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Abstract—In this paper, we introduce a human recognition
system that utilizes lead I electrocardiogram (ECG). It proposes
an efficient method for ECG analysis that corrects the signal and
extract all major features of its waveform. FIR equiripple high
pass filter is used for denoising ECG signal. R peak is detected
using Haar wavelet transform. A novel class of features called
as area under curve are computed from dominant fiducials of
ECG waveform along with other known class of features such
as interval features, amplitude features and angle features. The
feasibility of an electrocardiogram as a new biometric is tested
on selected features that reports the authentication performance
99.49% on QT database, 98.96% on PTB database and 98.48%
on MIT-BIH arrhythmia database. The results obtained from the
proposed approach surpasses the other conventional methods of
biometric applications.
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I. INTRODUCTION

First generation biometrics comprised of fingerprint, face,
iris and voice are now common. It is a time to move the next
generation which is beyond the PINs and passwords towards
more sophisticated security solutions that is ECG signal [2],
[3]. ECG is an internal biometric, it has an intrinsic advantage
of using a live signal for both accuracy and liveness detection,
without the requirement of costly gear. ECG biometric vali-
dation offers staggering flexibility and the open door for cost-
effective and highly-secure solution, to handle the developing
threat of cyber-crime in present world. It can also reduce
hacking or spoofing risks for greater security and convenience.

ECG is a biometric signal that is subjective to an individual
and for this reason it is harder to mimic these signals. These are
highly secure and prevent from any fear of imitation. The first
report on ECG appeared in 1875 by Richard Caton [4]. The
first human electrocardiogram was published by the British
physiologist Augustus D. Waller in 1887 [4]. In 1895, Willem
Einthoven improved the Electrometer and defined the main
elements of ECG are P wave, QRS-complex and T waves [4].
Now, in most of hospitals the 12-leads method and the 5-
leads are used for capturing the 1D ECG signal [5]. Improving
the sensitivity of the electrodes and increasing the comfort
of the measurement of the ECG are the hot topics of ECG
measurement in medical research. For identification based on
the ECG, convenience and accuracy are very important factors.

The relaxation as well as contraction of cardiac muscle

results from the repolarisation and depolarization of myocar-
dial cells. The electrodes placed on the chest wall and limbs
are recorded due to these electrical changes in the heart and
electrocardiogram are produced by transcription onto graph
sheet. The electrical potential is contractile heart muscle cells
known as cardiomyocytes. The electrocardiogram (ECG) is
utilized to examine a few kinds of unusual heart function,
including conduction distribution, arrhythmias, and in addition
heart morphology [1]. A few wordings used as a part of ECG
waveform are as per the following: (1) Isoelectric line is a
benchmark or even line when there is no electrical movement
on ECG. (2) Segments are the span of the isoelectric line
between waves. (3) Intervals are the time between similar
portions of contiguous waves. The P-wave is the primary
deflection of the ECG signal, due to depolarization of the
atria. The QRS complex followed by P wave and represents
ventricular depolarization and T wave represents to ventricular
repolarization i.e. rebuilding of the resting membrane poten-
tial. In around one fourth of population, a U wave can be
found after the T wave. This more often than not has an
indistinguishable extremity from the former T wave. It has
been recommended that the U wave is caused after potentials
that are likely created by mechanical electric input. The PQ
segment relates to electrical driving forces transmitted through
the SA node to bundle of His, bundle of His to its branches and
then move to Purkinje fibers. The PQ interval communicates
the time slipped from atrial depolarization to the beginning of
ventricular depolarization. The ST to T interim corresponds
with the moderate and fast repolarization of ventricular mus-
cles. The QT interval represents ventricular activity potential
and repolarization. Atria ventricles are in diastole at the point
of TP interval.

Current research acknowledged that the heartbeat is a
potential biometrics for identifying the individuals. The com-
parison of different biometric modalities, heartbeat is distinc-
tive, difficult to be counterfeited and more universal. Biel
et al. extracted fiducial feature consists of P, QRS and T
waveforms and the feasibility of ECG signal is evaluated for
human identification [6]. They used 12 lead for recording
of ECG signals from 20 individuals of different age groups.
They performed multivariate analysis for classification and
accomplished identification rate 100%. The issue was that
small quantities of test data set were used for validation.
Yochum et al. proposed the continuous wavelet transformation
to distinguish P, QRS and T wave depiction and histogram
discover the veil choice of P, QRS and T wave [7]. This
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methodology tested on MIT-BIH Arrhythmia and Computers
in Cardiology Challenge 2011 databases. Wubbeler et al.
proposed an ECG signal based on the human recognition
for extracting biometric features on different leads. Genuine
pairs were seen as those which were palatably related, while
for another situation data signals were not accepted. The
report of false acceptance rates and false rejection rates were
0.2% and 2.5%, respectively while the equal error rate was
2.8% [8]. The recognition rate was 99% for 74 individuals.
Israel et al. demonstrated the Wilks Lambda technique and
classification on linear discriminant analysis [9]. This system
was tested on a galaxy set of 29 individuals and achieved 100%
recognition rate. Shen et al. exhibited single lead ECG signal
based on 7 fiducial features with identity verification with QRS
complex [10]. The outcome of identity verification was 80%
for decision based neural network, 95% for template matching
and 100% for the combination of the two strategies from a
social event of 20 individuals. Singh and Gupta have proposed
P and T wave delineators alongside QRS complex to extricate
diverse features from predominant fiducials of ECG signals
[2] [12] [13] [3]. This framework tested on 50 individuals,
accomplished the classification accuracy to 98%.

In this paper, a robust and an efficient method of ECG
biometric recognition is proposed. For denoising ECG signal,
FIR equiripple high pass filter is used that removes baseline
noise. The FIR equiripple low pass filter removes the power in-
terference noise. The accurate detection of the R peak (Rpeak)
with the help of Haar wavelet transforms. All other dominant
features of the ECG waveform are detected with respect to
the Rpeak by setting of the windows whose size depend on
the length of the corresponding wave duration and location.
Extracted features of the ECG signal are successfully detected,
these features are interval features, amplitude features, angle
features, and area features. The algorithm is applied on 287
ECG signals of PTB database, 38 ECG signals from MIT-BIH
arrhythmia database and 27 ECG signal from QT database
from physionet bank and detect 36 features from each ECG
signals. We use kernel principal component analysis reduction
method on the extracted features. Finally the similarities within
the components of feature set are calculated on the basis of
euclidean distance.

The paper is structured as follows. Section II presents
the methodology for identification based on ECG signal.
The delineation techniques of P wave, QRS-complex and T
wave are demonstrated with detailed description of ECG data.
Section III describes the feature selection with the help of
kernel principal component analysis. And the experimental
results of the recognition system are presented in Section III.
Section IV introduces the issues related to the recording of
ECG signal. Finally, conclusions are drawn in Section V.

II. METHODOLOGY

The schematic depiction of the ECG individual recognition
framework is appeared in Fig. 1. The strategy is implemented
in a progression of following steps: (1) Preprocessing: incor-
porates modification of signal from noise artifacts and classify
the ECG waveform (2) Data Representation: includes dominant
characteristics of ECG signal (3) Feature Extraction: recogni-
tion of dominant features such as P wave, QRS complex and
T wave(4) Classification (5) Decision making are based on

the method of template matching. The processing of the ECG
biometric framework is shown in Fig. 1. It consists of the
preprocessing, data representation and recognition. First, the
heartbeat acquired from public database is preprocessed. The
filtering process to remove noise and artifacts from the signal.
The data representation step contain heartbeat detection and
heartbeat segmentation process. The feature extraction includes
the interval features, amplitude features, angle features and
area under curve features from a group heartbeats. The feature
vectors of kernel principal component analysis attributes are
stored in the template database.

For authentication process the euclidean distances are
calculated by selecting the first window from each subject.
The euclidean distances are calculated within the windows of
same subject, it is known as genuine score whereas euclidean
distances are calculated within the windows of different sub-
jects is known as imposter score. The euclidean distance are
calculated between two feature vector F1 and F2 are as follows,

Euclidean distance (F1, F2) =
√
(F1− F2)2

The performance of ECG biometric authentication system
can be evaluated on basis of equal error rate (EER). The point
where the proportion of false acceptance rate(FAR)is the same
as false reject rate (FRR) that is ( FAR = FRR ) is known as
equal error rate. The genuine acceptance rate (GAR) can be
evaluated as

GAR = 100− FRR

The receiver operating characteristic (ROC) curve plot is a
decision threshold which plots the rate of false acceptance rate
against the false rejection rate. The accuracy of the recognition
system is determined as

Accuracy = 100− EER

In ECG biometric identification system compares the un-
known subject to all the subjects stored in a database to
determine if there is a match ( 1: N ), it compares each existing
subject stored in the database against the newly enrolled
subject.

A. Data Preprocessing

An electrocardiogram parades the electrical activity in the
heart, that can be represented using P, Q, R, S, and T wave-
forms. At the point when an ECG signal is recorded, it may
be corrupted with different kinds of noise. The exploitation of
unadulterated ECG signal from noisy estimations has been one
of the essential contemplation of biomedical signal processing.
The required techniques are applied to maintain the important
information of the recorded ECG signal. Different types of
artifact and interference can contaminate the real amplitude
and time period of the ECG signal. ECG signals are mostly
affected by baseline wander noise and power line interference
noise. These artifacts and interference produce the incorrect
diagnosis of the ECG signal. It is difficult to eliminate the
artifacts and interference present in ECG signal [14]. Digital
filters are mostly used to improve the quality of the ECG signal
.
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Using signal processing techniques the quality of ECG
signal improves. For example, signal filtering allows certain
frequency components to pass through the system without
any distortion and attenuated other frequency components,
this operation is known as filter [14]. In passband the range
of frequencies is permitted to pass through the filter and in
stopband the range of frequencies is hindered by the filter. A
lowpass filter allows to pass all lower frequency components
below the cutoff frequency and blocks all higher frequency
components above them [14]. A highpass filter allows all
frequency component above cutoff frequency and stop other
frequency components.

Equiripple filter has equal ripples in stopband as well as in
passband. The signals are distorted at the edge of the passband.
The presence of large ripple in equiripple design is avoided.
Equiripple design limits the total passband width and has a
large transition band. Equiripple filters seek to minimize the
maximum error between the desired filter response and the
designed approximation [14].

1) Equiripple linear phase FIR filter: The linear phase
filter acquired by minimizing the weighted error of the peak
estimated value ε is known as equiripple FIR filter. At the
point when ε minimize, the weighted error function shows an
equiripple behavior in the frequency range of intrigue. The
principle of Parks-McClellan algorithm, is broadly utilized
for outlining the equiripple linear phase FIR filter [14]. The
general condition of the frequency response G(ejω) of a linear
phase FIR filter whose length N+1 can be defined as follows,

G(ejω) = e
jNω

2 ejβĜ(ω) (1)

where Ĝ(ω) is the amplitude response of the signal. The
weighted error function with respect to amplitude response can
be defined as

ε(ω) =W (ω)[Ĝ(ω)−D(ω)] (2)

where preferred amplitude response is D(ω) and the pos-
itive weight function is W (ω). W (ω) is used to control the
span of peak errors in the specific frequency bands. The Parks-
McClellan calculation depends on iterative modifying of the
amplitude response until the peak absolute value of ε(ω) is
minimized. If, minimum estimation of the peak absolute value
of ε(ω) in band ωa ≤ ω ≤ ωb is ε0, then the absolute error
fulfill the following equality,

|Ĝ(ω)−D(ω)| ≤ ε0
|W (ω)|

, ωa ≤ ω ≤ ωb (3)

In some condition the preferred amplifier response is found
to be,

D(ω) =

{
1, passband,
0, stopband.

(4)

The amplifier response Ĝ(ω) is necessary to fulfill the
above desired response with a ripple positive as well as
negative ϕp in the passband and a ripple ϕs in the stopband.
The weighted function can be taken as follows,

W (ω) =

{
1, passband,
ϕp

ϕs
, stopband.

(5)

The amplitude response for all 4 types of FIR filters can
be written as

Ĝ(ω) = R(ω)B(ω), (6)

where the factors of R(ω) are

R(ω) =


1, Type 1,
cos(ω2 ), Type 2,
sin(ω), Type 3,
sin(ω2 ), Type 3.

(7)

The factor B(ω) is represented as

B(ω) =

P∑
k=0

b̂[k] cos(ωk), (8)

where

b̂[k] =


b[k], Type 1,
x̂[k], Type 2,
ŷ[k], Type 3,
ẑ[k], Type 3.

(9)

P =


F, Type 1,
2F−1

2 , Type 2,
F − 1, Type 3,
2F−1

2 , Type 3.

(10)

The modified weighted approximation function is as fol-
lows

ε(ω) = W (ω)[R(ω)B(ω)−D(ω)] (11)

= W (ω)R(ω)

[
B(ω)− D(ω)

R(ω)

]
(12)

The optimization issue now turns into the determination
of the coefficients b̂[k], 0 ≤ k ≤ P which limits the peak
absolute value ε of the weighted approximation error ε(ω)
over the specified frequency band. After the coefficients have
been determined the corresponding coefficient of the original
amplitude response are computed from which the filter coeffi-
cient are then obtained [14]. If we design a filter is of Type 2
then x[k] = a[k]and F = ( (2P+1)

2 from Eq.(10) ,we find the
next x[k].

B. Baseline Wander Noise Removal

The baseline wander noise effect the base axis of ECG
signal that is viewed on a screen to move up and down
rather than being straight. Therefore it causes the entire
signal to shift from its normal base. This is due to improper
electrodes and movement of the patient or by respiration [15].
Equiripple highpass filter can remove this noise completely
without affecting the dominant fiducials of the ECG signal
[16]. Equiripple highpass filter allows the dominant fiducials
of ECG signal to pass through it [14]. The built-in function
(filtfilt) requires the length of data signal to be more than three
times greater than the filter order. The Equiripple highpass
filter has a stop frequency of 2 Hz, filter order of 2700, cutoff
frequency of 1 Hz, and stop attenuation of 80 dB. Fig. 2
shows the removal of baseline noise from the raw ECG signal.
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Fig. 2. Baseline noise removal

C. Power Interference Noise Removal

Power interferes noise in ECG signal is due
electromagnetic fields and addition of 50 or 60 Hz depending
on power frequency standard. The power interference noise
comes into a sight as a spike in frequency components
analysis (FFT) at 50 Hz [14]. This FFT can be removed
by using a band pass filter. The low pass filter is adequate
for the removal of power interference noise. FIR equiripple
lowpass filter components defined as filter order of 506 [17]
and the cutoff frequency is 40 Hz. This filter is followed
by another filter with zero phase to avoiding time delay by
utilizing a Matlab builtin function filtfilt. The removal of
power interference noise is shown in Fig. 3
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Fig. 3. Power interference noise (Hz) removal

D. Haar Wavelet Transformation

Haar wavelet is applied to ECG signal for feature
extraction and it introduces the highest accuracy. Using
the Haar wavelet method, Rpeak is easily obtained. Haar
wavelet transformation generates two coefficients called
approximation and detail coefficients [18]. In the second
order detail coefficient, Rpeak are dominant feature since
the QRScomplex has a higher frequency in a shorter time
interval [29]. Fig. 4 shows the decomposed ECG signal of
second detail coefficient by using Matlab function wavdec
and detcoef [20].

E. Peak Detection

1) QRS-Complex Detection: For the detection of Rpeak,
we firstly divide the input ECG signal into different subbands
with the help of wavelet transformation. Then, reconstruct
and calculate the second approximation coefficient by Haar
transformation. Therefore, by using an adaptive threshold
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Fig. 4. Reconstruction of ECG signal from approximation coefficient using
Haar wavelet transform
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Fig. 5. Detection of ECG waveforms fiducial points such as P peak, Pon,
Poff, Q peak, R peak, S peak, T peak, Ton and Toff.

method the maximum amplitude value of the ECG signal
is detected that is Rpeak. With the help of Rpeak locations,
we can find P, Q, S and T waves location. The number of
heartbeats per minute (NBPM ) is calculated as follows:

NBPM =
Rpeak ∗ Y
F ∗ 60

(13)

where Y is the ECG signal of one heartbeat and F is
the frequency of the signal. Qpeak is detected by setting the
window width of 90 ms. This window starts at 10 ms on the
left of Rpeak and ends at 100 ms away from Rpeak. Within
the boundary of this window, the samples that have minimum
amplitude value on the left side of Rpeak is the Qpeak
location. The Speak is detected by setting the window width
of 95 ms. This window starts at 5 ms on the right of Rpeak
and ends at 100 ms away from Rpeak. Within the boundary
of this window, the samples that have minimum amplitude
value on the right side of Rpeak is the Speak location. Fig. 5
shows detected QRScomplex in ECG signal.

2) P-peak Detection: We set the width of window size 155
ms. This window extends from 200 to 45 ms to the left of
Rpeak [12]. Within the boundary of this window, the location
that have maximum amplitude value is the Ppeak location. Pon
and Poff are detected by setting the window width of 300 ms.
This window starts at 150 ms on the left of Ppeak and have
minimum amplitude value is Pon location, whereas it ends at
150 ms on the right of Ppeak as well as it also have minimum
amplitude value is Poff location.

3) T-peak Detection Algorithm: Tpeak is the next promi-
nent peak after Rpeak. Tpeak is detected by setting the window
size of width 300 ms. This window starts at 100 ms on the
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right of Rpeak and ends at 400 ms away from Rpeak. Within
the boundary of this window, the samples that have maximum
amplitude value on the right side of Rpeak is the Tpeak location
[13]. Ton and Toff are detected by setting the window width
of 300 ms. This window starts at 150 ms on the left of Tpeak
and have minimum amplitude value is Ton location, whereas
it ends at 150 ms on the right of Tpeak as well as it also have
minimum amplitude value is Toff location.

F. Feature Extraction

Once known the limitation and peak of the QRS-complex,
P wave and T wave of ECG signals, 36 features are extracted
from each heartbeat those derive from one of the classes.

1) Interval Features: The interval features as shown in
Table I related to heartbeat are computed as follows:

TABLE I. INTERVAL FEATURES CLASS ARE SELECTED FROM EACH
HEARTBEAT

Interval Features Representation

PR interval PRI

PR segment PRS

QT interval QTI

ST segment STS

ST interval STI

Ponset to Rpeak segment PonRS

Ppeak to Rpeak segment PRS

Poffset to Rpeak segment PoffRS

Qpeak to Rpeak segment QRS

Rpeak to Speak segment RSS

Rpeak to Tpeak segment RTS

Rpeak to Tonset segment RTonS

Rpeak to Toffset segment RToffS

RR interval RRI

PP interval PPI

TT interval TTI

The interval features are calculated with respect to Ppeak
are PRI is the time difference between Ppeak to Rpeak
fiducials and PRS is the time difference between Poff to
QRSon fiducials. The QT is the corrected time difference
between QRSon to Toff fiducials. The STS is the time
difference from QRSoff to Ton fiducials and STI is the time
difference from QRSoff to Toff fiducials [21]. The interval
feature class are calculated with respect to Rpeak fiducial. PR
is the time difference from Ppeak to Rpeak fiducials, PoffR
is the time difference Poff to Rpeak and PonR is the time
difference from Pon to Rpeak fiducials. The time difference
from Rpeak to Qpeak fiducials and Rpeak to Speak fiducials
is define as QR and RS. The time difference from Rpeak
to Ton fiducials, Rpeak to Tpeak fiducials and Rpeak to Toff
fiducials are defined as RTon, RT and RToff respectively [2].
The calculated time difference features are shown in Fig. 6.
With these interval features within a heartbeat three interbeat
interval feature RR, PP and TT are also extracted. RR is
defined as the time difference between two consecutive Rpeaks,
similarly PP and TT are also detected [2] [22] [23]. The
interval features between two ECG signals is shown in Fig. 7.

P

R

Q

S

T
RT

QR RS

PRs

PR

PR I

RT off

RT on

ST s

ST I

QT

P P TTon on

on

off off

off

P R

P R

Fig. 6. Interval features class are selected from ECG fiducials.

P
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RR Interval 

PP Interval

TT Interval

P

Q

R

S

T

Fig. 7. Interval features between two heartbeats.

2) Amplitude Features: Amplitude is a measure of its
change over a solitary period. The amplitude features as shown
in Table II are calculated with respect to the amplitude of
Rpeak. The change in the heart rate is dependent on QRS-
Complex. The feature QRa is defined as a difference between
the amplitude of Rpeak and Qpeak. Feature SRa is defined as
a difference between the amplitude of Rpeak and Speak. Like-
wise, the variance in amplitude of Ppeak to Rpeak and Tpeak
to Rpeak are characterized as PRa and TRa, respectively [2]
[3] [25] [24]. These amplitude features are shown in Fig. 8.

TABLE II. AMPLITUDE FEATURES CLASS ARE CONSIDERED FROM
EACH HEARTBEAT

Amplitude Features Representation

QR amplitude QRa

PR amplitude PRa

RS amplitude SRa

RT amplitude TRa
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Fig. 8. Amplitude features class are considered from ECG dominant fiducials.

3) Angle Features: Following features as shown in Table
III related to different peak fiducials of Pon, Ppeak, Poff ,
Qpeak, Rpeak, Speak, Ton, Tpeak and Toff waves are extracted
from each heartbeat. The ∠P is computed between the lines
joining from Pon to Ppeak and Ppeak to Poff fiducials [26].
Let a, b ,c are the sides of a triangle then using Cosine rule
[26] we can find

cos(A) =
b2 + c2 − a2

2 ∗ b ∗ c

Therefore, we can compute angle features as follows:

Angle P :

cos(P ) =
PonP

2 + PP 2
off − PonP 2

off

2 ∗ (PonP ) ∗ PPoff

where,
PonP = (Ppeak − Pon),

PPoff = (Poff − Ppeak), and

PonPoff = (Poff − Pon)

Angle Q:

cos(Q) =
(PQ2 +QR2 −RP 2)

(2 ∗ PQ ∗QR)

where,
PQ = (Ppeak −Qpeak),

QR = (Rpeak −Qpeak), and

RP = (Rpeak − Ppeak)

Angle R:

cos(QRS) =
(SR2 +QR2 −QS2)

(2 ∗ SR ∗QR)

where,

SR = (Speak −Rpeak),

QR = (Rpeak −Qpeak), and

QS = (Speak −Qpeak)

Angle S:

cos(S) =
(SR2 + ST 2 − TR2)

(2 ∗ SR ∗ ST )

where,

SR = (Rpeak − Speak),

ST = (Tpeak − Speak), and

TR = (Rpeak − Tpeak)

Angle T :

cos(T ) =
(TonT

2 + TT 2
off − TonT 2

off )

(2 ∗ TonT ∗ TToff )

where,

TonT = (Tpeak − Ton),

TonToff = (Toff − Ton), and

TToff = (Toff − Tpeak)

∠R is computed between the directed lines joining from
Qpeak to Rpeak and from Rpeak to Speak fiducials. Similarly,
∠S is computed between lines joining from Rpeak to Speak
and from Speak to Tpeak fiducials. ∠T is computed between
lines joining from Ton to Tpeak and from Tpeak to Toff
fiducials. Angle features are shown in Fig. 9.

TABLE III. ANGLE FEATURES ARE SELECTED FROM EACH HEARTBEAT

Angle Features Representation

Angle P ∠P
Angle Q ∠Q
Angle R ∠R
Angle S ∠S
Angle T ∠T
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Fig. 9. Angle features class are considered from ECG dominant fiducials

4) Area under curve method: Area under curve features are
shown in Table IV. We can compute a set of features called
area under curve features are formed between the fiducial
points of ECG signals are as follows: The area of a triangle
where sides have lengths a, b and c can be computed using
Heron’s formula [27] as follows,

Area of triangle =
√
s(s− a)(s− b)(s− c),

where s is the semiperimeter of the triangle i.e

s =
a+ b+ c

2

For example, Area of triangle QRS can be computed as,

Area of triangle QRS =
QRa ∗QRI + SRa ∗ SRI + SQa ∗ SQI

2

where,
QRI = (RSI − SQI),

SRI = (SQI −QRI), and

SQI = (QRI −RSI)

where QRa,SRa, SQa are the amplitude values and
QRI ,SRI , SQI are the interval values. It calculates the area
of a triangle whose all three vertices are known. Similarly
we can compute ten other area under curve features that
are PPoffR, PPonPoff , PPoffQ, PoffRQ, RST , RSTon,
RTTon, TTonToff , TTonS and PRQ. These features are
shown in Fig. 10.

III. FEATURE SELECTION

Feature selection is the process of selecting a subset of
relevant features from the feature vector collected from ECG
identification model.

The necessity of feature selection for data preprocessing
is to facilitate the data management and classification. The
purpose is to represent the data in a low-dimensional space
that captures the inherent nature of the data. In this paper we

TABLE IV. AREA UNDER CURVE FEATURES ARE SELECTED FROM
EACH HEARTBEAT

Area Features Representation

Area PonPPoff area of ∆PonPPoff

Area RSTon area of ∆RSTon

Area QRS area of ∆QRS
Area RST area of ∆RST
Area TonTToff area of ∆TonTToff

Area PPoffR area of ∆PPoffR
Area PoffRQ area of ∆PoffRQ
Area PPoffQ area of ∆PPoffQ
Area QST area of ∆QST
Area STToff area of ∆STToff

Area RTonT area of ∆RTonT

P

R

S

T

QPon Poff Ton Toff

PonPPoff

PQR

QRS

RST

TonTToff

PoffRQ

PPoffQ

QST

RSTon

 RTonT

STTon

Fig. 10. Selected class of area under curve features from ECG dominant
fiducials.

use Kernel principal component analysis. Principal component
analysis gives a linear projection that best fits the data set
in the least-square manner and due to its computational and
analytical simplicity it is widely used [28]. Eigenvector is a
well known application of principal component analysis for
biometric recognition. Most current literature focus on the
limitation of linear principal component analysis specifically,
its ability to capture the nonlinear structure of the complex
data set that is beyond second order statistics [28]. The
nonlinear technique has been proposed that is Kernel principal
component analysis (KPCA) [28].

1) Kernel principal component analysis: The kernel sub-
stitution method is applied in principal component analysis
to get a nonlinear generalization solution that is known as
kernel principal component analysis [19]. Suppose a nonlinear
transformation φ(z) into an M -dimensional feature space from
D-dimensional feature space, where M > D and D is the
original dimension of feature space. Projecting each data point
(zi) onto a point φ(zi) [30].

Assume that the projected data set has zero mean that is

1

N

N∑
i=1

φ(zi) = 0 (14)

The covariance matrix of projected feature space in M X
M sample is defined as
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Fig. 11. The error rates on different dimensions on different databases (a) Angle and area under curve features error are evaluated on MIT-BIH , QT and PTB
database, (b) Combined features error(i.e amplitude, interval, angle and area under curve features) are evaluated on MIT-BIH , QT and PTB database.

C =
1

N

N∑
i=1

φ(zi)φ(zi)
T (15)

The eigenvectors and eigenvalues are given by

Cvn = λnvn (16)

where n = 1,..........,M, putting the value of Eq. 15 in Eq.
16 we get eigenvector

C =
1

N

N∑
i=1

φ(zi){φ(zi)T vn} = λnvn (17)

by simplifying we get

vn =

N∑
i=1

aniφ(zi) (18)

By substituting the value of vn from Eq. 18 to Eq. 17,

1

N

N∑
i=1

φ(zi)φ(zi)
T

N∑
j=1

anjφ(zj) = λn

N∑
i=1

aniφ(zi) (19)

The kernel function is defined as,

κ(zi, zj) = φ(zi)
Tφ(zj) (20)

By multiply φ(zl)T on both sides of Eq.19 to give

1

N

N∑
i=1

κ(zl, zi)

N∑
j=1

anjκ(zi, zj) = λn

N∑
i=1

aniκ(zl, zi) (21)

The above equation is written in matrix notation are as
follows

K2Ak = λnNKAk (22)

where Ak is N-dimensional column vector of Aki: Ak =
[Ak1Ak2...........AkN ]T simplifying the above equation

KAk = λnNAk (23)

The point z is projected onto eigenvector n, the principal
component of the projection in terms of kernel function, is
represented as

yn(z) = φ(z)T vn =

N∑
i=1

aniκ(z, zi) (24)

The case when projected data set φ(zi) does not have zero
mean. So, we cannot simply compute and then subtract off the
mean, since we formulate the algorithm in term of the kernel
function. We calculate the Gram matrix K̃ by substituting the
kernel function K. The Gram matrix is represented as

K̃ = K + 1NK1N −K1N − 1NK (25)

where 1N is NXN matrix in which every element has
1/N value, K̃ is the kernel function by which we can calculate
eigenvectors and eigenvalues. The linear kernel is

κ(z, z′) = zT z′

The Gaussian kernel is

κ(z, z′) = exp(−‖z − z′‖2/2σ2)

The performance of the proposed ECG biometric system
is determined by authentication processes on different feature
detection method using equal error rate (EER). The EER can
be calculated by genuine acceptance rate and false acceptance
rate. The EER result shows on kernel PCA feature selection
techniques on detecting feature vector and in different database
are shown in Fig. 11. In MIT-BIH arrhythmia database [31]
while using area under curve feature detection method, the
EER at dimensions 1, 2, 3 and 4 are reported as 5.86%, 3.7%,
1.6% and 3.19%, respectively. The EER results for angle fea-
ture vector of dimensions 1, 2, 3 and 4 are found to be 5.82%,
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Fig. 12. ROC curve of area under curve features on different dimensions
and on different database (a) MIT-BIT arrhythmia database, (b) QT database
(c) PTB database.

using area under curve feature vector, the EER are reported
to be 1.047%, 1.884%, 2.729% and 2.615% respectively, at
dimensions 1, 2, 3 and 4. At the same dimensions the EER
using angle feature vector are reported as 1.59%, 1.78%, 3.64%
and 7.5%. In PTB database the EER using area under curve
feature vector are reported to be 3.76%, 4.62%, 4.87% and
5.64% respectively, at dimensions 1, 2, 3 and 4, whereas
on same dimension the EER using angle feature vector are
reported as 4.14%, 3.39%, 4.61% and 5.92% respectively.

The equal error rate for the proposed biometric system
by combing the interval features, amplitude features, angle
features and area under curve features using kernel PCA
transformation techniques on MIT-BIH arrhythmia database,
QT database and PTB database are shown in Fig. 11. In MIT-
BIH arrhythmia database, the EER at dimensions 1, 2, 3 and
4 is 3.57%, 4.02%, 3.14% and 1.52%, respectively. The QT
database reported the EER 2.76%, 0.51%, 3.96% and 4.48%
respectively, at dimensions 1, 2, 3 and 4. The PTB database
reported the EER 2.19%, 2.02%, 1.04% and 3.22% respec-
tively, at dimensions 1, 2, 3 and 4. The proposed biometric
system performs better on the QT database as shown in Fig.
11. The best results are reported to be 0.51% at dimension 2
on QT database, 1.04% at dimension 3 on PTB database and
1.52% at dimension 3 on the MIT-BIH arrhythmia database,
respectively

The results of error rates often summarized in receiver
operating characteristic (ROC) curve. The ROC curve between
FAR and GAR for different dimensions using kernel PCA and
feature extraction techniques are shown in Fig. 12 and Fig. 13,
respectively, for MIT-BIH arrhythmia database, QT database
and PTB database. The ROC curve for the area under curve
feature vector in MIT-BIH arrhythmia database is shown in
Fig. 12a. It can be seen that the GAR is found to be 76%,
73%, 70% and 68% at dimensions 1, 2, 3 and 4, respectively
when FAR is zero. The 100% GAR can be achieved with the
FAR value of 3.99%, 3.89%, 2.57%, and 3.24% at dimensions
1, 2, 3 and 4, respectively. The ROC curve for area under curve
feature vector on the QT database in Fig. 12b, shows that 100%
GAR can be achieved for the FAR of 1.04%, 1.86%, 2.27%
and 2.16% at dimensions 1, 2, 3 and 4, respectively. Whereas
0% FAR, the GAR is found to be 86%, 87%, 68% and 77%
at dimensions 1, 2, 3 and 4, respectively. The ROC curve for
area under curve feature vectors on the PTB database in Fig.
12c, shows that 100% GAR can be achieved for the FAR of
1.06%, 1.1%, 1.86% and 6.12% at dimensions 1, 2, 3 and
4, respectively. Whereas without allowing false acceptance ie.
0% FAR, the GAR is found to be 75%, 72%, 70% and 68%
at dimensions 1, 2, 3 and 4, respectively.

The ROC curve for the angle feature vectors on MIT-
BIH arrhythmia database is shown in Fig. 13a. It can be seen
that the GAR is found to be 70%, 65%, 70% and 78% at
dimensions 1, 2, 3 and 4, respectively when FAR is zero.
The 100% GAR can be achieved with the FAR value of
3.21%, 3.96%, 2.17% and 2.0% at dimensions 1, 2, 3 and
4, respectively. The ROC curve for angle feature vectors on
the QT database in Fig. 13b, shows that 100% GAR can
be achieved for the FAR of 1.65%, 1.68%, 2.9% and 2.75%
at dimensions 1, 2, 3 and 4, respectively. Whereas without
allowing false acceptance ie. 0% FAR, the GAR is found
to be 78%, 75%, 76% and 71% at dimensions 1, 2, 3 and
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4, respectively. The ROC curve for angle feature vectors on
the PTB database in Fig. 12c, shows that 100% GAR can be
achieved for the FAR of 1.29%, 0.96%, 1.88% and 2.5% at
dimensions 1, 2, 3 and 4, respectively. Whereas 0% FAR, the
GAR is found to be 75%, 80%, 70% and 66% at dimensions
1, 2, 3 and 4, respectively.

The ROC curve for combining the interval features, am-
plitude feature, angle features and area under curve features
on MIT-BIH arrhythmia database is shown in Fig. 14a. It can
be seen that the GAR is found to be 71%, 68%, 69% and
80% at dimensions 1, 2, 3 and 4, respectively when FAR is
zero. The 100% GAR can be achieved with the FAR value of
4.4%, 4.86%, 3.23% and 1.65% at dimensions 1, 2, 3 and 4,
respectively. The ROC curve for interval features, amplitude
feature, angle features and area under curve features on QT
database in Fig. 14b, shows that 100% GAR can be achieved
for the FAR of 1.9%, 0.56%, 2.86% and 3.56% at dimensions
1, 2, 3 and 4, respectively. Whereas without allowing false
acceptance ie. 0% FAR, the GAR is found to be 80%, 86%,
76% and 72% at dimensions 1, 2, 3 and 4, respectively.
The ROC curve for interval features, amplitude feature, angle
features and area under curve features on PTB database in Fig.
14c, shows that 100% GAR can be achieved for the FAR of
, 0.9%, 0.36%, 0.13% and 1.86% at dimensions 1, 2, 3 and
4, respectively. Whereas without allowing false acceptance ie.
0% FAR, the GAR is found to be 76%, 76%, 90% and 60%
at dimensions 1, 2, 3 and 4, respectively.

A. Comparison of Present ECG Biometric Systems

The comparison of ECG biometric system for proposed
and existing method with the help of the authentication process
and identification process as shown in Table V. The proposed
method performs the other existing methods of ECG biometric
authentication in terms of EER and size of samples. The
experimental results show the robustness of the proposed
method over a larger data set and produces better EER than
the existing method of [8], [2] and [33]. Although the EER
of the proposed method is greater than the method of [8], [2]
and [33], but tested on a larger data set.

TABLE V. COMPARISON OF EXISTING METHOD WITH PROPOSED
METHOD ON THE BASIS OF FIDUCIAL POINTS

Method Identification Equal Sample
rate error size

rate(%)

Wubbeler et. al [8] 98% 2.8 74
Singh and Gupta [2] 99% 0.76 85
Odinaka et. al [33] 99% 0.37 269
Biel et. al [6] 100% - 20
Kyoso et. al [35] > 90% - 9
Shen et. al [11] 100% - 20
Irvine et. al [36] 91% 0.01 104
Palaniappan and Krishnun [32] 97.6% - 10
Israel et. al [9] 100% - 10
Shen et. al [10] 95.3% - 29
Wang and Zhang [34] 97.4% - 168
Silva et. al [37] 99.97% - 520
Proposed method 99.26% 0.13 38

99.5% 0.56 30
98.5% 1.65 248

IV. SPORT/EXERCISE ISSUES

The big changes in the heart beat of individual subject after
exercise or sport, the individual verification and identification
can disturb the ECG signal [38]. The main challenges are as
follows:

1 Baseline shifted due to deeper breath.

2 The heart rate become high because of heart activity.

By measuring the ECG signal after exercise or sports the heart
rate increases up to 45% to 55% in comparing to resting state.
This will create a problem in ECG biometric identification.

V. CONCLUSION

This examination has proposed a technique for biometric
recognition of individuals using their heartbeats. The method
has delineated the dominant fiducials of ECG waveform and
after that interval, amplitude, angle and area under curve fea-
tures are computed. The recognition results also demonstrated
that the proposed technique for ECG biometric recognition dif-
ferentiates the heartbeats of normal and the impatient subjects.
All human beings have a heart, every individual has its own
unique set of heart beat features.

Finally, the proposed strategies can be utilized as a po-
tential biometric for human recognition, which is very secure
and robust from falsification. The ECG biometric based on
fiducial points and advantage of various different types of
morphological features. That are interval, amplitude, angle and
area under curve features are significantly different between
individual subjects. These fiducial points have their onset and
offset. With the help of these features we reduce the dimension
of feature vector by kernel principal component analysis. The
Euclidean distance that calculates the matching score shows
better results for authentication as well as identification on
the QT database by combining all the features. It reports
0.51%, 1.04% and 1.52% error rate authentication and 99.49%,
98.96% and 98.48% classification accuracy for identification
on three different databases i.e QT database, PTB database and
MIT-BIH arrhythmia database. It also differentiates healthy
subjects as well as impatient subjects on the basis of heat
beat and deducted feature vector. The result shows that the
proposed method works well on QT database in comparison
to MIT-BIH arrhythmia database and PTB database.

In the future try to automatically diagnose the arrhythmia
diseases and find the respective medicines for unhealthy indi-
vidual.
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Fig. 13. ROC curve of angle features on different dimensions and on different
database (a) MIT-BIT arrhythmia database, (b) QT database (c) PTB database.
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Fig. 14. ROC curve of combined features(i.e amplitude, interval, angle and
area under curve features) on different dimensions and on different database
(a) MIT-BIT arrhythmia database, (b) QT database (c) PTB database.
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