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Abstract—The problem of assigning a balanced academic
curriculum to academic periods of a curriculum, that is, the
balancing curricula, represents a traditional challenge for every
educational institution which look for a match among students
and professors. This article proposes a solution for the balancing
curricula problem using an optimization technique based on the
attraction of fireflies (FA) meta-heuristic. We perform a set of test
and real instances to measure the performance of our solution
proposal just looking to deliver a system that will simplify the
process of designing a curricular network in higher education
institutions. The obtained results show that our solution achieves
a fairly fast convergence and finds the optimum known in most
of the tests carried out.
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I. INTRODUCTION

At the time of designing curricular meshes for a study
program in higher education, we consider factors such as the
number of subjects for the career, the number of periods to
assign those courses, the minimum and maximum acceptable
academic load, and the number of courses per semester. We
construct the curriculum using all this information as well as
restrictions or academic regulations related to the curriculum
through a trial and error approach until we achieve an adequate
mesh.

If we measure the degree of effort required to pass a subject
in credits, the academic success that students may achieve is
directly related to the academic load they face in each period.
The academic load corresponds to the number of credits per
semester. It is for this reason that the curricular meshes must
be “balanced,” that is, the number of credits for each period
must be similar so that the load that the students face is the
minimum possible. Therefore, it is of interest to minimize this
cost by designing a study plan using an algorithm that performs
this effort automatically and without errors. This problem is
known in the literature as the Balanced Academic Curriculum
Problem (BACP), and it is of the CSP (Constraint Satisfaction
Problem) type. In a CSP, it is sought to satisfy all the associated
constraints and then to optimize the quality of the solution
found. Several models that solve the BACP have been studied,
where this problem has generally been approached using
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the paradigm of programming with restrictions and hybrid
algorithms using genetic algorithms, collaboration schemes,
and local searches, among other techniques.

The present work focuses on solving the test instances
recognized by the CSPLib [1], and a few real situations of
the problem in the study programs of the computer area of
two Chilean universities. To solve the BACP, we use the
optimization meta-heuristics based on the behavior of fireflies
or Firefly Algorithm (FA) proposed by Xin-She Yan [2].

In the present investigation, we apply the FA algorithm
to a set of solutions previously found by the whole linear
programming method and represented in a binary matrix. After
obtaining a set of valid solutions, considering that each one
expresses a firefly, we proceed to optimize the space of initial
solutions through FA to be able to find an optimal solution.

The rest of the article follows the next structure: Section
2 presents the development of the theoretical analysis of the
BACP problem, Section 3 describes a math model for the
BACP and gives ideas of the firefly optimization, Section 4
describe the classic firfly algorithm and ideas about how to
aply it on the BACP, Section 5 gives application results of
the firefly optimization on test and real cases of the BACP
problem, Section 6 summarizes related work, and Section 7
gives final ideas and conclusions of our research work.

II. BACP BACKGROUND THEORY

The BACP was initially introduced and developed by
Castro and Manzano in [3] who proposed a whole linear
programming model to considers the following entities and
restrictions:

• Courses: The curriculum considers a set of manda-
tory courses, that is, non-optional, which have credits
assigned.

• Periods: The curricular mesh composes a curriculum
that corresponds to a fixed number of time intervals
(academic periods). Each academic period includes
courses to teach. For example, a curricular mesh of
4 years contains 8 academic periods, and each year
consists of 2 periods (semesters).

• Maximum load: For each period there is a maximum
academic load allowed, that is, a maximum number
of credits allowed.
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• Minimum load: For each period there is a minimum
academic load allowed.

• Prerequisites: The curriculum contains a defined order
in the courses, that is, some courses must be taught and
approved before than others. These courses are called
prerequisites which permit generating ordered pairs of
courses in which the restriction is that a student must
pass the first course before taking the second course.

• Balanced distribution of the load: The curricular mesh
should be balanced, that is, the number of credits of
each academic period should be similar, ideally equal.

The work of [4] define an structural and behavioral models
for the BACP problem whereas the work [3] appreciate it as
as a constraints problem.

The main objective of this research is to find an allocation
of courses for each period that satisfies all the mentioned
entities and restrictions in an optimal way.

We use the test instances of the CSPLib (BACP8, BACP10,
and BACP12) to validate our proposed algorithm. For example,
considering the BACP8, this curriculum is made up of 46
courses with a total of 133 credits to be taught in 8 academic
periods. Consequently, the simple arithmetic average of credits
per period is equivalent to 133/8 = 16,625, which implies that
the lower limit of the maximum number of credits per period
is 17. Therefore, solutions with value 17 are optimal.

III. BACP MATH MODEL AND FIREFLY OPTIMIZATION

First, we describe a math model of the BACP to appreciate
it as an optimization problem: and second, we present a
background about the Firefly meta-heuristic.

A. BACP Math Model

We propose an integer linear programming model based
on [3]. This model uses a decision variable of one dimension
for the resolution of the problem and considers the following
parameters:

• m: Number of courses.

• n: Number of academic periods.

• αi: Number of credits of course i, where i = 1, ..., m.

• β: Minimum academic load per period.

• γ: Maximum academic load per period.

• δ: Minimum number of courses per period.

• ε: Maximum number of courses per period.

The decision variables correspond to:

• A vector with the periods assigned to each course:

xi = j,∀i = 1, ...,m (1)

• The maximum academic load for all periods is c:

c = max{c1, ..., cn} (2)

• The academic load for a period j is defined by:

cj =
m∑
i=1

αiζi,∀i = 1, ...,m;∀j = 1, ..., n (3)

where: ζi =
{

1, if xi = j

0, if xi 6= j

Thus, the objective function globally minimizes the aca-
demic load:

min c (4)

We define the following restrictions:

• Every course i must be assigned to a period j:

n∑
j=1

xij = 1,∀i = 1, ...,m (5)

• Course b of a period j has a prerequisite:

xbj ≤
j−1∑
r=1

xar,∀j = 2, ..., n (6)

• The maximum academic load is defined by Eq. (2) the
one that obeys the following set of linear constraints:

cj ≤ c,∀j = 1, ..., n (7)

• The academic load of period j must be greater than or
equal to the minimum required:

cj ≥ β,∀j = 1, ..., n (8)

• The academic load of period j must be less than or
equal to the maximum required:

cj ≤ γ,∀j = 1, ..., n (9)

• The number of courses of period j must be greater
than or equal to the minimum required:

m∑
i=1

ζi ≥ δ, ∀j = 1, ..., n (10)

where: ζi =
{

1, if xi = j

0, if xi 6= j

• The number of courses of period j must be less than
or equal to the maximum required:

m∑
i=1

ζi ≤ ε,∀j = 1, ..., n (11)

where: ζi =
{

1, if xi = j

0, if xi 6= j
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B. Optimization based on Fireflies

Optimization based on fireflies is one of the newest heuris-
tics inspired by natural behaviors for optimization problems.
For the work of [5] [6] [7], we know that fireflies possess an
unmistakable characteristic glow, and even people who have
not seen one in their life know that they emanate a light.

For the work of [7], the foundation of the algorithm focuses
on the brightness of fireflies which, in their need to mate,
approach to a other fireflies releasing attractive light. It is
this behavior that has given rise to the optimization algorithm
which considers as an objective function the brightness of the
fireflies and their need to approach the most brilliant or optimal
firefly.

There are different types of insects and animals in nature
and, depending on each species, present different organization,
communication, and skill which make each element of the
colony can fulfill an objective looking for a common good.
A firefly presents an example of communication in which
it combines the absorbed oxygen by individual cells with a
substance called luciferin and reacts by producing light without
hardly generating heat. The light of the firefly is usually
intermittent and shines in a specific way in each species. Such
as [2] argue, each approach to shine is an optical signal that
helps the fireflies to find possible pairs.

Firefly Algorithms (FA) especially solves multi-modal
optimization problems. The work of [8] details that there
exist records of continuous FA applications in optimization
problems, traveler’s problem (TSP), segmentation (clustering)
tasks, image processing, and feature selection problems.

According to the work of [5] and [6], three essential
properties of the behavior of the FA are identified:

• All fireflies are unisexual and are attracted to other
fireflies, regardless of their sex.

• The value of the objective function determines the
brightness of a firefly, that is, for a maximization
problem, the brightness of each firefly is proportional
to the value of the objective function and vice versa.

• The degree of attraction of a firefly is proportional to
its brightness, and therefore for any pair of blinking
fireflies, the one that is less bright will move towards
the brighter one. More brightness means less distance
between two fireflies. However, if the two flickering
fireflies have the same brightness, they randomly
move.

We obtain the formulas and procedures for the operation of
FA meta-heuristics from the analysis of these properties which
the following section explains in details.

IV. FA ON THE BACP

We must consider the brightness proportional to the value
of the objective function to apply the algorithm FA in the
optimization problems. In the case of genetic algorithms, we
can define the brightness in the same sense as the objective
function.

Since the attractiveness of a firefly is proportional to the
light emanating, we can define this attraction as:

β = β0e
γr2 (12)

where β0 is the attractiveness at a distance r = 0. We
calculate the distance rij between two fireflies using the Carte-
sian distance method, and γ represents the light absorption
coefficient that is associated with the scale and nature of the
problem.

A firefly i is attracted to a brighter firefly j and its
movement is determined by:

xi = xi + β0e
γr2(xj − xi) + α(rand− 1/2) (13)

Where xi and xj are the current position of the fireflies, the
second term corresponds to their attraction, and the third term
introduces a random component in which α is a randomization
parameter and rand a uniformly distributed random number
between 0 and 1 .

Different authors have already demonstrated the ability of
the FA algorithm to solve optimization problems. On the other
hand, in [5] the effectiveness of this algorithm has been shown
to solve problems with binary representation.

The main idea to solve the BACP proposed in this paper is
based on representing the problem through a binary arrange-
ment because evidence exists that raising the solution in this
way is useful and we can say undoubtedly that the fireflies
algorithm adapts perfectly to a binary representation like the
one that is presented later in this article.

Algorithm 1 [9] shows the general scheme of the FA
solution for which the objective function defines the objective
of the problem. Besides, and it is necessary to initialize the
firefly parameters: γ, β0, the size of the firefly population n,
and the maximum number of generations MaxGeneration.

Algorithm 1 Pseudocode of Algorithm FA

Objective function f(x), x = (x1, ..., xd)t
Generate an initial population of n fireflies xi (i = 1, 2,

..., n)
The intensity of light Ii in xi is determined by f(xi).
Define the light absorption coefficient gamma

while t < MaxGeneration do
for i← 1 to n do . for all the n fireflies

for j ← 1 to n do . for all the n fireflies
if Ii < Ij then

to move firefly i to firefly j
end if

end for
end for
To classify the fireflies and find the best global optimum

g
end while
To Process and visualize

We propose to apply the algorithm FA to solve the whole 
linear programming model of the BACP previously described. 
Fig. 1 shows the three simple steps necessary for our
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solution: first, an instance of the problem is loaded; second,
the algorithm FA is applied in a binary representation of the
problem; and third, finally a representation of the best solution
found by the algorithm FA is obtained.

Fig. 1: Scheme of proposed solution.

A set of constraints defines each instance of the problem,
that is, the set of parameters and decision variables mentioned
at the beginning of this section. The courses and academic
periods form a curricular mesh (or curriculum) that can be
represented by a binary matrix on which we can apply the FA
algorithm.

In addition to the characteristics of the problem, we need
to take into account the following steps: (1) to define the
absorption coefficient, (2) to generate an initial population of
fireflies, (3) to define the attractiveness coefficient, and (4) to
determine the maximum number of generations.

When we want to solve a problem, according to [9] [10],
an important aspect is to look for a simple, logical and useful
representation on which we are capable of solving the problem
efficiently and effectively.

To solve the BACP, we have proposed a binary matrix 
representation of dimensions mxn, that is, rows with periods 
and columns with courses, with the purpose of that the matrix 
has squares with possible values 0 or 1. This representation 
will indicate if a course i is assigned to a period j (value 1), 
or, on the contrary, that the course i does not correspond to 
that period j (value 0). Fig. 2 shows the base representation 
for a possible solution to the problem.

Fig. 2: Scheme of proposed solution.

V. RESULTS

The proposed solution was implemented in the Java pro-
gramming language using the Netbeans IDE 8.0 programming
environment. Besides, our solution ran in a computer using
Windows 7 Ultimate 64-bit operating system. Our computer
to run the tests has a 3.4 GHz Phenom II X4 processor, and
8 GB of RAM.

The algorithm FA must be modified so that it can operate
with binary representations. When applying the formula of
motion to a firefly, the algorithm generates values that do not
meet the conditions defined in the proposed binary matrix to
represent the solution mainly due to the fact that, when apply-
ing the movement formula in each of the matrix dimensions,
we will obtain a real value that must be transformed into binary
by means of a transfer function.

A transfer function is a mathematical model that, through
a quotient, relates the modeled response of a system to an also
modeled input or excitation signal.

In control theory, transfer functions are often used to
characterize the input and output relationships of components
or systems that are described by linear differential equations
and time-invariants. In this paper, we use the following transfer
function [5]:

Tanh(|Xp|) =
exp(2|Xp| − 1)

exp(2|Xp|+ 1)
(14)

To pass the values from a continuous search space to a
discrete one, the rule used in [5] follows:

xki (t+ 1) =

{
1, if rand < T (xki )(t+ 1))

0, in other case
(15)

Where rand is a random number between 0 and 1 evenly
distributed, xki (t) is the value of the dimension k of a firefly
i at the iteration t.

TABLE I: PARAMETERS USED IN EXPERIMENTS

Parameter Value
Iterations number 1000
Fireflies number 30
α 0.5
β 1
γ 1

To validate the results of the system, and its performance
at the time of generating solutions, 50 tests were performed on
each of the instances available in the CSPLib. The parameters
used to solve these test instances are those presented in Table
1. Those test instances serve to measure the behavior of the
algorithm and are also the basis of comparison with the work
of other authors who have solved the same problem. For the
BACP problem, there are 3 test instances which are analyzed
and independently solved.

www.ijacsa.thesai.org 71 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 10, No. 1, 2019

A. Test Cases

• BACP8: The BACP8 corresponds to the smallest in-
stance of the problem, with 46 subjects distributed in 
8 academic periods. In Fig. 3 you can see how the 
results obtained are distributed.

Fig. 3: BACP8 results.

The convergence graph of the algorithm (see Fig. 4) 
shows how the system finds an optimal initial solution 
of 18 credits and changes rapidly to 17 in the first 
iterations, staying at that optimum until the execution 
of the algorithm completes.

Fig. 4: BACP8 convergence.

• BACP10: This instance is composed of 42 subjects
assigned in 10 academic periods, so the maximum 
academic load is lower than in the case of BACP8. 
In this test instance, the system had greater difficulty 
in finding the known optimum. Fig. 5 displays the 
obtained results.
Fig. 6 illustrates the convergence of the algorithm 
for execution on the BACP10 instance. The obtained 
results show that for this test instance the optimum 
value found by the system varies from 16 in the first 
2 iterations to 15 in iteration 3 and finally reaches the 
known optimum value 14 in iteration 41.

• BACP12: The instance of 12 periods is the most
complex and has 66 subjects to assign, so the com-
putational effort required to find good solutions is
greater than in the previous cases. For this instance of
the problem, the system managed to find the optimal

Fig. 5: BACP10 results.

Fig. 6: BACP10 convergence.

solution known only in 23% of the executions. Fig. 7 
shows the distribution of the obtained results.

Fig. 7: BACP12 results.

Fig. 8 shows how the algorithm converges during 
execution for BACP12 instance, finding a  s olution of 
20 credits in the initial iterations, then 19 and finally 
converging to 18 credits in iteration 13.

B. Real Cases

This section shows the results obtained by applying the
system developed in the optimization of different real curricula
of 2 Chilean universities. The instances have been named
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TABLE II: RESULTS SYNTHESIS

Solution BACP8 BACP10 BACP12 REAL8 REAL10 REAL12
Best 17 14 18 17 13 17
Medium 17.5 14.9 18.8 18.1 13.9 19
Worst 18 15 20 19 15 20
σ .509 .305 .484 .681 .860 .831
Optimum 17 14 18 18 13 18

Fig. 8: BACP12 convergence.

REAL8 (8 periods), REAL10 (10 periods) and REAL12 (12
periods).

• REAL8: This instance has 34 subjects planned in 8
periods. Besides, 27 of these subjects are compulsory, 
2 subjects are for general study, and 5 subjects are 
elective. For this case, it was possible to find an 
optimal value of 17 credits, while in the current 
curriculum the value is 18 credits. Fig. 9 displays 
these results.

Fig. 9: REAL8 results.

The convergence graph of Fig. 10 shows that the 
system converges from 22 credits to 17 credits quickly.

• REAL10: The second solved real instance corresponds
to a curriculum that lasts 5 years that plans 49 subjects 
in 10 academic periods. This instance obtained an 
optimal value of 13 which coincides with the cur-
rent value of the study plan. Fig. 11 presents the 
obtained results.
Fig. 12 displays the behavior of the algorithm which is 
similar to the previous solved instances and showing

Fig. 10: REAL8 convergence.

Fig. 11: REAL10 results.

a fast convergence towards the known optimum for the
problem.

Fig. 12: REAL10 convergence.

• REAL12: The last real instance of the problem is
the one that presents the greatest complexity and is
composed of 53 subjects, of which 49 are compulsory
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and 4 elective, all of them in 12 periods. For this 
instance, in 3% of the executions, an optimum value of 
17 credits was obtained which improves the optimum 
of the current plan whose value is 18. Fig. 13 
displays the distribution of the obtained results.

Fig. 13: REAL12 results.

Fig. 14 illustrates how the system converges to the 
optimum in iteration 15. Once again, the rapid conver-
gence of the proposed algorithm is demonstrated, both 
when solving the test instances and the real instances 
of the problem.

Fig. 14: REAL12 convergence.

In general terms, the obtained results by the system are
considered encouraging. Table 2 summarizes these results.

Table 2 shows that in all of the resolved instances it is
possible to obtain the optimum for the problem and even to
improve that optimum in some cases (instances REAL8 and
REAL12). There is also a high dispersion expressed in the
value of the standard deviation of the solutions found for the
REAL10 and REAL12 instances. That can occur because those
instances present a higher resolution complexity.

VI. RELATED WORK: OPTIMIZATION MODELS BASED ON
THE BEHAVIOR OF FIREFLIES

The FA algorithm has many variants already applied in
almost all areas of science [11]. Here we briefly explain a few
of them:

• Discrete FA (DFA): This algorithm can be applied
directly to solve discrete optimization problems [12]
[13] [14] [15] [9].

• Multiobjective FA: This method has the purpose of
solving problems with multiple objectives, that is, it
operates with several objective functions by combining
all the objective functions into one. Thus, the algo-
rithm does not change in a big way [16].

• Lagrangian FA: This algorithm is proposed to solve
the problem of optimization of commitment of units
in unregulated power systems [17].

• Chaotic FA: This algorithm seeks to solve problems
related to systems that behave unpredictably. This
property does not mean that they are systems with
a complete absence of order, but systems that have
perfect order which include random factors [18].

• Hybrid Algorithms: This is a combination of the firefly
algorithm and the ant algorithm [19].

• Parallel FA with predation (pFAP): This is an imple-
mentation for shared memory environments with an
aggregate predation mechanism that helps the method
escape from the local optimum [20].

• Modified FA: This is a mechanism used by different
authors that seek to optimize the performance of the
FA algorithm by adding methods or variants to the
algorithm, where you can even change the update pro-
cess to maintain the best result through the iterations
[21].

VII. CONCLUSIONS

This work proposed an algorithm based on the behavior of
natural fireflies to solve the Balanced Academic Curriculum
Problem (BACP) problem. The experimental evaluation shows
the effectiveness of artificial fireflies to solve this type of
problems.

All the tests carried out show that it is possible to find good
solutions in most of the executions of the proposed algorithm.
In the test instances, the quality of the solutions is satisfactory,
and the best-known value of each instance is obtained in most
cases. In real instances of the problem, the best-known value
is obtained and it is even possible to improve such value in 2
of the 3 instances in this investigation.

It will be interesting to investigate in the future how this
algorithm behaves when faced with other real instances of the
problem and to evaluate other variants of the algorithm.

It is also of interest for the authors to evaluate the behavior
of the proposed system for instances of the generalized version
of the problem, known as GBACP. These instances have
greater complexity than the original problem and have been
proposed initially in [22].
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