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Abstract—Given a collection of images which contains objects
from the same category, the co-segmentation methods aim at
simultaneously segmenting such common objects in each image.
Most of existing co-segmentation approaches rely on comput-
ing similarities inter-regions representing foregrounds in these
images. However, region similarity measurement is challenging
due to the large appearance variations among objects in the
same category. In addition, for real-world images which have
cluttered backgrounds, the existing co-segmentation approaches
miss sufficient robustness to extract the common object from the
background. In this paper, we propose a new co-segmentation
method which takes advantage of the reliable segmentation of
few selected images, in order to guide the segmentation of the
remaining images in the collection. A random sample of images
is first selected from the image collection. Then, the selected
images are segmented using an interactive segmentation method.
These segmentation results are used to construct positive/negative
samples of the targeted common object and background regions
respectively. Finally, these samples are propagated to the remain-
ing images in the collection through computing both local and
global consistency. The experiments on the iCoseg and MSRC
datasets demonstrate the performance and robustness of the
proposed method.
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I. INTRODUCTION

Foreground segmentation is defined as the task of generating
pixel level foreground masks for all the objects in a given
image or video. Accurate foreground segmentation is very
important and basic problem in computer vision field since
it has several potential applications like content-based image
retrieval [1], image editing [2] and action recognition [3].

In order to highlight the foreground region to be extracted,
image segmentation approaches exploit different metrics at
the pixel or region level such as saliency, color, texture or
shape. However, when dealing with images that have cluttered
backgrounds, or images where the foreground has similar
attributes as the background, the question of ”what to segment
out” become more problematic. Considering the limitations
of individual image segmentation, in recent years, jointly
segmenting multiple images containing a common object has
become very popular in a way that the common patterns
that exist in a set of similar images can serve as a mean of
compensating for the lack of information about visual object
foreground. This task of segmenting simultaneously multiple
images which contain common or similar objects is known as
image co-segmentation.

A. Motivation
Numerous co-segmentation approaches, with various for-

mulations, have been proposed and have proven to be very
effective in extracting common objects from a collection of
related images. The main idea of all these approaches is
to exploit the repeated pattern in the image collection to
obtain a form of a prior information about the common
object to be extracted. On one hand, this weak supervision
is an attractive leverage which is not available in the case
of single image segmentation, on the other hand the existing
co-segmentation models also involve new challenges: 1) Even
for images that contain a common object, similarity measure-
ment is challenging due to the large appearance variations
among objects in the same category. Also, for images with
cluttered background, it could be quite difficult to distinguish
the object from the background, and moreover, the image
similarity calculation may be useless. 2) Even with a prior
information obtained from the related images, the resulting
fully automatic segmentation may be imperfect, and in some
situations, segmenting images individually performs better, as
demonstrated in [4], [5]. Furthermore, in realistic applications,
images generally contain similar backgrounds (i.e. similar
scenes) such as frames sampled from a video. For these
images the co-segmentation process may provide random and
insufficiently accurate results. 3) The existing co-segmentation
problem is usually formulated using complex models which
require a number of parameters to be regulated, especially
when dealing with large datasets.

B. Contributions
To deal with the above challenges, the idea of this paper

is to use the segmentation of small sample of images to
guide the segmentation process in the remaining images. All
object/background segments in the sampled set are used as
positive/negative samples to be exploited as reliable prior
information about the common object in the image collection.
Then, the segmentation of a given image is mainly based on
similarity between candidate object regions extracted from this
image and the positive/negative samples. Particularly, the aim
is to transfer the training samples to the unsegmented images
by considering simultaneously global and local consistency.
The main contributions of this paper are:
• Given the foreground segmentation of only a subset of

images, selected randomly, a simple local and global
consistency propagation method is proposed to guide
the segmentation process of the remaining unsegmented
images.
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• The proposed method is not limited to segmenting
predefined object categories provided in the learning
process, which the case of fully supervised methods. As
our method is partially interactive, it can segment any
object based on the randomly sampled images.

• Instead of propagating only object segmentation sam-
ples to the unsegmented images, the proposed method
considers both object and background samples in the
propagation process. Indeed, this prior information about
both the targeted object and the background can better
discern the common object in the images, particularly in
the case where the image background shares the same
features with the foreground.

The rest of this paper is organized as follows: An overview
of the related works is presented in Section II. The proposed
method is explained in Section III. Experimental results and
discussion are given in Section IV, followed by the concluding
remarks in Section V.

II. RELATED WORK

The co-segmentation problem is a newly explored field
of image segmentation. It is defined as the task of jointly
segmenting the common region/object from multiple related
images. This idea was first introduced in [6]. Since then,
numerous formulation of the co-segmentation problem have
been proposed ranging from binary-class co-segmentation
models(single common foreground object) to multi-class co-
segmentation and multi-group co-segmentation. In this study,
we are interested in the binary-class co-segmentation model.

In the literature, co-segmentation approaches could be orga-
nized into these categories: 1) Markov Random Fields (MRF)
based methods [6]–[13], 2) clustering methods [14]–[16] and
3) object proposal selection based methods [17]–[19].

The first family comprises co-segmentation methods based
on the Markov Random Field model (MRF). The main idea
behind these approaches is to extend the single image seg-
mentation model by adding foreground similarity constraint
into the traditional MRF segmentation model. Usually, a new
global term is added to the energy function which accounts
for foreground similarity. Several foreground similarity mea-
surements are designed, such as L1-norm [6] and L2-norm
[11]. In the work of Hochman et al [9], a rewarding similarity
measurement is proposed instead of penalizing the foreground
difference. This similarity measurement led to a sub-modular
energy function which can be easily optimized with graph
cuts. Vicente et al [13] compared the three aforementioned
MRF-based models and derived a new effective model that
was optimized using the dual decomposition method. Later,
many works contributed to improve the foreground similarity
measure by bringing scale invariance [12, 20]. In the same
way, Batra et al [7] have extended the traditional interac-
tive segmentation method by developing an interactive image
co-segmentation approach which segmented common objects
from the image collection through human interaction. Dong et
al. [21] proposed a new interactive co-segmentation method
formulated by an unified energy function which encodes the
global scribbled energy, inter-image energy and local smooth

energy. More recently, [22] introduced the use of higher-order
energy to formulate the interactive image co-segmentation
problem, where the higher-order term encodes the consistency
between the labeled regions and all over-segmentation regions
in the image. Instead of relying on the user interaction, other
methods used co-saliency, a closely related work to image
co-segmentation, to estimate possible foreground locations,
then these co-saliency values were exploited to construct the
MRF data term. However, adding foreground similarity con-
straint into the MRF model resulted in non-submodular energy
function which is not easy to optimize. So, the focus of all
MRF based co-segmentation methods has been on improving
approximating solutions which led in most cases to coarse
segmentation of the common object.

Other works formulated the co-segmentation problem as
a clustering task. In [14], authors handled the segmentation
problem in a discriminative framework that combines bottom-
up image segmentation with kernel method to assign fore-
ground/background labels jointly to all images. To deal with
foreground appearance variations, they used multiple invariant
features in the similarity measurement. The discriminative
clustering based co-segmentation method [14] was extended
in [16] to segment multiple common regions. This method
involved a spectral-clustering term and a discriminative term
into a new energy function which can be optimized efficiently
by using EM algorithm. A large-scale based co-segmentation
method was proposed by Kim et al [15], where the joint
segmentation task was molded by temperature maximization
with finite K heat sources on a linear anisotropic diffusion
system. This can be represented as a K-way segmentation that
maximizes the segmentation confidence of every pixel in an
image. In theory, this temperature function is a sub-modular
function, and thus at least a constant approximation of the
optimal solution is guaranteed by a greedy algorithm.

MRF based methods and clustering based approaches usu-
ally can only provide coarse pixel-level segmentation, thus,
large object variations and complicated image backgrounds
decrease these methods performance. To this end, methods
based on object proposal have been attracting a growing
attention [5, 17]–[19, 23]. The main idea behind these methods
is to select a subset of the object proposals by evaluating their
consistency using region similarity.

These proposals were generated beforehand, and the selected
were considered as common targets. In [5], a constraint that
the common target has to be an object was added to the co-
segmentation framework and an off-line learning method was
introduced to retrieve visually similar object proposals among
different images. These new aspects contributed to a notable
improvement of object co-segmentation performance. In [18],
multiple object proposals of all images were represented with
a directed graph where similarity between adjacent object
proposals were represented by weighted edges. Finally, the
common foreground selection was achieved using shortest path
algorithm. In the work of [23], additional information such
as depth was used to improve proposal based co-segmentation
results. These approaches were easily affected by the quality of
those generated proposals, and they failed to work well when
there were no good proposals in the generated candidates.
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All the existing co-segmentation approaches exploited the
weak prior information i.e. the same object category contained
in collection of images. These co-segmentation approaches
constrained correspondence relationship between common ob-
jects to better highlight them. For instance, they used addi-
tional prior as objectiveness measure [24], or saliency prior
or co-saliency measure [8]. By introducing these constraints
to object co-segmentation formulation, the common objects
could be better segmented even in high appearance variations
conditions. Even though, these models still could not obtain
robust performance in real-world image collection, where
target objects were not salient or shared similar features with
the image background.

In this paper, we propose to use the segmentation of few
images to guide the segmentation of the remaining images in
the collection. In contrast of fully supervised methods which
require a large amount of training data from a predefined
set of object categories, we demonstrate in this work that
the propagation of few images from the image collection
can improve considerably the segmentation performance. In
such conditions, providing some guidance while segmenting
a common object from a complex image collection can im-
prove the segmentation results. Hence, we propose to use the
segmentation of few images to guide the segmentation of the
remaining images in the collection.

III. THE PROPOSED METHOD

Given a collection of images all belonging to the same object
category, the goal is to extract the common object from all
these images. The basic idea of this work is to exploit the seg-
mentation results of randomly selected image samples and use
these results to guide the segmentation task of the entire image
collection. The work-flow of the proposed method is shown
in Fig. 1. First an image sample is randomly selected from
the image collection (Fig. 1a), then from each selected image,
foreground and background regions are extracted to form a set
of positive and negative segments (Fig. 1b) using an interactive
segmentation method, in such a way that positive segments are
the targeted object instances which we aim to segment out, and
the negative segments are representing background regions.
Finally, the main step in our proposed approach is to transfer
this available information (i.e. positive/negative segments) to
the remaining images in the collection (Fig. 1c). To do so,
from each remaining image, multiple region candidates are
generated. Afterwards, positive/negative segments are trans-
ducted to each region candidate by considering both global and
local region consistency. The algorithm for the different steps
of the proposed co-segmentation method has been detailed in
Algorithm 1.

A. Random Image Sample Selection
Consider I = {I1, I2, ..., IN} a large collection of N images

all of which contain instances of the same object category.
From the image collection I, an image subset T = {I1, ..., IM}
of M images is randomly selected. In the next step, these
selected images will be used to extract the positive and negative
samples.

Algorithm 1 Image co-segmentation guided by posi-
tive/negative segments

1: procedure GUIDED-CO-SEGMENTATION
2: From the image collection I = {I1, I2, ..., IN} select

a random subset T = {I1, ..., IM} of M images.
3: Obtain the segmentation result for each image Ik in

T = {I1, ..., IM} using grab-cut algorithm. and construct
the positive/negative samples set using these segmentation.

4: for each remaining image Ii do
5: generate a set of candidate regions {Cij}Rj=1
6: retrieve a set Ni of most similar images Ik in T
7: Compute the global consistency:
8: for each region Cij do
9: retrieve ns most similar samples in Ni

using equation (5).
10: compute the common object estimates

Mco(Cij) of region Cij by equation (6)
11: based on Mco(Cij) of all regions, compute the

common object estimates MG
i in image Ii

12: end for
13: Compute local consistency:
14: for each image Ik do
15: from Ii and Ik generate a number nr = 10 of

local regions
16: for each image rij do
17: retrieve its most similar local regions in Ik

using equation (8).
18: compute the local object estimates ML

i
using equation (9)

19: end for
20: end for
21: compute the final common object

estimate in Ii using equation 10
22: obtain the final segmentation using grab-cut

algorithm.
23: end for
24: end procedure

B. Positive/Negative Segments Extraction

In this step, we aim to generate positive and negative
segments from the selected image subset T = {I1, ..., IM} .
For that, we use grabcut method [25] witch is an interactive
based segmentation method. Given an image Ii ∈ T, the goal
is to estimate a label matrix Li, where Li(p) = yi(p) denotes
the binary label for the pixel p, and yi(p) ∈ {0, 1}. The
label 0 denotes the background and 1 denotes the foreground.
The standard grabcut framework [25] involves three steps:
initial labeling, learning the appearance model using Gaussian
Mixture Model(GMM) and energy minimization.

• Initial labeling: Initially the user provide a bonding box
specifying foreground and background regions. Label 1
is assigned to pixels within the foreground region and
label 0 for pixels within the background region.
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Fig. 1: Flowchart of the proposed co-segmentation method

• Learning the appearance model using GMM: In this
step, pixels inside and outside this bounding box are
used to learn two Gaussian Mixture Model(GMM) for
the foreground and the background in RGB space. Let
Gif and Gib denote those two mixture models. Then, the
negative log-likelihood value of a pixel p is computed
as follows: {

Df
i (p) = −log(P (zi(p)|Gif ))

Db
i (p) = −log(P (zi(p)|Gib))

(1)

Where zi(p) denotes the RGB color for pixel p in
image Ii. This term reflects the cost of assigning a
pixel as foreground (or background) according to the
GMM models.

• Energy minimization: The object extraction is performed
by minimizing the following Gibbs energy function:

E(Li) = U(Li) + V (Li) (2)

Where U(Li) is the data term encoding the probability
that a pixel p belongs to object or background:

U(Li) =
∑
p

[Df
i (p).Li(p) +Db

i (p).(1− Li(p))] (3)

with L(p) is the label of pixel p that equal to 1 if p
belongs to the object and it is equal to 0 if it belongs to
the background.
V (Li) is the smoothness term that penalizes assigning
different labels to neighboring pixels with similar color
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features. It is defined as follows:

V (Li) =
∑

(p,q)∈N

[Li(p) 6= Li(q)]e
−βd(zi(p),zi(q)) (4)

where β is a scaling parameter.
The equation 2 is efficiently minimized using grabCut
that apply five rounds of iterative refinement, alternating
between learning the likelihood values using GMM and
obtaining the label estimates.

After obtaining the segmentation results of all images in T.
As shown in Fig. 1c, we extract positive and negative samples;
such that all object segmentation results i.e. foreground regions
are considered as positive samples and similarly background
regions are filed as negative samples. In the next step, all
extracted positive and negative regions will be propagated to
each remaining image in the collection in order to guide its
segmentation.

C. Segmentation via Examples Guidance
In the grabcut based segmentation method, the unary term

U(Li) describes the foreground model which is learned from
the user scribbles on the image . In this step, we aim to
substitute the user interaction using the pre-segmented image
sample. It means that the previously extracted positive/negative
samples are used to guide the segmentation of the remaining
images. Hence, for each unsegmented image, we aim to
define the unary term based on the proposed segmentation
propagation process (discussed next), and then perform the
grabcut segmentation to extract the object foreground.

1) Object candidate generation: In order to transfer the
available positive/negative samples to the unsegmented images,
we first extract a number of region candidates which represent
object and background regions. To ensure that the common
object will be segmented as a local region, the proposed
method in [18] is adopted. Namely each image Ii ∈ I\T is seg-
mented into R region candidates {Cij}Rj=1

= {C1, C2, C3}
which comprise three subsets: C1 is comprised of super-
pixels generated using the over-segmentation method [26],
C2 contains the segmentation results obtained by saliency
detection method [27] and C3 includes the segmentation of
detected objects in Ii using object detection method [24]. Note
that the extracted object regions will form strong match with
positive samples, in the same way, particularly for images from
similar scenes, background regions are more likely to match
the negative samples.

2) Segmentation propagation: After extracting region can-
didates from each unsegmented image, we propagate the
previously constructed positive/negative samples to each region
candidate based on region similarities. Furthermore, to deal
with object variance among images, we need to propagate
the available segmentation samples to the most similar un-
segmented images in I\T . Hence, for each image Ii ∈ I\T,
we first retrieve a set Ni of most similar images in T and
estimate the common object in Ii guided by those images
only. In order to account for the foreground region in the
similarity measurement, the weighted Gist descriptor [28] is

used to represent each image. Basically, given the saliency
map Si of image Ii, a coarse initial foreground/background
estimation is computed by thresholding Si using Otsu method
[29], i.e.

{
Sfi , S

b
i

}
= Otsu(Si) and then these pixel estimates

are used as a weight of Gist descriptor.
We define the segmentation propagation task using two com-
ponents, namely, the global consistency and local consistency,
so that the global consistency propagates the overall infor-
mation by considering the whole segment in the similarity
measurement. As for the local consistency, and in order to
deal with object appearance variations, the local information
represented by local patches is propagated to the extracted
region candidates.

a) Global consistency: In the global consistency the
whole segment information of positive/negative samples is
propagated to each unsegmented image. Given an image Ii
and the set Ni of its most similar images from the randomly
selected images T . For each object candidate Cij in Ii we
first retrieve n most similar samples in Ni, one in each pre-
segmented image Ik:

l(k) = argmin
l
D(Cij , Skl) (5)

Where Skl is a positive or negative sample and D(Cij , Skl)
is the chi-square distance between Cij and Skl features . Then
the common object estimates of object candidate Cij is given
by the following equation:

Mco(Cij) =

n∑
k=1

M(Sl(k))(1−D(Cij , Sl(k))) (6)

Where M(Sl(k)) is the object likelihood of the region
sample Sl(k). Clearly, if regions Sl(k) retrieved by equation
5 are positive samples, then their object likelihood M(Sl(k))
are assigned to 1 as a result, the common object estimates of
region Cij is higher and therefore this regions is more likely
to belong to the common object. Otherwise, if these regions
are negative samples (their object likelihood are assigned to
0), the common object estimates Mco(Cij) is lower.
Note that object candidate Cij extracted from Ii may be
overlapping. So a pixel Ii(p, q) with a location (p, q) may
belong to multiple object candidates and will be assigned
multiple common object estimates Mco(p, q). In this case, the
largest one is selected as the common object estimate of the
pixel.

MG
i (p, q) = max

(p,q)
Mco(p, q). (7)

b) Local consistency: In real-world conditions the global
common object appearance is often inconsistent and difficult
to capture due to the large variance of viewpoints, scales and
object poses. As a result, considering only the global consis-
tency with the pre-segmented images may not be sufficient
to properly estimate the common object in a given image.
To handle this problem we look also at local consistency
by transferring local regions of positive/negative samples to
the unsegmented image. To do so, a set of local patches
,represented by windows, are extracted from both Ik and
Ii. Then these local regions are ranked to select nr = 10
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relevant patches {rk1 , ...rknr
} to represent local information in

the pre-segmented image Ik and {ri1, ...rinr
} for image Ii. We

also get the local object likelihood m(rkl ) of a region rkl by
directly using the object likelihood value of its corresponding
positive/negative sample in Ik.
For a local region rij we search for its most similar local
regions in Ik based on the distance between feature histograms
hij and hkl of windows regions rij and rkl respectively

l∗ = argmin
l
d(hij , hkl) (8)

Similar to the global consistency computation, we obtain the
common object estimates ML

i (p, q) as follows:

ML
i (p, q) =

ns∑
k=1

m(rkl∗)(1− d(hij , hkl)) (9)

with (p, q) is the pixel location. m(rkl∗) the object likelihood of
positive/negative local region samples (that is equal to 1 if rkl∗
belong to the object and 0 otherwise). As in global consistency
computation, a pixel (p, q) may be assigned several local
based common object estimates because of the overlapping
of detected local regions. In our case the largest one is chosen
as the common object estimate.

c) Common object extraction: To obtain the final com-
mon object estimates, we combine the global and local con-
sistency maps as follow:

MT
i = αML

i + (1− α)MG
i (10)

Where α is a scaling coefficient. From the common object
estimates in the image Ii, the object extraction is performed
using GrabCut algorithm described in Section III-B. Here
the initial label assignment of a pixel p is determined by
thresholding MT

i using the common Otsu’s method [29].

p ∈
{
Fi if MT

i > τ
Bi if MT

i < τ
(11)

With τ is the global threshold value. Then the final seg-
mentation of image Ii is obtained iteratively through alternat-
ing between learning the foreground/background GMM and
obtaining the label assignments (equation 1, 2, 4).

IV. EXPERIMENTAL RESULTS

A. Experimental Setting
To demonstrate the efficiency of the proposed method, the

experiments are conducted on two publicly available datasets,
namely iCoseg [7] and MSRC [30] datasets which have been
frequently used in previous co-segmentation studies; MSRC
dataset contains 14 categories with 418 images in total. iCoseg
dataset contains 38 categories with 643 images in total. Re-
garding the parameter setting, we set the number of randomly
selected images M = 6 and the number of nearest neighbors
ns = 3. In (10) coefficient α and 1−α regulate the importance
of the global and local consistency term. We set α = 0, 6
for all datasets. The color histogram is used for segmentation
propagation in ICoseg dataset. For MSRC dataset that exhibits
more intra-group variation, color feature for matching the

segments will be unreliable. As a result, we used the dense
SIFT feature for matching.

Following the literature, two objective measures, Jaccard
Similarity (J), and Precision (P ) are used for the quantitative
results. Denote Afp ,Abp , Afg and Abp as proposed foreground
pixels set, proposed background pixels set, ground-truth fore-
ground pixels set and ground-truth background pixels set,
respectively. Here, Jaccard Similarity is defined as the size
of intersection divided by the size of union of the proposed
and ground truth foreground pixels sets:∣∣Afp ∩Afg ∣∣∣∣Afp ∪Afg ∣∣

And Precision [31] is defined as the percentage of pixels
that have same labels in both the proposed and ground truth
masks: ∣∣Afp ∩Afg ∣∣+

∣∣Abp ∩Abg∣∣∣∣Afg ∪Abg∣∣ ∗ 100

The quantitative comparison results between the state-of-
the-art algorithms and ours are given in the following sub-
sections.

B. Comparison with the State-of-the-Art
The proposed method is compared with different state-

of-the-art object co-segmentation algorithms, including Un-
supervised joint object discovery and segmentation in Inter-
net images [4] (named ObjectDiscovery13), Group saliency
propagation for large scale and quick image co-segmentation
(GSP) [32] and automatic image co-segmentation using ge-
ometric mean saliency (GMS) [28]. Image co-segmentation
via saliency co-fusion (Kotes16) [33] and a semi-supervised
method for image co-segmentation (Es-salhi17) [34].

We note that to compare with the work of Rubinstein
et al. [4], the results are reproduced using their publicly
available implementation. Moreover, results of [28] and [32]
are regenerated by running the codes provided kindly by the
authors. For co-segmentation via saliency co-fusion [33], the
results reported on the paper are considered.

For iCoseg dataset the precision values obtained by each
method on different image groups are depicted in Fig. 2. The
precision averages of all groups are shown in the first column.
Clearly the proposed method achieves the best result (92.71%
accuracy average). Specifically, compared with the work in
[34], which transfers the object segmentation of randomly
selected images to the unsegmented images, the new proposed
method performs better. This demonstrates that transferring
both the object segmentation and the background regions to the
unsegmented images can accurately extract the common object
from interfered or complex background. This is particularly
observable for image groups: bear (the average accuracy
recorded 90,07 %) and brown bear (97,85%) where the images
share similar foreground and background, this is also the
case for stonehenge (97,30%), panda1 (91,03%) , panda2
(84,29%), kendo (97,58%), kendo2 (98,93%) and taj mahal
(93,45%) where the proposed method improves considerably

www.ijacsa.thesai.org 510 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 1, 2019

Fig. 2: Comparison between the proposed method and the state-of-the-art methods ObjectDiscovery13 [4], GMS14 [28], GSP
[32] and Es-salhi17 [34] on iCoseg dataset.

the segmentation accuracy. Moreover, the proposed method
outperforms the other methods on most groups.

We next objectively evaluate the proposed method by the
Jaccard similarity metric (J). The results are summarized in
Table 2. Obviously, our proposed method outperforms the
existing methods on most image groups of the challenging
iCoseg dataset. Particularly, the method gives considerably
better results than [28] and [4], even if they used dense
correspondences to compute consistency between images in
the group. This is expected since in a group of related images,
the object instances usually appear on similar backgrounds,
and consequently computing correspondences between these
images can not highlight accurately the common object. How-
ever, this is not a crucial issue in our approach, where prior
information transferred from positive/negative samples can
accurately guide the segmentation of the common object.

Besides, it should be noted that some image groups in
iCoseg data set contain small number of images (less than
ten images), which is not appropriate for the random image
selection step. Thus for these groups, only the segmentation
of one randomly selected image is propagated to guide the
segmentation of the remaining images. Under these conditions,
our method gives appealing results, especially for brown bear

and taj mahal groups.
For overall comparison, Table 1 shows the numeric precision

and Jaccard similarity averages on iCoseg dataset compared
with the existing methods. Fig. 4 further illustrates visual
results of the proposed method on 10 sample groups from
iCoseg dataset. The odd columns represent the original images
and the even columns display their segmentation results. We
can clearly see that the proposed method achieves a smooth
segmentation results even when the common object appears in
cluttered or similar backgrounds.

TABLE 1: Precision average P̄ and Jaccard similarity average
J̄ on Icoseg dataset.

Method P̄ (%) J̄(%)

[4] 89,74 69,17
[28] 88,61 65,50
[32] 87,21 61,48
[34] 81,77 47,11
Ours 92,71 76,25

Besides, we evaluate our approach on MSRC dataset, the
quantitative results are presented in Fig. 3 where the class-
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TABLE 2: Evaluation results comparison between the proposed method and other co-segmentation methods in terms of Jaccard
Similarity values. image groups of iCoseg dataset are considered.

[4] [28] [32] [34] Ours

Christ 0,770 0.795 0.757 0,692 0,821
HotBalloons 0,657 0,763 0,802 0,515 0,692
Kendo 0,778 0,862 0,896 0,663 0,916
Kendo2 0,826 0,893 0,921 0,813 0,962
Liverpool 0,541 0,512 0,470 0,412 0,671
Monks 0,681 0,688 0 ,683 0,446 0,857
StatueofLiberty 0,799 0,813 0,863 0,686 0,733
TrackandField 0,519 0,632 0,595 0,313 0,645
Windmill 0,492 0,316 0,531 0,220 0,501
WomanSoccer 0,661 0,657 0,699 0,574 0,728
WomanSoccer2 0,530 0,538 0,526 0,386 0,678
baseball 0,657 0,756 0,703 0,354 0,644
bear2 0,653 0,701 0,675 0,393 0,692
brown bear 0,736 0,662 0,725 0,214 0,834
cheetah 0,697 0,754 0,780 0,583 0,786
elephant 0,688 0,735 0,799 0,5523 0,706
ferrari 0,724 0,703 0,708 0,566 0,834
goose 0,742 0,773 0,503 0,328 0,660
gymnastic1 0,948 0,910 0,976 0,678 0,651
gymnastic2 0,840 0,897 0,831 0,447 0,825
gymnastic3 0 ,896 0.911 0.892 0,508 0,905
helicopter 0,803 0,766 0,803 0,560 0,904
panda1 0,759 0,806 0,722 0,253 0,809
panda2 0,625 0,718 0,614 0,340 0,744
pyramid 0,611 0,686 0,595 0,155 0,743
skate 0,735 0,737 0,769 0,376 0,935
skate2 0 ,911 0,866 0,900 0,924 0,877
skate3 0,449 0,297 0,491 0,176 0,528
stonehenge 0,595 0,714 0,781 0,702 0,930
taj mahal 0,460 0,587 0,516 0,396 0,734

wise comparison of our method with those of state-of-the art
is shown. In this comparison 12 groups are used. It can be
seen that our results are very competitive to the best methods
[28] and [32]. Particularly our method outperforms other
existing methods namely on “cow”, “sheep”, “plane” and
“bird” groups.

Furthermore, it is interesting to notice that the proposed
method reports good results compared with [34] in almost all
image groups. This is expected since this method propagated
only the positive segments (regions that contain the targeted
object) to other images, while the proposed method is based
on both positive and negative segmentation transfer. That
allows to have better a performance even when images share
similar background or when the common object is depicted
in very cluttered image backgrounds.

Fig. 5 shows sample segmentation results from MSRC
dataset, we display images from 4 groups to show the
performance of our method. First column of each group
represents original images and the second column displays
the segmented images. By comparing these qualitative results,
we can see that the proposed method can distinctly improve

the segmentation accuracy.

Fig. 3: Comparison between the proposed method and the
state-of-the-art methods GMS14 [28], GSP [32] and Es-salhi17
[34] on MSRC data set.
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Fig. 4: Sample segmentation results on iCoseg dataset. There are eight groups of images. In each group, the first column represents
the original images, and the second column represents the segmentation results.

TABLE 3: Evaluation results comparison between the proposed method and the other co-segmentation methods in terms of
Jaccard Similarity values. Classes in MSRC dataset are considered.

[28] [32] [34] Ours

Bike 0,420 0,424 0,387 0,439
Bird 0,637 0,589 0,662 0,650
Cat 0,668 0,732 0,624 0,637
Chair 0,627 0,671 0,631 0,524
Cow 0,802 0,782 0,745 0,812
Dog 0,672 0,682 0,574 0,676
Face 0,577 0,583 0,364 0,625
House 0,719 0,755 0,745 0,746
Plane 0,515 0,546 0,391 0,596
Sheep 0,781 0,797 0,626 0,820
Sign 0,838 0,834 0,779 0,681
Tree 0,760 0,741 0,629 0,739
Average 0,6680 0,6782 0,5965 0.6666

Table 3 lists out the detailed Jaccard similarity results
reported for MSRC dataset. The proposed method achieves
comparable results with other methods, notably on the follow-

ing image groups: cow (0,812) , face (0,625), plane (0,596)
and sheep (0,820).
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Fig. 5: Sample segmentation results on MSRC dataset. There are four groups of images. In each group, the first column represents
the original images, and the second column represents the segmentation results.

From the experimental results, we can see that propagating
both positive and negative prior information constructed by
segmenting randomly selected images to the unsegmented
images, can guide the segmentation of these images and thus
improve the performance of image co-segmentation, espe-
cially for the complicated image groups. The proposed global
and local complex terms can complement each other in the
segmentation propagation step to better handle the object
appearance variation among images in the group. In addition,
the proposed method does not requires any parameter settings.
However, although our approach performs well on benchmark
datasets, it is also based on a random image selection step
and interactive segmentation of these images, which leads to
a semi-supervised approach that may not be suitable for all
computer vision applications.

In the context of future work, it is suggested to explore a way
to make automatic the positive/negative samples generation
step .

V. CONCLUSION

In this paper, we propose a new method for image co-
segmentation. First a random subset of images is selected and
segmented using an interactive method, and all region results
are used as positive/negative samples to guide the segmentation
task. Then for each remaining image, multiple local region
generation method are used to segment into a variety of object
proposals. All regions in positive/negative set are propagated to
all regions of each remaining image by considering both global
and local region consistency in the feature space. For each
pixel, in the image the maximum foreground estimation value
is used to score the foreground estimation as map of the image.
Finally, this foreground estimation map is used as a unary term
of MRF segmentation based model, and the final segmentation
is achieved by graphcut algorithm. The experimental results

demonstrate that the proposed method can efficiently segment
the common object from a group of images with better
precision than many existing co-segmentation methods.
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