
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 1, 2019

619 | P a g e

www.ijacsa.thesai.org

EMMCS: An Edge Monitoring Framework for Multi-

Cloud Environments using SNMP

Saad Khoudali
1
, Karim Benzidane

2
, Abderrahim Sekkaki

3

Computer Science Department, Laboratory of Research and Innovation in Computer

Hassan II University, Faculty of Sciences Ain Chock, Casablanca, Morocco

Abstract—Multi-cloud computing is no different than other

Cloud computing (CC) models when it comes to providing users

with self-services IT resources. For instance, a company can use

services of one specific cloud Service Provider (CSP) for its

business, as it can use more than one CSP either to get the best of

each without any vendor lock-in. However, the situation is

different regarding monitoring a multi-cloud environment. In

fact, CSPs provide in-house monitoring tools that are natively

compatible with their environment but lack support for other

CSP's environments, which is problematic for any company that

wants to use more than a CSP. In addition, third party cloud

monitoring tools often use agents installed on each monitored

virtual machine (VM) to collect monitoring data and send them

to a central monitoring server that is hosted on premise or on a

Cloud, which increases bottlenecks and latency while

transmitting data or processing it. Therefore, this paper presents

a monitoring framework for multi-cloud environments that

implements edge computing and RESTFul microservices for a

high efficiency monitoring and scalability. In fact, the monitoring

framework “EMMCS” uses SNMP agents to collect metrics, and

performs all monitoring tasks at the edge of each cloud to

enhance network transmission and data processing at the central

monitoring server level. The implementation of the framework is

tested on different public cloud environments, namely Amazon

AWS and Microsoft Azure to show the efficiency of the proposed

approach.

Keywords—Simple network management protocol; multi-cloud

monitoring; edge computing; edge monitoring; microservices;

cloud computing

I. INTRODUCTION

Now-a-days, the IT world witnesses an exponential
evolution since the emergence of the CC [1] [13] paradigm
where hardware (such as CPUs, memory, storage, unlimited
bandwidth, virtual network equipment etc.) and software (such
as WEB and application servers, databases, frameworks etc.)
are provided as reasonably priced and payed-per-use services
compared to acquisition, on premise hosting, self-deployment
and maintenance by the client. In order to satisfy all client
needs and to minimize services use costs, CC made its services
available through multiple levels a.k.a. *-as-a-Service (i.e.
Infrastructure-as-a-Service (IaaS), Platform-as-a-Service
(PaaS) and Software-as-a-Service (SaaS)) along with many
features such as global high availability, resource polling,
scalability, elasticity, and on-demand services delivered in an
automated manner.

With these features, CC can offer unlimited computing
resources (virtually), reasonably priced and tailored services,

accessible from anywhere through a WEB browser. However,
the need of using more than one public Cloud became a trend if
not a thing of normality. In fact, clients are more frustrated by
the vendor lock in practice that most of CSPs do in a way or
another. This has encouraged clients to spread their workload
across different types of cloud providers, i.e. the multi-cloud
strategy [2], rather than relying on one CSP, which gives
clients more choices and benefits while making their
businesses highly available and fault tolerant. In fact, by using
another cloud as a backup site [2], it is possible to avoid
downtimes during an unexpected peak of workload, or to
lessen security risks by providing a higher level of resiliency
against malicious attacks such as Distributed Denial of Service
(DDoS).

Aside from Multi-cloud computing, another practice that is
gaining popularity in the IT world is the “Edge Computing”.
Edge Computing [3] relies on keeping processing of client's
data at the periphery of their origin, meaning as near as
possible from their sources on the network and processed in a
decentralized manner. In Edge Computing, a local computer or
server, or even the device itself does the processing rather than
sending data to the datacenter to be processed. That way, it is
possible to minimize network resources utilization that can be
throttled due to the massive amount of raw data that are
transmitted. Furthermore, processing raw data near their
sources will allow sending useful data to the datacenter and
relieving it from these tasks in order to apply additional, non-
extensive processes or simply to display them. In addition,
Edge Computing enables real-time processing by accelerating
and streaming data without latency, allowing smart
applications to be more responsive by processing data at their
creation, which will eliminate any lag time and thus, making
time process efficient for critical applications. In addition,
Edge Computing will benefit from microservices architectures
[14], to allow portion of an application to be moved in order to
run on the edge of a network.

Therefore, the EMMCS framework was designed and
developed to monitor Multi-cloud environments using SNMP
[4] [5] agents and edge computing. The framework has native
support for Amazon AWS, Microsoft Azure CSPs as well as
the Openstack orchestrator. At the boundaries of each cloud
will reside a MP to collect monitoring data from SNMP agents
and process them to generate useful metrics, to manage the
deployed agents and to execute tasks on behalf of the MMS.
Additionally, the architecture of the framework was designed
to be microservices oriented [6], where each service provides a
RESTful API from where it will be managed. Finally, the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 1, 2019

620 | P a g e

www.ijacsa.thesai.org

processed data are sent back to the MMS that can run on
premise or hosted on a cloud provider.

II. RELATED WORK

Many researches were done in order to provide
standardized methods or to implement frameworks that are
based on standardized protocols. In [7], the authors present a
reliable QoS monitoring facility called QoS MONitoring-as-a-
Service (QoS-MONaaS), which approach is to monitor QoS
statistics continuously at the Software-as-a-Service (SaaS)
level, while enabling a secure and trusted communication
channel between monitoring entities. Moreover, a modular
monitoring system for private clouds called (PCMONS) [8] is
developed by integrating existing techniques and monitoring
frameworks, and can be integrated with existing infrastructure
management tools such as Eucalyptus cloud orchestrator.
However, the PCMONS framework does not provide cross
service levels (IaaS, PaaS and SaaS) monitoring and multiple
clouds support unlike the proposed framework in this paper.

Regarding the Multi-cloud paradigm, some researches and
works have been done regarding the monitoring side but two of
them are the most interesting and which approaches take the
same direction of the proposed framework in this paper. In [9],
the authors proposed a cross-layer monitoring framework for
multi-cloud Service-based Applications (SBA). The framework
has the ability to monitor multiple cloud environments at
different service layers, i.e. infrastructure, platform and
application, and uses Time Series Database (TSDB) to store
the captured events.

The second work has been presented in the article [10]. The
authors of this paper propose a novel approach for monitoring
Multi-cloud environments by developing a Monitoring-as-a-
Service framework called (CLAMS). The framework is
composed of three major components which are the CLAMS
monitoring agent, the CLAMS monitoring manager and the
CLAMS SuperManager. The first component is an agent, that
is deployed on the monitored Virtual Machines (VM), and
which role is to gather QoS statistics related to resources and
the service layer where they are running, and send them back
to the CLAMS manager as requested. The second component
is a manager of the deployed agents which role is to collect
QoS statistics from them using PULL or PUSH methods. It
stores a list of deployed agent in its database wherein the
collected statistics will be organized and stored. The third and
last CLAMS component, i.e. the SuperManager, is a
component used only when using the Multi-cloud strategy,
which role is to manage and coordinate between the deployed
monitoring managers through their API and to collect QoS
statistics gathered by the agents.

The proposed approach is quite interesting since it can be
used to collect QoS statistics from a single Cloud or from
Multi-cloud environments. The framework has been developed
in JAVA, which makes it platform agnostic and can run in any
environment. Yet, some downsides in this approach can be
noticed. The first one is regarding the monitoring manager
where it is provided with a database wherein QoS statistics are
stored and organized by service level, i.e. IaaS, PaaS and SaaS,
along with the list of the deployed agents, which is important
in a single cloud scenario. However, the monitoring manager

needs to be as lightweight as possible because in a Multi-cloud
scenario, a high number of data is generated and must be
processed efficiently, and it is not relevant to store QoS
statistics in the CLAMS manager and in the CLAMS
SuperManager databases. The second downside is that the
framework focuses only on collecting QoS on demand rather
than providing complete monitoring features, as a Cloud
monitoring solution or a NMS should.

III. EMMCS: AN EDGE MONITORING FRAMEWORK FOR

MULTI-CLOUD ENVIRONMENTS USING SNMP

As it was introduced in the first section, this paper presents
an architecture of a monitoring framework for Multi-cloud
environments using SNMP protocol. The proposed framework
is scalable and modular, were each module is microservices
oriented. Meaning that each one is designed to be lightweight,
and is provided with its own RESTful API to communicate
with other services. In addition to basic management and
monitoring functionalities (e.g. collecting metrics, tasks
scheduling, notification and alerting, resources management,
check methods definition etc.), the framework implements
analytics features such as heuristic data analytics for
performance and QoS trends, and behaviors analysis to detect
and notify the client beforehand about a potential failure that
might occur in order to take preventive measures. It can also
make decisions based on preconfigured scenarios and take
appropriate actions to avoid downtimes or service degradation.
Additionally, the framework has the ability to monitor multiple
Cloud environment through all their service levels
(infrastructure, platform and application), and thus, allowing
the client to have a complete view on the state of its services
that are hosted on multiple Clouds.

The EMMCS’s architecture, as shown in Fig. 1, offers
multiple advantages over previously presented solutions, which
are as follows:

 The use of the MP component in this architecture is not
only to collect data from SNMP agents like what some
NMS do (e.g., ZABBIX NMS uses its proxies for that
particular purpose only). In fact, the MP will do all
processing tasks on the edge of the cloud to generate
metrics from the collected raw monitoring data, rather
than sending them as they are to the MMS for
processing that create latency in term of network
transmission and CPU usage.

 The framework components and their services offer
standardized RESTful APIs that make the integration
and interfacing with other applications straightforward.

 The approach in this paper uses the standardized
management protocol SNMP. The reason of this choice
is that not only SNMP gives states about monitored
resources, but can also give information about QoS,
which is important in case the client is using
applications where QoS monitoring matters.

 The microservices oriented design has the advantage of
keeping the framework’s development simple and easy
to scale by using containers for each service, which will
facilitate their deployment and orchestration.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 1, 2019

621 | P a g e

www.ijacsa.thesai.org

Fig. 1. EMMCS Architecture Overview.

A. Monitoring Management Server

The Monitoring Management Server (MMS) is the
management component of the EMMCS framework that acts
as a manager and orchestrator of deployed MPs on each cloud.
It is also the framework’s core where collected metrics from
MPs will be consolidated in order to apply additional
processing. The MMS communicates with deployed MPs
through secure tunnels where the traffic is encrypted for
security matter. It implements basic NMS functionalities such
as resources monitoring (i.e. hosts, services, processes,
hardware etc.), events management, tasks scheduling,
notifications and alerts management, components
configurations and much more. Additionally, the MMS offers
advanced features such as data analytics to predict foreseeable
issues (e.g. system or service crash, performance degradation
etc.), as well as a decision-making and action service engine
that executes preconfigured actions depending on scenarios to
prevent breakdowns, performance or quality of service (QoS)
impairments. The MMS architecture as shown in Fig. 2 counts
ten microservices, which are detailed as follows:

1) Management console (MC): is the EMMCS

management CLI from where the framework and its

components are managed through their RESTful APIs. With

the MC, the user can perform all management (configuration,

deployments) and monitoring tasks (resources to monitor,

checks intervals, alarm definitions and notification methods,

thresholds etc.). Then, according to the roles and privileges

assigned to his account, the client can access different objects

and services of the MMS and MPs to perform the desired

tasks, if allowed.

Fig. 2. Monitoring Management Server Services.

2) System core (SC): is considered as the main service in

the MMS design. The SC centralizes and describes all MMS

services information on a catalog where they can be requested

via the SC API. In fact, this catalog is used by all MMS

services to get the necessary information (IP addresses, port

numbers, etc.) in order to communicate with each other. For

instance, when a MMS service A wants to communicate with

a MMS service B, the service A will ask the SC through its

API for the service B’s access information. Then, the SC will

look for the requested information in its services catalog and

send them back to the service A. The main benefit of this

architecture is to simplify the configuration management of

the MMS services by centralizing all access information in

this catalog, without the need to set them at the level of each

service, which can make the expansion and management of

the MMS easier. In addition, the SC checks periodically the

health of the EMMCS’s services to ensure that they are always

running, and notify the user in case a problem is detected.

3) Proxies manager (PM): is a service for remote

management and deployment of MPs. In fact, this service will

install an MP at the CSP when required, by uploading its

package on the VM where it will be hosted and executed. The

package of the MP contains its configuration that was setted

up in advance through the MC, and also contains all necessary

information in order to communicate with the CSP’s Cloud

orchestrator. To keep all information about the deployed MP

(i.e. IP address, DNS name, CSP name, MP API key etc.)

organized, the PM uses a JSON file as local catalog that will

be updated with newly created MPs or when changes are made

in some MPs configurations. The deployment also covers

updating and upgrading tasks of the MP and its services. In

addition, we count three types of PM remote management

operations: the PM manages deployed MPs by sending

requests to be executed on the monitored environment,

managing MPs’s services and their configurations, and

collecting data from MPs. For the first type of operations, the

PM will transform monitoring and action requests that need to

be scheduled and executed by a MP on the monitored

environment into JSON files. These JSON files are stored in

the “system DB” and a copy will be sent to the corresponding

MP to be executed. For the second type of operations, the MP

is fully manageable and controlled by PM. In fact, the PM

controls MP’s services, their configurations and their

updating/upgrading process. It also controls configurations of

deployed SNMP agents by sending them to the MP to apply

them on the agents. For the last type of PM operations, it

collects from MPs updated lists of deployed VMs, their

configurations and their states in order to ensure that the

information about the monitored environment stored in the

MMS is consistent with their actual state. Finally, the PM

service manages SNMP MIBs that are used to monitor

specific resources in the cloud environment. In fact, the client

can, if needed, upload new MIB files that are not present by

default, and translate numerical OIDs into a more “human

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 1, 2019

622 | P a g e

www.ijacsa.thesai.org

friendly” text to help the client distinguish between resources

OIDs.

4) Data collector (DC): if the PM is the MMS’s

management service of MPs, the Data Collector (DC) is the

service for collecting monitoring data. When an MP wants to

send collected monitoring data from deployed SNMP agents,

it is done through the MMS API. The MMS will receive these

data through the DC service, which will immediately extract

metrics and events to be processed and aggregated, and then

store them as time series in the “metrics and events” datastore

to be analyzed by the "Metrics and Events Analysis” service.

5) Metrics and events analysis (MEA): is a service which

role is to analyze stored metrics and events in the “metrics and

events” datastore in order to detect anomalies such as critical

states by comparing the stored data with the monitored

resource thresholds. This feature is called “instant detection”.

It can also prevent from abnormal behaviors of monitored

resources such as flapping states, increasing memory or disk

usage that can led over time to a system crash, services

downtime or QoS degradation by using predictive analysis and

machine learning algorithms and models. Once a critical state

is detected or an event will happen, the MEA service will send

notifications to the “Decisions and Actions” service, which

role will be decribed. For the moment, predictive analysis is

not yet implemented and only the instant detection is

available.

6) Decisions and actions (DA): working jointly with the

MEA service, the DA service has the main role to make

decision and execute actions according to predefined scenarios

that are stored in the “Decisions and actions” database. In fact,

when the MEA detects that a monitored resource has reached

a threshold’s limit or will reach a state or a value that can

cause service or system failure, the DA service will decide

whether it will execute an action or not (e.g. restarting the

service, notifying, scaling up/out a VM etc.). Regarding

actions that are related to the Cloud orchestrator (e.g. scaling a

VM by adding more hardware resources or by adding more

instances, restarting a VM, migrating a VM to another CSP

etc.), the DA service is provided with the “Cloud Manifest”, a

JSON file where information about CSPs are stored (e.g. IP

addresses, API keys, credentials and secret key etc.).

7) Notifications service: is a service from which

notification and alert method definitions and configurations

are managed. The client can, through the MC, add, modify or

delete alerts, notification methods (e-mail, SMS), notification

users and groups, in addition to thresholds. This service is also

used by other MMS services as a gateway to send notifications

and alerts if needed, since this service provides a RESTful

API that makes its use and integration straightforward.

8) Identity and access provider (IAP): is a service

responsible for managing and orchestrating authentication

(authN) and authorization (authZ) [11] of users and services

within the framework. The IAP service is mandatory since all

services must, before communicating with each other, be

authenticated and granted access to do so. At each successful

authentication using credentials, the IAP service will generate

a token and store it in its database, then will transmit a copy of

this token to the authenticated “service A” so that it will use it

during the communication with a “service B” as illustrated in

Fig. 3. A token provides all necessary authorizations to its

related services and objects in the framework, and replaces the

standard authentication method, i.e. using credentials, to

increase the control and security level of communications

between services. To increase the security of the

authentication and authorization process, the token has a

limited lifetime and will expire in order to generate a new one.

9) Plugins manager: This service allows the MMS to

extend the EMMCS features via plugins.

10) MMS databases: The MMS uses two types of

databases due to the nature of data that are handled, namely

the MySQL RDBMS to store configurations and the

MongoDB NoSQL database server to store metrics and

events. The MMS counts seven databases which usage is

described as follows:

a) Thresholds and notifications DB: is a MySQL

database where notification, alert and threshold configurations

will be stored.

b) Decisions and actions DB: is a MySQL database

where decisions and actions that are configured through the

MC are stored.

c) Identity and access DB: is a MySQL database owned

by IAP service where services identity and authorization

information are stored, i.e. generated tokens, credentials etc.

d) System DB: is the central MySQL database where

EMMCS services configurations are stored.

e) Plugins DB: is a MySQL database where information

about installed plugins are stored along with their

configurations.

f) Proxies DB: is a MySQL database used by the PM

service to store all information about deployed MPs and their

configuration.

g) Metrics and events datastore: is a MongoDB

database where collected monitoring data, i.e. metrics and

events, will be stored.

Fig. 3. Example of Communication between Two Services with Token-

Based Authentication.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 1, 2019

623 | P a g e

www.ijacsa.thesai.org

Fig. 4. Management Proxy Services Overview.

B. Management Proxy

The Management Proxy (MP) is a component of utmost
importance in the EMMCS’s architecture. Its primary role is to
act as a manager for SNMP agents installed in monitored VMs
that run on the Cloud and to execute requests on behalf of the
MMS such as monitoring and action requests. Since the MP
will run at the periphery (at the edge) of the cloud, its
architecture was designed to keep the system lightweight with
minimum resources footprint. Regarding the MP’s architecture,
it consists of five services (Fig. 4) that are described as follows:

1) Sync and updates manager (SUM): is the service that

allows the MMS to manage deployed MPs remotely as well as

their services’ configurations. It is the access point to the

MP’s services and from where monitoring requests,

configurations and updates that are configured in the MMS

will be distributed. In fact, when the client defines requests

that must be deployed and executed on targeted VMs or on

MP services, the MMS will first transform these requests into

JSON files (Fig. 5) and send them to the MP through the SUM

service’s API. Then, the latter will analyze these JSON files in

order to transmit them to the target, i.e. to MP’s services or to

SNMP agents. Moreover, the SUM service runs

synchronization tasks with cloud Orchestrators through their

APIs to gather information related to the monitored

environment such as VMs properties (name, IP addresses

etc.), VMs states (running, halted, newly created, running

services etc.), or to execute actions such as VM-related

operation (e.g. shutdown, restart etc.), resources scaling, inter-

clouds migration etc. To this end, the SUM service will use

the provided credentials and the CSP’s API keys to connect to

the CSP orchestrator in order to execute these tasks. Currently,

the SUM service supports natively the AWS and Microsoft

Azure cloud providers in addition to the Openstack

Orchestrator.

2) Agents integration and management (AIM): This

service is of great importance in the MP’s architecture because

it performs all monitoring tasks. Indeed, the AIM service acts

as a manager of all deployed SNMP agents by keeping a list of

the deployed ones, managing their configurations, executing

SNMP requests and actions on the targets sent by the MMS

through the SUM service, collecting monitoring data and

capturing events generated by SNMP agents installed in the

VMs. As mentioned before, monitoring checks and actions

data that will be executed on the targets are scheduled in the

MMS by the client and then are sent to concerned MPs

through their SUM services which will, in turn, analyze the

received files to determine their categories (monitoring,

configuration update, action or service update). The structure

of JSON files (Fig. 5) that are sent by the MMS to the MP is

organized as follows:

For monitoring requests, the JSON file will contain the
following information:

 Id: Request identifier;

 Type: Request type (0 = monitoring, 1 = action, 2 =
configuration update, 3 = component update);

o Target: Information about the monitored
VM, namely:

o uuid: The Unique Universal Identifier used
by the Cloud orchestrator to identify the VM;

o Hostname: The VM hostname;

o ipAddress: The VM IP address;

o SNMPversion: The SNMP protocol version
that will be used to query the SNMP agent in
the VM;

o SNMPcommunity: The SNMP community
string used to query the SNMP agent in the
VM.

Fig. 5. Example of a Request File Generated by the MMS.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 1, 2019

624 | P a g e

www.ijacsa.thesai.org

 Check: definition of the check to schedule, namely:

o uuid: Unique Universal Identifier of this
check. This identifier is generated by the
MMS at the time of its creation to identify
and match the request with its response;

o Name: a symbolic name of the monitoring
check;

o ObjectID: OID of the resource that will be
monitored within the VM;

o CheckPeriod: is the period during which the
monitoring request will be executed, e.g.
24x7;

o NormalCheckInterval: Normal check cycle
in seconds representing how often the check
will be executed when the last check status is
OK;

o AbnormalCheckInterval: check cycles in
seconds representing how often the check
will be executed when the last returned state
is abnormal;

o MaxAttempts: number of check attempts to
perform during AbnormalCheckInterval
cycles before reporting that the resource is in
an abnormal state (all check attempts status
need to be NOK);

o Priority: The priority level of the check. This
is useful when monitoring critical resources.
Two levels are available: normal or high;

o PerformInitialCheck: is a Boolean that is
used to tell the AIM service whether an
initial check on the target will be executed or
not.

Fig. 6. Example of an Action File Generated by the MMS.

For actions that will be executed on the target, the JSON
file contains information (Fig. 6) that is described as follows:

 Id: The request identifier;

 Type: Request category type (0 = monitoring, 1 =
action, 2 = configuration update, 3 = component
update);

 Target: Information about the monitored VM, namely:

o uuid: The Unique Universal Identifier used
by the Cloud orchestrator to identify the VM;

o Hostname: The VM hostname;

o ipAddress: The VM IP address;

 Action: definition of the action to execute on the
targeted VM, namely:

o Method: the protocol through which the
action will be executed. There are two
methods: using the SSH protocol for Linux-
based VMs and using the SMB/RPC
protocols for Microsoft Windows VMs. In
both methods, the actions will be transmitted
and executed in the VMs environments;

o Command: The command or script to run on
the targeted VM;

o sshPortNumber: Port number of the SSH
server that runs on the VM. This key is used
jointly with the “method” key (for the
SMB/RPC, it will use the default port
number);

o User: the username of the account that has
enough privileges to execute scripts on the
targeted VM;

o Name: a symbolic name of the action;

o uuid: Universal Unique ID of this action. It
is generated by the MMS at the time of its
creation.

In addition to monitoring tasks, the AIM can remotely
install and configure SNMP agents on VMs that need to be
monitored. For that, the AIM service will connect to the VM
via the SSH or SMB/RPC protocols to install, enable and
configure the SNMP service with appropriate configurations.

3) Data preprocessor (DP): is a service that performs

processing tasks between the AIM and the MMS. Indeed, the

collected monitoring data or events from SNMP agents may

contain raw data (Fig. 7) that need to be cleaned and

standardized in order to extract and generate the useful

metrics.

Fig. 7. Example of an SNMP Response.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 1, 2019

625 | P a g e

www.ijacsa.thesai.org

Fig. 8. Example of a Response File Generated by the DP.

Moreover, in order to optimize the overall monitoring
performance of the framework, the DP will process the
monitoring data in real time, convert them into JSON format
(Fig. 8) and stream the response file back to the MMS. To
manage failures or errors during data transmission, the DP will
cache these files in its memory during their transmission until
they are successfully received by the MMS. The JSON format
to represent and describe these data was chosen since
EMMCS’s services use RESTful API calls to communicate
with each other, and because the JSON format is lighter [12] in
processing and transmission than other data exchange formats
(e.g. XML), which will have minimal impact on CPU, memory
and I / O utilization.

The response file generated by the DP has a structure that
reflects the schema of the database where the metrics and their
related data will be stored in the MMS. The non-exhaustive list
of attributes that are used in the response file are described as
follows:

 RequestId: The identifier of the request file that was
previously sent by the MMS to schedule the monitoring
check;

 TimeStampGen: The timestamp of the response (when
the check was executed);

 CheckUUID: The Universal Unique Identifier of the
check related to the request “requestId”;

 Worker: The MP that generated this file as well as its
related information, namely:

o uuid: The Universal Unique Identifier of the
MP that generated this file;

o name: The Fully Qualified Domain Name of
the MP;

o location: the region of the CSP Datacenter
where the MP is hosted;

o provider: The name of the CSP.

 Target: Information on the VM that is monitored,
namely the UUID, ipAddress and hostname;

 Resource: the information on the VM resource that is
monitored, namely:

o ObjectID: the OID of the resource that is
monitored within the VM;

o Value: the metric that will be extracted and
sent to the MMS;

o Unit: the unit used to measure the OID
value. Depending on the resource, it can be a
percentage (e.g. CPU usage), kilo Bytes or
can be omitted in case of a string.

4) Plugins manager: like the MMS, this service allows

the management of plugins to extend MP’s functionalities. For

example, adding support for Cloud and IaaS orchestrators, or

monitoring SaaS applications if they offer interfaces from

where access to metrics is possible.

5) Identity and access provider (IAP): Operates the same

way as in the MMS.

However, unlike the MMS, the MP will not use any type of
database to store its data. In fact, since the EMMCS
configurations (services included) are stored in the MMS
databases, the MP services will receive their configurations
from the MMS as JSON files that will be stored locally.

IV. EMMCS IMPLEMENTATION

In this section, an implementation of the proof of concept
(PoC) of the EMMCS framework will be presented. The
development of the framework’s components, i.e. the MP and
the MMS, was done using Python3.5 as a primary
programming language, which is known for of its
multiplatform compatibility, provides a large number of
libraries and modules that can simplify applications
development, and for its easy syntax that make codes
maintainable and readable. Details about the PoC of the MMS
and the MP, their requirements and the testbed environment
where the framework was implemented will be described
further in this article.

A. MMS Proof of Concept

The MMS has been developed in Python3.5 using multiple
libraries and SDKs to implement its features, namely RESTful
API with the “Django REST” framework, CSP management
with “BOTO3” for Amazon Web Services and “Azure SDK
for Python” SDKs, and the “PySNMP” library for SNMP
implementation. As for data storage, the MMS relies on the
documents-oriented database MongoDB where metrics and
events are stored in JSON format, and MySQL to store service
configurations.

The setup procedure of the framework starts with the
deployment of the MMS that needs its requirements to be
installed first. The MMS comes in a “tar.gz” archive that is
extracted using the “tar” command in a terminal. The extracted
package contains a Shell script named “deploy-mms.sh” and a
directory that includes the MMS binaries and configuration
files. The “deploy-mms.sh” script was developed to automate

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 1, 2019

626 | P a g e

www.ijacsa.thesai.org

the MMS deployment process by checking the system
requirements and dependencies and thus, needs to be executed
as “root” or any user that has enough privileges, and then
install what is missing. Since the script is interactive, it will ask
the user for some information that will be needed by the MMS
such as the path of “Python3.5”, installation path, IP
address/port number of the MongoDB and MySQL servers, the
name of databases to create, the port number that will be used
by the MMS etc. After that, the script will copy the MMS
directory and its content to the specified location and finally
starts the MMS services.

B. MP Proof of Concept

To implement its features, the MP’s development used the
PySNMP library that provides all necessary packages that
implement SNMP functionalities. Like the MMS, the MP
implements BOTO3 for AWS and the Azure SDK for Python
to communicate with them through their APIs to stay
synchronized. Concerning the MP’s API, it was developed
with the “Falcon” framework because it allows developing
high performance and lightweight RESTful API using Python.
It should be noted that since the MP needs to be highly
efficient in term of resources usage since the standard Python
implementation is not resource-friendly compared to other
programming languages such as JAVA, C++ etc., the “PyPy”
alternative was adopted to implement the MP. The main
difference between the standard Python and PyPy is that the
latter integrates a compiler named Just-in-Time compiler (JIT)
that compiles Python code into low-level code, which implies
less resources usage and high performance execution. In
addition, and in order to install the agents on Windows OS, the
MP uses PyPsExec library that provides methods to execute
remote commands on a Windows OS through the SMB/RPC
protocol.

For the MP’s deployment procedure, it is done from the
MC. It comes as a self-extracting archive that includes scripts
and configuration files. The archive is generated using the
“makeself” tool. Then, the client will execute the deployment
procedure and will provide all necessary information needed
by the MMS to install and configure the MP.

In addition, it is important to provide information about the
client’s CSP subscription (credentials, access keys and the CSP
API key) otherwise the deployment will fail. The MMS will
then open a SSH tunnel with the remote VM, copy the MP’s
archive to /tmp location and execute the self-extracting archive
to extract its content. Like the MMP, the MP’s archive includes
a Shell script named “deploy-mp.sh” that will check and install
missing requirement and dependencies in the system. Once
done, the script will configure the MP environment and then
starts its services.

Fig. 9. Example of an Action Request to be Executed on a VM.

C. Testbed Environment

The implementation of the test environment to validate
EMMCS’s features took place in three stages: first, preparing
the environment and prerequisites, then testing the framework
features and finally running performance tests.

1) Stage 1: setting up requirements: The first stage

consists of setting up the infrastructure to install the

framework components, i.e. installing the MMS, creating the

VMs to be monitored and the VMs where the MP will be

installed at the CSPs, as well as preparing the execution

environment and software prerequisites for the framework’s

components. The VMs to be monitored were deployed and

configured as shown in Table 1.

On the other hand, the framework components are
deployed as follows:

 The MMS is installed on an Ubuntu 16.04 LTS server
VM with an Intel Core i5 6th Gen CPU, 4 GB of RAM
and 500 TB of internal storage and was hosted on
premise;

 The MP is deployed on a VM at each Cloud
environment as described in Table 1 where it will
manage and monitor targeted VMs and their resources.
The MPs are executed on an Ubuntu 16.04 LTS server
instances with two vCPUs, 4 GB of RAM and 40 GB of
internal storage with the Secure Shell (SSH) protocol
enabled for remote deployment and execution;

 The SNMP protocol version used in this test is “2c” (the
SNMP version 3 is also supported), using a private
community string “cloudlab”.

It is important to remind that the framework has the
capability not only to monitor Multi-cloud environments, but
also to monitor hybrid Clouds. For that, the Openstack
orchestrator was added to the testing lab that is deployed using
the All-in-One (AIO) installer from the Red Hat Distribution of
Openstack project (RDO project) in a physical server with an
Intel Xeon E3-1240v6 CPU, 16 GB of RAM and 1 TB of
internal storage. The use of an AIO installation is to simplify
the deployment of Openstack since its main use is for testing
purpose.

TABLE I. MONITORED ENVIRONMENT FOR THE FIRST STAGE OF THE EXPERIMENTATION

Targets IP address Guest OS Instance type Provider Resources to monitor

Test-vm-
01

10.10.3.12/24
Ubuntu Server 18.04 LTS
(HVM)

2 vCPUs, 8 GB of RAM,
20 GB storage

Openstack

Queens

Processes: Apache (httpd), mysqld;
Resources: available disk space on /;

Test-vm-

02
10.10.10.12/24 Windows Server 2016

2 vCPUs, 4 GB of RAM,

40 GB of storage
Microsoft Azure Processes: lsass.exe, mysqld.exe

Test-vm-
03

172.16.10.12/24
Red Hat Enterprise Linux 7.5
(HVM)

1 vCPU, 1 GB of RAM,
20 GB storage

Amazon Web

Services (AWS)

Resources: VM CPU Load (15
minutes); available SWAP memory

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 1, 2019

627 | P a g e

www.ijacsa.thesai.org

2) Stage 2: features validation: Whilst the first stage was

about to set up the testing lab’s infrastructure and

requirements, the second stage of the experimentation is to test

the framework’s features, i.e. monitoring and actions requests.

Since this stage is to validate and to prove that these features

are working, the test starts with one VM per CSP and some

resources to monitor as described in Table 1. Then the number

of monitored VMs will be increased to test the overall

performance of the framework in the last stage of the

experimentation.

The experimentation at the second stage consists of
executing two types of requests: monitoring request and action
request. To execute management tasks, a command line script
in Python that implements management and monitoring tasks
for the framework was developed. This script can be locally (in
the MMS) or remotely executed (the MMS’s IP address must
be provided in the script’s parameters) and acts as a RESTful
client to communicate with the MMS through its API. An
example of the execution of the command-line script “mms-
mgmt-cli.py” as shown in Fig. 9 represents the execution of an
action on the VM “test-vm-01” that runs on the Openstack
orchestrator, where the script will receive a list of parameters
(the parameters list is non-exhaustive) such as:

 Set-request: this parameter is used for sending requests
to the MMS that need to be executed by the MMS itself
or by the MP. For pulling data from the MMS, e.g.
metrics, the parameter “get-request” will be used with
other parameters;

 mms-hostname: can be either the Fully Qualified
Domain Name (FQDN) or the IP address of the MMS;

 mms-port: the port number where the MMS is listening
for incoming API calls;

 request-type: can take one of the following values: 0
(monitoring request), 1 (action request), 2
(configuration update request) or 3 (component update
request);

 mp: the FQDN of the MP that the request will be sent
to;

 target: the IP address or hostname of the targeted VM;

 action-method: the protocol to use by the MP for
actions execution (i.e. SSH for Linux-based VM or
SMB/RPC for Windows VMs);

 oid: SNMP Object ID of the resource to query.

In the example as shown in Fig. 10, these parameters will
be sent to the MMS through its API that will extract them to
generate the JSON file (Fig. 7) that will be sent to the targeted
MP to execute the action. If a path of an executable or a script
is provided in the “action” parameter, the mms-mgmt-cli.py
will send the action script to the MMS, which in its turn will
send it with the generated JSON file to the MP.

By analyzing the AIM log file (Fig. 10), the action request
that was sent to the MP (mp.locallab.edu on Openstack) to be

executed on the VM test-vm-01 was received first by the SUM
service which in its turn has send it to the AIM service (all
through the DP service) that executed the action successfully
on the target VM (return_code=0).

On the other hand, the example as shown in Fig. 11
represents another use of the command-line script where it is
possible to request for metrics of a specific resource. In this
example, a request was sent to get the available memory on the
SWAP partition for the targeted VM, i.e. test-vm-
03@172.16.10.12 that runs on the AWS cloud provider.

Finally, to get a near real-time (the difference between near
real-time and real-time can be affected by connectivity
conditions) display of monitoring data, the script can be
executed in “daemon mode” where it will collect from the
MMS’s metrics and events database any newly stored metrics
and display them with their related information, as shown in
Fig. 12.

Fig. 10. AIM Log Snapshot.

Fig. 11. Example of a Monitoring Request to be executed on a VM.

Fig. 12. Executing “MMS-Mgmt-Cli.Py” Script in Daemon Mode.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 1, 2019

628 | P a g e

www.ijacsa.thesai.org

3) Stage 3: Performance tests: The last stage of the PoC is

to test the performance and resources usage of the

framework’s components. The validation of the PoC is not

only about making sure that the framework’s features are

working, but also to show that the MP has a small resources

footprint. Since all monitoring tasks and preprocessing are

done at the edge, i.e. by the MPs, and the latter is running on

the Cloud environment, in contrast to the MMS which is

hosted outside the Multi-cloud environment, it is important to

keep a close eye on the performance and resources usage of

the MP, i.e. CPU and RAM. In order to perform these

performance tests, another script was developed, named “test-

mass-schedule.py” that will schedule monitoring tasks in bulk,

with small check periods between each task in order to

simulate high workload like in a production scenario at each

public cloud.

Then the script is executed multiple times and at each time,
the number of monitored VMs was increased on each cloud
provider to see how their MPs’ resources will be affected. In
this experimentation, the test started with 10 VMs at each
cloud provider and collected statistics of their corresponding
MP, then increase the number of VMs up to 70. To generate
statistics of the MP resources usage, “sysstat”, a system
performance package that comes with various tools used in
Linux-based operating systems to monitor usage activity and
performance was installed and executed on the MP’s virtual
machine. The collect of these statistics has been done after the
launch of the “test-mass-schedule.py” script. The collected
statistics during tests were cleaned from “idle” states of the
CPU to leave only relevant values, in order to use their
average. For memory usage, the highest value is selected since
it will be the real value before the system cleans its memory.
The results of the CPU and memory usage are shown
respectively in Fig. 13 and Fig. 14.

The results in Fig. 13 show that during the scheduling of
checking tasks and the processing of data sent by the SNMP
agents, the MP’s CPU usage on each cloud provider is minimal
despite the increased number of running VMs. This show that
the MP’s processing is stable and efficient even if it is
operating in an environment with high workloads such as
Cloud environments.

Fig. 13. Management Proxy CPU usage in Percentage per CSP.

Fig. 14. Management Proxy Memory usage in MB per CSP.

The same conclusion can done by analyzing Fig. 14 where
minimal usage of the memory by the MP on each cloud
provider can be observed although the number of running VMs
has increased from 10 to 70 with no important increase of
memory utilization. These results were achieved by optimizing
the MP source code and due to the use of the JIT compiler of
the PyPy implementation.

V. CONCLUSION

This paper presented a novel approach of a monitoring
framework for Multi-cloud environment where all heavy
processing are done at the periphery of the cloud rather than
sending raw data to be processed on the main datacenter. The
framework, called EMMCS, is scalable and modular using a
microservices-oriented architecture where each service is
provided with its own RESTful API. For monitoring tasks,
EMMCS uses SNMP agents that are installed on each VM on
the cloud to collect metrics and QoS statistics.

According to the experiment, the EMMCS framework has
proven to be efficient and resources friendly even when
monitoring a significant number of VMs. This was achieved by
optimizing the code and using high performance technologies
such as PyPy, a fast implementation of the Python
programming language and Falcon. However, the EMMCS
framework is in early stages of development as thus, needs
improvement in term of optimization and features. In the
future, the focus will be on adding data analysis and early
detection using machine-learning systems to prevent from
potential problems and to avoid false positives such as high
resource consumption due to maintenance tasks, backups and
replications, commits in databases, etc. A graphical UI is in the
EMMCS’s development roadmap to replace the management
console that does not provide enough features such as
graphing, administration tasks, etc.

REFERENCES

[1] S. Kolhe and S. Dhage (2012) “Comparative study on virtual machine
monitors for cloud”, 2012 World Congress on Information and
Communication Technologies.

[2] V. Bucur, C. Dehelean and L. Miclea (2018) “Object Storage in the
Cloud and Multi-cloud: State of the Art and the research challenges”,
IEEE International Conference on Automation, Quality and Testing,
Robotics (AQTR).

[3] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, "Edge Computing: Vision
and Challenges", IEEE Internet of Things Journal, Volume: 3, Issue: 5,
Oct. 2016.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 1, 2019

629 | P a g e

www.ijacsa.thesai.org

[4] R. Hillbrecht and L. C. E. de Bona (2012) “A SNMP-based Virtual
Machines Management Interface”, IEEE Fifth International Conference
on Utility and Cloud Computing.

[5] Y.-C. Peng and Y.-C. Chen (2011) “SNMP-based monitoring of
heterogeneous virtual infrastructure in clouds”, 13th Asia-Pacific
Network Operations and Management Symposium.

[6] B. Mayer and R. Weinreich (2017) “A Dashboard for Microservice
Monitoring and Management”, IEEE International Conference on
Software Architecture Workshops (ICSAW).

[7] L. Romano, D. De Mari, Z. Jerzak, and C. Fetzer (2011) "A Novel
Approach to QoS Monitoring in the Cloud", First International
Conference on Data Compression, Communications and Processing.

[8] S. A. De Chaves, R. B. Uriarte, and C. B. Westphall (2011) "Toward an
architecture for monitoring private clouds" Communications Magazine,
IEEE, vol. 49, pp. 130-137.

[9] C. Zeginis, K. Kritikos, P. Garefalakis, K. Konsolaki, K. Magoutis and
D. Plexousakis (2013) “Towards Cross-Layer Monitoring of Multi-
Cloud Service-Based Applications”, ESOCC 2013, LNCS 8135, pp.
188–195.

[10] K. Alhamazani, R. Ranjan, K. Mitra, P. P. Jayaraman, Z. (George)
Huang, L. Wang and F. Rabhi (2014) “CLAMS: Cross-Layer Multi-
Cloud Application Monitoring-as-a-Service Framework”, IEEE
International Conference on Services Computing.

[11] J. L. Hernández-Ramos, M. P. Pawlowski, A. J. Jara, A. F. Skarmeta
and L. Ladid (2015) “Towards a Lightweight Authentication and
Authorization Framework for Smart Objects”, IEEE Journal on Selected
Areas in Communications, Volume 33, Issue 4.

[12] S. Zunke and V. D’Souza (2014) “JSON vs XML: A Comparative
Performance Analysis of Data Exchange Formats”, IJCSN International
Journal of Computer Science and Network, Volume 3, Issue 4.

[13] S. Khoudali, K. Benzidane, A. Sekkaki and M. Bouchoum (2014)
“Toward an elastic, scalable and distributed monitoring architecture for
cloud infrastructures”, International Conference on Next Generation
Networks and Services (NGNS).

[14] B. Butzin, F. Golatowski and D. Timmermann (2016) “Microservices
approach for the internet of things”, IEEE 21st International Conference
on Emerging Technologies and Factory Automation (ETFA).

