’s guide,” The institution that published, Santa Clara, California
95054, U.S.A., Tech. Rep., 3 2006.

[17] Tsung-Han Heish and Rung-Bin Lin, “Via-configurable structured ASIC
implementation of OpenRISC 1200 based SoC platform,” in 2013
International Symposium on Next-Generation Electronics, vol. 1200.
Kaohsiung, Taiwan: IEEE, feb 2013, pp. 21–24. [Online]. Available:
http://ieeexplore.ieee.org/document/6512280/

[18] Damjan Lampret, “OpenRISC 1200 IP Core Specification (Preliminary
Draft),” Tech. Rep., 2001. [Online]. Available: www.opencores.org

[19] ——, “OpenRISC 1200 IP Core Specification,” Tech. Rep., 2002.
[Online]. Available: www.opencores.org

[20] ——, “OpenRISC 1000 Architecture Manual1,” Tech. Rep., 2004.
[Online]. Available: www.opencores.org

[21] “FPGA Soft Processor Design Considerations — EE Times.” [Online].
Available: https://www.eetimes.com/document.asp?doc{ }id=1274472

[22] J. Baxter, “Open Source Hardware Development and the OpenRISC
Project,” Ph.D. dissertation, KTH, 2011. [Online]. Available: http://kth.
diva-portal.org/smash/get/diva2:458625/FULLTEXT01.pdf

[23] C. H. . Wen, L.-C. Wang, and K.-T. Cheng, “Simulation-based func-
tional test generation for embedded processors,” IEEE Transactions on
Computers, vol. 55, no. 11, pp. 1335–1343, Nov 2006.

[24] M. Litochevski, “Uart to bus core specifications,” opencores, Tech. Rep.,
2010.

[25] S. Titri, N. Izeboudjen, L. Sahli, D. Lazib, and F. Louiz, “Open cores
based system on chip platform for telecommunication applications:
Voip,” in 2007 International Conference on Design Technology of
Integrated Systems in Nanoscale Era, Sept 2007, pp. 245–248.

[26] X. LI, “Open core platform based on openrisc processor and de2-
70 board,” Master’s thesis, Royal Institute of Technology, School
of Information and Communication Technology, Stockholm, Sweden,
2011.

[27] J. Bennett, “Howto: Porting the gnu debugger,” Embecosm, Tech. Rep.,
11 2008.

[28] M. Bakiri, S. Titri, N. Izeboudjen, F. Abid, F. Louiz, and D. Lazib,
“Embedded system with linux kernel based on openrisc 1200-v3,” in
2012 6th International Conference on Sciences of Electronics, Technolo-
gies of Information and Telecommunications (SETIT), March 2012, pp.
177–182.

[29] Magnus, Själander and Habinc, Sandi and Gaisler, Jiri, “LEON4 :
Fourth Generation of the LEON Processor,” Aeroflex Gaisler, Kungs-
gatan 12, SE-411 19 Göteborg, Sweden, pp. 1–5.

www.ijacsa.thesai.org 487 | P a g e

http://ecasp.ece.iit.edu
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.127.9809{&}rep=rep1{&}type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.127.9809{&}rep=rep1{&}type=pdf
http://ieeexplore.ieee.org/document/848473/
http://ieeexplore.ieee.org/document/848473/
www.cobham.com/gaisler
http://ieeexplore.ieee.org/document/6512280/
www.opencores.org
www.opencores.org
www.opencores.org
https://www.eetimes.com/document.asp?doc{_}id=1274472
http://kth.diva-portal.org/smash/get/diva2:458625/FULLTEXT01.pdf
http://kth.diva-portal.org/smash/get/diva2:458625/FULLTEXT01.pdf

	Introduction
	Soft core processors
	Commercial Cores
	Nios II
	MicroBlaze
	PicoBlaze
	Xtensa

	Open Source Cores
	Leon SPARC
	OpenSPARC
	OR1200 OpenRISC

	Advantages and Disadvantages
	Advantages
	Disadvantages

	OpenRISC (OR1200) Architecture
	CPU/FPU/DSP
	Instruction Unit
	General Purpose Registers
	Load/Store Unit
	Integer Execution Pipeline
	MAC Unit
	System Unit
	Exceptions

	Data Cache & MMU
	Instruction Cache & MMU
	Power Management Unit
	Tick Timer
	Debug Unit
	Programmable Interrupt Controller
	Wishbone Interfaces
	UART Core

	Development of Hardware and Software Platforms
	Hardware Platform
	Programming FPGA with JTAG
	Programming FPGA with SPI Flash

	Software Platform
	Cygwin Environment
	GNU Toolchain
	OR1KSIM
	Software Development Flow

	Result and Discussion
	Serial Communication using UART

	Conclusion
	References

