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Abstract—In recent years, several approaches have been
proposed in order to detect communities in social networks. Most
of them suffer from the recurrent problems: no detection of
overlapping communities, exponential running time, no detection
of all possible communities transformations, don’t consider the
properties of social members, inability to deal with large scale
networks, etc. Multi-agent systems are very suitable for modeling
the phenomena in which various autonomous entities in inter-
actions able to evolve in a dynamic environment. Considering
the advantages of multi-agent simulations for social networks, in
the present study, an incremental multi-agent system based on
electric field is proposed. In this approach, a group of autonomous
agents work together to discover the dynamic communities.
Indeed, an agent is associated to each detected community. To
update its community according to the dynamic of its members,
each agent creates an electric field around it. It applies an
attractive force to add very connected and similar members
and neighboring communities. In the same time, it applies a
repulsive force to reject some members and to get away from
other communities. These forces are based on the structural and
attributes similarity. To study the performance of this approach,
set of different experiments is performed. The obtained results
show the efficiency of the proposed model that was able to
overcome all mentioned problems.
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I. INTRODUCTION

Since their introduction, social networks sites such as
Facebook, Instagram and Google+ have attracted millions of
users, many of whom have integrated these sites into their daily
practices. These networks have recently become an important
research topic that attracts more and more scientists.

A social network is a dynamic set of members and their
relationships. New members appear, existing ones disappear,
new relations appear every day and old relations weaken
gradually, disappear or on the contrary, they reinforce.

Moreover, social networks are characterized by actors
that divide up naturally into groups called “communities”.
Conventionally, a community is defined as a group of users
who interact with each other more frequently than with those
outside the group, and that share similar topics of interest [1],
[2], [3]. Since social networks are usually modeled by a graph
such as nodes represent social actors and edges represent the
relationships, a community is defined as a set of nodes that are
densely connected among themselves and sparsely connected
to the rest of nodes. These communities evolve over time

according to the evolution of the actors and their interactions.
Fig. 1 illustrates the basic communities transformations that
have been identified in a number of studies (see for example
[4], [5]): growth, contraction, splitting to many communities,
merging of many communities to one, birth and death of
communities.

Fig. 1. Basic transformations of community structure [4]

The automatic detection of these dynamic communities
provides a basis for studying the emerging phenomena within
the network: it allows to determine the number and sizes of
the communities and to track their evolution over time. It is
also used to recommend establishing new relations that is a
service frequently offered in social networks like Facebook.
In addition, community detection algorithms can be used
to develop other more complex processes such as network
visualization.

The first problem confronted here is the complexity of
this problem which is NP-hard [6]. The second obstacle is
intrinsically linked to the absence of an exact definition of
the dynamic community notion: should it be defined as a
succession of static communities or as a set of communities
that evolve over time?

Several research studies are deal with the community
detection problem. In the second section, the main approaches
proposed in the literature for the detection of dynamic commu-
nities are presented. In the third section, the proposed approach
is detailed. In the fourth section, the experimental results are
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presented before concluding this paper.

II. RELATED WORK

Community detection, also known as graph clustering,
has been extensively studied in the literature [7]. The first
approaches consider only a static view of the network; they
study a snapshot Gt at a particular time t [8], [9], [2], [10],
[11], [12], [13], [14], [15]. In this way, the evolutionary
information of the network and its communities is lost because
real-world networks are always evolving, either by adding or
removing nodes or edges over time.

Recently, some approaches for the detection of dynamic
communities have been proposed [16], [17], [18], [19], [20],
[5], [21], [22], [23], [24]. One way to analyze communities
in an evolving network is to consider the dynamic graph
as a succession of independent captures of the graph, all of
which are static graphs. These approaches consist in applying
a static community detection algorithm on each snapshot of
the network and then finding a correspondence between the de-
tected communities in the consecutive captures [4], [25], [26].
For example, in [16], authors detect dynamic communities by
optimizing a quality function which considers both the quality
and the stability of communities. While in [20], authors fit the
evolving network to a dynamic version of the stochastic block
model, and determine the community assignment by estimating
the parameters of the model.

One of the problems of these approaches is the instability
of the static community detection methods [27]: these methods
can give different results for similar networks. Also, track
the evolution of communities, over a set of independent
time snapshots, leads to the loss of information related to
the evolution of network. The main disadvantage of these
algorithms is that they are commonly time-consuming when
the network evolves rapidly and the time slices are extremely
small, i.e., the network has a lot of snapshots to be computed.

Another set of proposed approaches update adaptively
the current community structure based on the previous ones
according to the network modifications. So the evolution of the
network is no longer considered as a succession of snapshots,
but as a succession of modifications on the network. The
idea is to start with an initial partition and to update it
according to the latest evolution of the network instead of
finding a new partition [28], [29], [23], [24]. The detection of
communities is therefore not done on the whole network, but
only by minor and successive local modifications. For example,
Nguyen NP et al. [30] proposed a modularity-based algorithm
which greedily changes memberships of nodes by optimizing
a local modularity function whenever a small modification
occurs in the network. In a similar way, LabelRankT [21] and
ALPA [23] adjust its detecting communities according to the
network modifications through a stabilized label propagation
process by taking advantage of what is already obtained in the
previous snapshots.

Although these approaches appear to be much more rele-
vant than computing communities on each snapshot separately,
they are not able to deal with large networks. This failure is
mainly due to their centralized nature.

Some multi-agents approaches are also proposed for the
discover of communities in dynamic social networks [31], [5],

[32], [33], [34]. These approaches seem to be most appropriate
for observing the network evolution and updating communities
locally and they show interesting results thanks to their decen-
tralized aspect (see Section III). However, these approaches
suffer from several shortcomings. The main problem is the
disability to detect all possible transformations of communities,
specially complex evolutions such as splitting and merging.
Another problem of these approaches is the use only of
network structural information for the identification of the
dynamic communities and ignore the characteristics of social
actors (age, education, city of residence, etc.). However, these
properties are often very important data for the detection of
communities. Really, in the ideal partition, communities must
have members that are not only highly connected but also have
similar properties (i.e., attributes). In this case, the generated
communities will have, on the one hand, a cohesive intra-
community structure and, on the other hand, homogeneous
nodes.

III. DESCRIPTION OF THE MULTI-AGENT PROPOSED
APPROACH

A Multi-Agent System (MAS) is defined as a system
in which several autonomous and intelligent entities, called
agents, interact together to achieve a set of goals or tasks.
Multi-agent systems are very suitable for modeling the phe-
nomena in which the interactions between various entities
are complex. The power of expression of multi-agent models
allows to represent autonomous entities in interactions and able
to evolve in a dynamic environment [35], [36]. Considering the
advantages of multi-agent simulations for social networks, a
multi-agent framework allowing to detect the dynamic social
network is proposed. In this section, we start by the prob-
lem definition. Subsequently, a proposed model description is
given.

A. Problem Definition

The social network is modeled by an attributed graph
G = (V,E,A) such that V = {v1, v2...vn} is the set of
nodes representing social actors, E = {e1, e2...em} is the
set of edges, representing different relationships and A =
{a1, a2...ak} is the set of attributes associated with the nodes,
that represent properties associated with the social actors. The
node vi has a vector [ai1, ai2...aik] where its value on attribute
aj is aij . The objective of this work is to find communities in
an attributed graph, i.e., to partition the graph into communities
Gi = (V i, Ei,A), where Vi ∩ Vj 6= ∅. Nodes in the same
communities are expected to be highly connected and have
similar attributes.

B. Proposed Model

In this paper, an incremental multi-agent approach based
on electric field that is called MASEF i.e is presented. Multi-
Agent System for Community Detection. In this incremental
proposal, the dynamic social network is defined as a single
graph with a set of events (succession of modifications) on
nodes and edges. We start by a random partition and according
to the evolution of the network, the previous detected partition
is adapted in real time.

To do so, a group of autonomous agents is used and they
work together to update the communities. In fact, an agent
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is associated to each detected community. The environment
in which the agents live, evolve and die is described by the
graph. To update its community according to the dynamic
of its members, we were inspired by the laws of electric
fields. Indeed, each agent is seen as a particle that creates
an electric field around it. It applies an attractive force to add
new members and some neighboring communities. In the same
time, it applies a repulsive force to reject some members and
to get away from other communities. These forces are based
on the structural and the attributes similarity as detailed in the
rest of this section.

According to Coulomb’s Law, the electric force applied by
an agent is defined as:

~F = q. ~E (1)

such that ~E is the electric field vector. Communities are
assumed to be positively charged particles. So nodes and
communities with positive charge will be attracted. However,
nodes and communities with negative charge will be rejected
(see Fig. 2):

• if q < 0: the direction of E is opposite to that of the
electric force F (attractive force).

• if q > 0: the direction of E is that of the electric force
F (repulsive force).

Fig. 2. An electric field with a positive charge.

Community-node Force

In the proposed model, q, that is the charge of a node n
submitted to the electric field created by the community C, is
defined as:

q(C, n) = Rep(C, n)−Att(C, n) (2)

such that

Att(C, n) = α
NB(C, n)

|C|
+ (1− α)sim(C, n) (3)

and

Rep(C, n) = α
NB(C, n)

|C|
+ (1− α)(1− sim(C, n)) (4)

where NB(C, n) is the number of neighbors of n in C,
NB(C, n) is the number of nodes in C that are not related to n,

|C| is the number of nodes in C, sim(C, n) is the similarity of
n to the members of C and α ∈ [0, 1] is a weighting parameter
to balance the trade-off between the structural similarity and
the attributes similarity of n to C. More n is attached and
similar to members of C, more Att(C, n) will be important.
On the other hand, Rep(C, n) is important when the node n
has few neighbors in C and is dissimilar to the members of
C. We note that:

• If Att(C,n) > Rep(C,n) so q < 0 (attractive force).

• If Att(C,n) < Rep(C,n) so q > 0 (repulsive force).

For the definition of the similarity, the similarity proposed
by Gonzalo in [37] is chosen and it defined as:

S(C) =
1

D
[
∑

v,w∈C

D∑
j=1

sim(xjv, xjw)

|c|2
],

D = |X| is the number of attributes in G, xjv is the value
of the j-th attribute for node v, and sim(xjv, xjw) is a function
of the similarity between xjv and xjw.

For binary attributes, sim(xjv, xjw) is given by the simple
matching coefficient between xjv and xjw:

sim (xjv, xjw) =

∑d
k=1 (xjvk ∧ xjwk

) ∨ (¬xjvk ∧ ¬xjwk
)

d

For categorical attributes, sim(xjv, xjw) is given by the
Jaccard similarity index between the ”1-of-N” binary encod-
ings of xjv and xjw:

sim (xjv, xjw) =

∑d
k=1 xjvk ∧ xjwk∑d
k=1 xjvk ∨ xjwk

For numeric attributes, sim(xjv, xjw) is given by the
inverse of one plus the Euclidean distance between xjv and
xjw:

sim (xjv, xjw) =
1

1 +
√∑d

k=1 (xjvk ∧ xjwk
)
2

where d is the number of dimensions of the j−th attribute,
xjvk is the value of the k−th coordinate of the j−th attribute
for node v, and ¬, ∧ and ∨ are the logical NOT, AND, and
OR operators, respectively.

This attribute similarity function allows the combination of
the attributes of different types, which is essential given the
heterogeneous nature of many real-world networks.

Community-Community Force

q, the charge of a community C ′ submitted to the electric
field created by the community C, is defined as:

q(C,C ′) = Rep(C,C ′)−Att(C,C ′) (5)

such that
Att(C,C ′) =

Overlap(C,C ′)

|C ′|
(6)
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and

Rep(C,C ′) =
Overlap(C,C ′)

|C ′|
(7)

where Overlap(C,C ′) is the number of overlapping nodes, i.e.
nodes that belong to C and to C ′. If the number of overlapping
nodes is greater than the number of non overlapping nodes in
C ′, this community will be attracted by the C:

• If Att(C,C’) > Rep(C,C’) so q < 0 (attractive force).

• If Att(C,C’) < Rep(C,C’) so q > 0 (repulsive force).

1) When are the agents reacting?: The events observed
in the network can be classified into two types: negligible
events and important events. Negligible events are those that
do not change the community structure (such as creating a
relationship between two members of the same community
or breaking a relationship between two members belonging
to different communities). These events do not require the
communities update.
On the other hand, important events are those that can alter
the existing community structure such as the creation of new
relationships between members belonging to different commu-
nities (this may lead to the fusion of these two communities),
or the breaking of relations between members belonging to a
same community (which may lead to the division of this com-
munity). In this model, the agents react only when important
events occur which makes it possible to neglect minor events
and to treat very dynamic networks.

2) Agents: The proposed model start by a random partition.
An agent is assigned to each detected community and it is
defined by his id and the following properties:

• List of its members, which are the components of its
community.

• List of nodes having relations with its members.

• List of neighboring agents (agents associated with
communities having relationships with its commu-
nity).

• List of the most connected nodes (i.e. having the
biggest degree) in its community. This list contain only
the 20% of the community members.

An agent is defined by the following possible behaviors:

• Decide to integrate or not a node to itself, which leads
to the growth of the community.

• Decide to remove or not a node from itself, which
leads to the contraction of the community.

• Decide to integrate or not another community, which
leads to the merge of the community.

• Decide to divide itself or not, which leads to the
division of the community.

• Decide to create a community, which leads to the birth
of a new community.

• Decide to die, which leads to the death of the com-
munity.

Growth and contraction of a community

When a new node n appears in the network and creates
relationships with members of existing communities, n will
be subject to the electric fields created by these communities.
Similarly, if a node n belonging to community Cn creates new
relationships with some members of another community C, C
applies an electric field on n.

The node n will therefore be subject to several force created
by the different neighboring communities (see Figure 3). These
forces can be attractive or repulsive. Finally, n will be attracted
by the community that applies the most attractive force. In the
case of equality (several communities apply the same strength
of attractive force), n will be integrated by several communities
at the same time and in this case, it will be an overlapping
node. Once integrated into the community C, the agent aC
associated with C informs the agent aCN associated with Cn

(to which n belonged). aCN will remove n from the list of
its members. We notice the contraction of the community Cn,
since it has lost a member, and the growth of C.

Fig. 3. An example of a node subject to two electric fields emitted by two
communities.

Birth of a community

If a member n appears in the network and it is attached
to a set of new members newly appeared in the networks,
it will be subject to the electric field applied by the virtual
community containing these friends. If n is attached to some
existing communities, it will be also subject to forces created
by these communities (see Fig. 4). n will finally be attracted by
the community that exerts the most important attractive force.

Division of a community

When an agent deletes nodes belonging to the list of the
most connected nodes, this agent uses the model of Gonzalo
[37] (see Section IV-A) to detect the possible sub-communities
within its community (see Fig. 5). Subsequently, it assigns a
new agent to each sub-community and thereafter it leaves the
system.

Merge of communities

As it is noted, each community applies an electric field
to neighboring communities. When the number of overlapping
nodes between two communities C and C ′ will be grater than
the number of the non overlapping nodes in C ′ (see Fig. 6),
the force applied by C on C ′ will be an attractive force. C ′
will then merged with C.

When several communities apply an attractive force on a
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Fig. 4. An example of a node subject to an electric field emitted by existing
communities and a virtual community.

Fig. 5. An example of a community division.

community C ′, this one will be integrated to the community
that applies the grater force.

Fig. 6. An example of a community subject to an electric field created by
another community.

Death of a community

As we have shown, the community can be attracted by
an existing community. In this case, we are talking about the
death of this community. This result can also be considered in
a particular case in which the community loses all its members.

Following these different reactions of the agents, the user
can observe the communities that emerge over time and
evolve according to the dynamic of social members and their
interactions.

IV. EXPERIMENTATION AND EVALUATION

In order to study the performance of the proposed ap-
proach, it is applied to real data from well-known online social
networks and artificial data. In this section, the main results
of his experiments are reported.

A. Choice of Algorithms to Compare

In these experiments, the results of MASEF are compared
with the those of two models among the best performing.
These models are:

• GM model (Gonzalo’ model) [37] : the goal of this
algorithm of community detection in attributed graphs
is to maximize both the modularity and the attribute
similarity (presented in section III-B of the partition
of the graph. To track the evolution of communities
over time, Gonzalo’s algorithm identifies communities
at each time step and then matches the communities
identified at consecutive time steps.

• The iLCD model (intrinsic, Longitudinal Community
Detection) [5] which is an incremental and multi-
agent model. In this work, the author associates with
each detected community an autonomous agent called
agent-community. The detection of a community is
done by replaying the creation of the network edge
by edge. Once a clique (usually 3 or 4 members)
is present, a new community with a new commu-
nity agent is created. This agent successively adds
neighbors who improve the quality of the community.
Through the actions of creating new communities
and integrating members into existing communities,
the approach succeeds in finding the initial partition.
Subsequently, community agents update their commu-
nities according to the evolution of the network.

B. Evaluation Measures

For the evaluation of MASEF , two measures well known
in the literature are chosen. The first measure is the weighted
modularity [6] which evaluates the quality of the partition
obtained based in the internal and external links of its com-
munities. This measure is the most used to qualify a partition
of a graph. For a weighted graph, modularity is defined as
the fraction of the weight of the links ending in the same
community subtracted from the same value if the links were
placed at random. The more important the modularity, the
better is the partition. Weighted modularity is defined by:

MQw =
1

2Ws

∑
ij

[Wij −
WiWj

2Ws
]δ(ci,cj) (8)

such that Wij is the weight of the links connecting the nodes
i and j, Wi =

∑
j Wij is the sum of the link weights of the

node i, the sum of weight is 2Ws =
∑

ij Wij , ci means that
the node i belongs to the community ci. The δ(ci,cj) function
takes the value 1 if i and j belong to the same community,
and takes the value 0 otherwise.

The second measure used to evaluate the quality of detected
partitions is the weighted entropy that evaluates the partition
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based on the attributes similarity of the members in a same
community. Let A be a graph with |V | nodes. To each node,
a set of attributes A = {a1, ..., am} is associated. To each
attribute ai is associated a weight wi. ni denote the number of
values that the attribute ai can take. The entropy for a partition
P = {C1, ..., Ck} of this graph is defined by [38]:

entropie(P ) =

m∑
i=1

wi∑m
p=1 wp

k∑
j=1

|Cj |
|V |

entropie(ai, Cj) (9)

such that

entropie(ai, Cj) = −
ni∑
n=1

pijn log2(pijn) (10)

and pijn is the percentage of nodes in the community Cj

having a value ain for the attribute ai. The P entropy measures
the weighted entropy for all attributes in the k communities.

The entropy belongs to the interval [0,∞ [. A low entropy
value is equivalent to a great homogeneity of the attributes of
the nodes in the same community.

C. Application to Real Networks

Datasets

The performance of the proposed algorithm is evaluated on
large-scale dynamics attributed networks constructed from four
real-world data sets: DBLP, Yelp, TripAdvisor and Google+.
Table I summarizes the characteristics of these networks such
that #ni and #mi represent the initial number of nodes and
edges, respectively, #nf and #mf represent the final number
of nodes and edges, respectively, and #timestep denotes the
number of time steps.

TABLE I. CHARACTERISTICS OF REAL-WORLD NETWORKS.

DBLP Yelp TripAdvisor Google+
#ni 13,782 7 15 300 000
#nf 110,065 97,039 297,301 500 000
#mi 33,528 14 26 625 124
#mf 426,548 10,372,332 28,288,858 1 685 124
# time step 7 7 7 4

TABLE II. RUNNING TIME IN SECONDS FOR REAL WORLD NETWORKS.

DBLP Yelp TripAdvisor
Proposed model 10.1 101.2 166.1
iLCD 9.5 88.3 102.1
GM 25.29 299.81 385.27

• The DBLP 1 data set provides publication records
from 1991 to 2000. In the corresponding network,
an edge between two nodes is present if the authors
represented by those two nodes collaborate in a pub-
lication. The authors have 19 categorical attributes
representing each author’s areas of publication (e.g.,
artificial intelligence, bioinformatics, security).

• The Yelp 2 data set provides user reviews of a select
set of businesses from 2004 to 2012. In the cor-
responding network, an edge between two nodes is

1dblp.uni-trier.de/xml
2www.yelp.com/dataset challenge

present if the users represented by those two nodes
reviewed the same business. Nodes have 38 categorical
attributes representing the type of businesses reviewed
by each user (e.g., restaurants, shops, services), as well
as a numeric attribute corresponding to the average
rating assigned by each user.

• The TripAdvisor 3 data set provides hotel reviews from
2002 to 2012. In the corresponding network, an edge
between two nodes is present if the users represented
by those two nodes reviewed the same hotel. Nodes
have a numeric attribute corresponding to the average
rating assigned by each user.

• The Google+ data set 4 : UC Berkeley has published
four snapshots of a part of Google+ network. These
Data contain also some attributes of social members :
job, school ,address.

Experimental Setup for real networks

Communities in these real-world networks using
MASEF , as well as iLCD and GM are identified.
Note that GM is an algorithm for detecting communities in
dynamic attributed graphs, as for iLCD, they do not consider
the nodes attributes. All experiments on real-world networks
were performed on an Intel machine running RHEL Server
6.7 consisting of two hex-core E5645 processors and 64GB
DDR2 RAM. The proposed algorithm was implemented in
JAVA. It is to be noted that in all these experiments, the value
of the weighting parameter α of the presented equations is
set to 0.5.

The algorithms were compared in terms of the qual-
ity of the identified communities and the efficiency of the
implementation. To evaluate their structural properties, the
modularity of the graph partition is measured, and to evaluate
the homogeneity of their attribute information, the average
entropy is measured. The obtained results are shown in Fig.
7,8,9,10,11,12,13 and 14.

Fig. 7. Variation of modularity of the tested models for DBLP network.

Finally, the Table II summarize the running times in
seconds.

Discussion of Results for real networks

3times.cs.uiuc.edu/\∼{}wang296/Data
4http://projects.csail.mit.edu/dnd/
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TABLE III. DESCRIPTION OF THE DYNAMIC NETWORK GENERATOR PARAMETERS.

Parameter Signification Value
K Number of communities 50
N Number of nodes 5000
p Number of numerical attributes 10
A = γ1, ...γp Standard deviations of the attributes generated using centered normal distributions 0
Emax

with Maximum number of edges connecting a new node to nodes in its community 10
Emax

btw Maximum number of edges connecting a new node to nodes in a different community 10
NbRep Maximum number of representatives of each community 5
MTE Minimum number of total edges 10 000
PrandomCommunity A threshold to decide if a new node joins a randomly selected community or not 0.5
ProbaMicro A threshold to select if the micro dynamic updates are performed or not 0.5
Addnode Ratio defining the number of nodes inserted 0.3
Removenode Ratio defining the number of nodes removed 0.3
UpdateAttr. Ratio defining the number of attributes updated 0
AddBtw.Edges Ratio defining the number of between edges inserted 0.3
RemoveBtw.Edges Ratio defining the number of between edges removed 0.9
AddWth.Edges Ratio defining the number of within edges inserted 0.5
RemoveWth.Edges Ratio defining the number of within edges removed 0.5
Timestamps Number of graphs generated 10
ProbaMigrate Probability to perform the migrate nodes operation 0.75

TABLE IV. DESCRIPTION OF “MACRO OPERATIONS” PARAMETERS
FOR REFERENCES GRAPHS.

Parameter Signification Value
PremoveEdgeSplit Proba. to remove an edge

between two nodes in the same community
when splitting a community 0.3

ProbaMerge Probability to perform the merge operation 0.3
ProbaSplit Probability to perform the split operation 0.3

TABLE V. RUNNING TIME (IN SECONDS) FOR REFERENCES GRAPHS

¯CPU
Proposed model 27
iLCD 18
GM 25.94

Fig. 8. Variation of weighted entropy of the tested models for DBLP network.

From these experiments on real graphs, we can conclude
that partitions of MASEF as well as those of GM were par-
ticularly relevant given the high modularity and low weighted
entropy of these partitions, which proves the good structural
quality of the detected partitions as well as the homogeneity
of the members within the same communities.

On the contrary, the quality partitions of iLCD still had
inferior quality, due to the fact that iLCD does not integrate

Fig. 9. Variation of modularity of the tested models for YELP network.

Fig. 10. Variation of weighted entropy of the tested models for YELP
network.

the attribute similarity for the detection of communities. With
respect to the efficiency of the algorithms, MASEF was
proven to be slower than iLCD, because it takes time to find
an initial partition. On the other hand, the proposed approach
is much faster than the GM , which was expected as it is a
centralized model. Thus, the quality of the communities found
by GM model was at the expense of execution time which is
considerably higher. This suggests that the proposed algorithm
is able to achieve a better balance between the efficiency and

www.ijacsa.thesai.org 499 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 1, 2019

TABLE VI. DESCRIPTION OF “MACRO OPERATIONS” PARAMETERS FOR GRAPHS WITH SEVERAL MERGE OPERATIONS

Parameter Signification Value
PremoveEdgeSplit Proba. to remove an edge

between two nodes in the same community
when splitting a community 0.3

ProbaMerge Probability to perform the merge operation 0.75
ProbaSplit Probability to perform the split operation 0.3

Fig. 11. Variation of modularity of the tested models for TripAdvisor network.

Fig. 12. Variation of weighted entropy of the tested models for TripAdvisor
network.

Fig. 13. Variation of modularity of the tested models for Google+ network.

TABLE VII. RUNNING TIME (IN SECONDS) FOR GRAPHS WITH
SEVERAL MERGE OPERATIONS

¯CPU
Proposed model 56
iLCD 45
GM 103

Fig. 14. Variation of weighted entropy of the tested models for Google+
network.

the quality of the identified communities.

D. Application to Artificial Networks

To build synthetic datasets, the generator DANCer pre-
sented in [39] is used. A network is defined by a sequence
of undirected attributed graphs having a well defined partition.
The ground truth partition is given by P ∗t with t ∈ {1, ..., T}.
The evolution of the network is obtained by removing or
adding edges, by migrating nodes from a community to another
one, by splitting a community into two new sub-communities
or by merging two existing communities into a single com-
munity. Therefore, the real structure of each generated social
network is used as a reference point. As evaluation criteria,
the normalized mutual information (NMI) is used. NMI is
the most standard commonly used measure to compare two
partitions of the same graphs. It is defined as follows [40]:

NMI(A,B) =
−2

∑
a∈A

∑
b∈B |a ∩ b| log(

|a∩b|n
|a||b| )∑

a∈A |a| log(
|a|
n ) +

∑
b∈B |b| log(

|b|
n )
,

(11)
with A and B being two distinct partitions of the same graph.

Using DANCer, 10 dynamic networks with the same set
of parameters are generated. Table III presents a description
of DANCer parameters and the common used values in all
these simulations.
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TABLE VIII. DESCRIPTION OF “MACRO OPERATIONS” PARAMETERS FOR GRAPHS WITH SEVERAL SPLIT OPERATIONS

Parameter Signification Value
PremoveEdgeSplit Proba. to remove an edge

between two nodes in the same community
when splitting a community 0.75

ProbaMerge Probability to perform the merge operation 0.3
ProbaSplit Probability to perform the split operation 0.75

TABLE IX. RUNNING TIME (IN SECONDS) FOR GRAPHS WITH
SEVERAL SPLIT OPERATIONS

¯CPU
Proposed model 130
iLCD 76
GM 246

Experimental Setup for artificial networks

1) First case: references graphs
In the first case, reference graphs having “Macro
operations” parameters are considered. These graphs
are described in Table IV. The average NMI of
MASEF , iLCD and GM is shown in Figure 15.
The Table V summarize the running time (in seconds)
of the three models for references graphs.

Fig. 15. Variation of NMI of the tested models for references graphs.

2) Merge operation
In this second set of runs, we were interested by
graphs in which several communities merge as the
merge is one of the most difficult movements to
detect. The “Macro operations” parameters of this set
of graphs are described in Table VI. The behavior of
the different algorithms in this case is followed. The
average NMI is showed in Fig. 16, and the Table
VII summarize the running time (in seconds) of the
algorithms for this set of graphs.

3) Split operation
In the third set of runs, graphs with an important
number of split operation (see the Table VIII for the
“Macro operations” parameters) are considered. The
resulting NMI is presented in Fig. 17 and the resulting
running time of the three approaches is summarized
in Table IX.

4) Merge and Split operation
Finally, the most complex case, when several com-
munities merge and other ones split, is considered.

Fig. 16. Variation of NMI of the tested models for graphs with several merge
operations.

Fig. 17. Variation of NMI of the tested models for graphs with several split
operations.

The “Macro operations” parameters of this set of
graphs are described in Table X. The resulting NMI
is presented in Fig. 18 and the resulting running time
is summarized in Table XI

Discussion of Results for artificial networks

From Fig. 15,16 and 17, we can see that MASEF was
able to find a very close partition to the exact partition for all
graphs thanks to the accordance between the computed and the
exact partitions (NMI ' 1). We notice that the partitions of
GM were very close to MASEF partition, which in several
times was closer to the correct partition than GM . Regarding
the CPU-time, we notice in Tables V, VII, IX and XI that the
proposed model was slower than iLCD and faster than GM
in computing an optimal partition.

From these simulations on artificial networks, we can
conclude that MASEF performed well for distinct types of
graphs, and it was always able to compute the exact structure
of each network regardless of its nature and complexity. On
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TABLE X. DESCRIPTION OF “MACRO OPERATIONS” PARAMETERS FOR COMPLEX GRAPHS.

Parameter Signification Value
PremoveEdgeSplit Proba. to remove an edge

between two nodes in the same community
when splitting a community 0.75

ProbaMerge Probability to perform the merge operation 0.75
ProbaSplit Probability to perform the split operation 0.75

TABLE XI. RUNNING TIME (IN SECONDS) FOR COMPLEX GRAPHS
OPERATIONS.

¯CPU
Proposed model 254
iLCD 112
GM 4789

TABLE XII. CHARACTERISTICS OF THE WIDE-SCALE NETWORK.

Nb of time steps T0 T50k T100k

Nb of nodes 500 1 M 2 M
Nb of links 2,5 k 10,2 M 22,9 M
Nb of events 0 11,2 M 25,6 M

Fig. 18. Variation of NMI of the tested models for complex graphs.

the other hand, although MASEF was slower than iLCD, it
detected a much better partition.

E. Application to Large Scale Artificial Networks

The objective of this experiment is to test the reliability and
performance of MASEF to deal with graphs of large scales.
For this purpose, we have generated a network with a size that
grows progressively over time by adding a random number of
links and nodes. After more than 100k steps of time, the size
of the graph becomes large. Table XII summarizes the different
characteristics of this network.

The simulation is launched on this network and it is stopped
when we reach a size that exceeds two million nodes and
22 million links. This experience was limited by the size of
available RAM (16 GB of RAM). The simulation was stopped
after 15 hours and 51 minutes. During this same simulation
time, GM managed only 170 250 nodes. ILCD was able to
partition only 1,950,430 nodes. The advantage of MASEF
lies in its decentralized nature, which consists of processing
the only important events of the network in a local way. As a
result, the proposed multi-agent system self-stabilizes rapidly
and we speak of perturbations only at the level of the agents
concerned by the event.

Fig. 19 shows the variation of the weighted modularity
of the partitions detected in a few steps of time. The curves
show the good qualities of MASEF ’s partitions which do
not degrade with the increasing size of the network. On the
other hand, a significant degradation of the qualities of the
partitions obtained by iLCD is noted. GM ensures a good
partition quality but it cannot resist face to the increasing size
of the network.

Fig. 19. Variation of the weighted modularity of the partitions detected for
the large artificial network.

The results of these experiments show the effectiveness of
MASEF to the detection of dynamic communities. Indeed,
we have obtained particularly interesting results which the
previous methods were not able to attain.

V. CONCLUSION AND PERSPECTIVES

In this work, an incremental multi-agent approach for
community detection in dynamic social networks is presented.
In the proposed method, a set of agents work together to update
existing community. To do so, each one applies an electric field
to attract similar and very connected members and reject the
others.

Thanks to its decentralized and incremental nature, the
MASEF approach can detect the dynamic of communities
based on local computation allowing the adaptation of the
existing partition. Therefore, this solution is able to treat
large scale networks. The main contribution of the proposed
approach compared to multi-agent methods presented in the
literature is that it allows all operations on communities:
birth, death, growth, contraction, and also the most complex
events which are the merge and the division. In addition, the
consideration of the characteristics of social actors presents
a considerable contribution of MASEF compared to most
existing models. Another originality of the proposed approach
is the use of electric field as an auto-organization tool for
the different agents. Experimental results on both synthetic
and real-world networks demonstrate the effectiveness of the
proposed approach.
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In our future work, we aim to integrate the amount of the
exchanged data between the social members for the purpose of
community detection. In fact, in large social networks such as
Facebook and Twitter, the communities can be recognized as
the groups of users who are often interacting with each other.
Therefore, the amount of the exchanged data could be applied
as a parameter for an efficient community detection.
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Ph.D. dissertation, Université Paul Sabatier - Toulouse III, 2013.

[6] S. Fortunato, “Community detection in graphs,” Physics Report, vol.
486, no. 3-5, pp. 75–174, 2010.

[7] J. Kim and J.-G. Lee, “Community detection in multi-layer graphs: A
survey,” SIGMOD Rec., vol. 44, no. 3, pp. 37–48, Dec. 2015. [Online].
Available: http://doi.acm.org/10.1145/2854006.2854013

[8] W. Chen, Z. Liu, X. Sun, and Y. Wang, “A game-theoretic framework
to identify overlapping communities in social networks,” Data Mining
and Knowledge Discovery, vol. 21, no. 2, pp. 224–240, 2010.

[9] L. Ben Romdhane, Y. Chaabani, and H. Zardi, “A robust ant colony
optimization-based algorithm for community mining in large scale
oriented social graphs,” Expert Systems with Applications, vol. 40,
no. 14, pp. 5709–5718, 2013.

[10] H.Zardi and L. B. Romdhane, “Mwep: Efficiently mining community
structures in weighted large scale social graphs,” in Proceedings of
the first international conference on Reasoning and Optimization in
Information Systems., 2013, pp. 30–38.

[11] J. Ji, X. Song, C. Liu, and X. Zhang, “Ant colony clustering with fitness
perception and pheromone diffusion for community detection in com-
plex networks,” Physica A: Statistical Mechanics and its Applications,
vol. 392, no. 15, pp. 3260–3272, 2013.

[12] T. Chakraborty and A. Chakraborty, “Overcite: Finding overlapping
communities in citation network,” in IEEE/ACM International Con-
ference on Advances in Social Networks Analysis and Mining, 25-28
August 2013, pp. 1124–1131.
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