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Abstract—Designing secure and fast cryptographic primitives 

is one of the critical issues in the current era. Several domains, 

including Internet of Things (IoT), military and banking, require 

fast and secure data encryption over public channels. Most of the 

existing stream ciphers are designed to work sequentially and 

therefore not utilizing available computing power. Also, other 

stream ciphers are designed based on complex mathematical 

problems which makes these ciphers slower due to the complex 

computations. For this purpose, a novel parallel platform for 

enhancing the performance of stream ciphers is presented. The 

platform is designed to work efficiently over multi-core 

processors using multithreading techniques. The architecture of 

the platform relies on independent components that can operate 

over multiple cores available on the corresponding 

communication ends. Two groups of stream ciphers were 

considered as case studies in our experiments. The first category 

includes stream ciphers of a sequential design, while the second 

category includes parallelizable stream ciphers. Performance 

tests and analysis shows that the parallel platform was able to 

maximize the encryption throughput of the selected stream 

ciphers dramatically. The enhancements on the encryption 

throughput is relative to the constructional design of the stream 

ciphers. Parallelized stream ciphers (Salsa20, DSP-128, and 

ECSC-128) was able to achieve higher throughput compared to 

other sequentially designed stream ciphers. 
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multithreading; cryptographic primitives; multi-core processors 

I. INTRODUCTION 

High-performance computing is progressively in demand in 
many day-to-day applications. Current computing resources 
present a tremendous opportunity for creating higher 
performance models through parallelism. The main concept of 
parallelism relies on allowing several tasks to be accomplished 
simultaneously and completed in a shorter period of time. 
Concurrent use of multiple processing resources is able to 
solve complex computational problems. A given problem is 
broken into smaller portions and solved concurrently using 
multiple computing units. To obtain the best of parallelism, 
scientists are focusing on faster hardware devices and 
processing techniques [1][2]. 

The multithreading technique is one processing technique 
that aims to create a virtual multiprocessor environment to 
execute multiple tasks on single processor [3][4]. The recent 
hardware revolution plays an important a role in improving 
system performance through multi-core technology. Multi-core 

processors are designed as a single physical processor that 
consists of the logical core of more than one processor. 

Such processors’ architecture enables the multi-core 
processor to run multiple tasks concurrently in order to achieve 
a higher performance compared to single-core processors. 
However, multi-core processors have a great advantage over 
multi-processors’ architecture as a major proportion of intra-
communication latency between communicating cores is 
minimized in multi-core processors, compared to the inter-
communication latency carried out in multi-processor 
architectures. The architecture of multi-core processors is 
presented in Fig. 1. 

Nowadays, a vast range of critical applications require a 
design of secure and high performance encryption algorithms 
to facilitate secure communication over public channels [5]. 
This is also an urgent issue for IoT solutions.  In this research 
we aim to design a high-performance parallel platform to 
support stream cipher algorithms that depends on complex 
mathematical operations. Complex algorithms are known to 
perform slowly as internal operations require massive complex 
computations.  In later sections we discuss some general 
concepts on parallel computing, which contribute to speeding 
up systems and applications. 

The rest of the paper is organized as follows. Section 2 
provides an overview of parallelism over multi-core 
processors. Section 3 presents the structure of stream ciphers. 
The design and structure of the parallel platform is introduced 
in Section 4. A number of performance tests were performed 
and results are presented in Section 5. A concluding remark is 
given in Section 6. 

 

Fig. 1. The Architecture of Multi-Core Processors. 
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II. PARALLELISM OVER MULTI-CORE PROCESSORS 

Multi-core computers are commonly used by individuals 
and enterprises. Software which are designed on a sequential 
base has become obstructive to performance. In order to make 
use of the extra cores, new algorithms must be designed in 
parallel bases. Such parallel designs effectively facilitate the 
utilization of multi-core processors. 

Parallelism is usually presented in the form of threads. This 
technique maps independent tasks to threads at the lowest level 
[6]. Multithreading techniques aim to improve the performance 
of the running processes by allowing proper distribution of 
tasks among the available cores in a particular computing unit 
[7]. Fig. 2 illustrates the performance gained by applying 
multithreading techniques to a multi-core machine. 

 

Fig. 2. Sequential Versus Parallel Execution over Multi-Core Processor. 

Multithreading allows algorithms to execute several 
instructions per cycle, resulting in higher processor utilization 
and significant throughput speedup. Applying parallel 
techniques in cryptography has become essential for higher 
throughput and improved performance, especially with the 
current available resources. Therefore, in this study, we utilize 
multi-core technology with multithreading techniques to speed 
up the encryption process in stream ciphers, in order to provide 
secure and better-performing cryptosystems. 

III. SYMMETRIC-KEY ENCRYPTION: STREAM CIPHERS 

Stream ciphers are one of the cryptographic primitives that 
are used to secure communication over public and unsecured 
channels [8]. Stream cipher algorithms generate a 
pseudorandom keystream to encrypt a stream of plaintext, 
producing a stream of incomprehensible text known as 
ciphertext [9], as shown in Fig. 3. 

Definition (Encryption): Let             be a set of 
keystream in the key space  ,              be a set of 
plaintext in the plaintext space  , and              be a set 
of ciphertext in the ciphertext space   . The encrypted 
ciphertext is generated by Equation (1): 

   (  )                                            (1) 

From the above definition, the encryption process of a 
stream cipher   is bijective for every   . The plaintext space 
and key space are typically represented in bit or byte 
representations. 

 

Fig. 3. Stream Cipher Algorithm. 

The state of art reveals different designs of stream ciphers. 
The majority of existing stream ciphers are designed to run 
over single-core processors (e.g. RC4 [10], Sosemanuk [11]). 
Very few stream ciphers are designed to support parallelism. 
Examples of parallelized stream ciphers include Salsa20 [12] 
and ChaCha [13], DSP-128 [14] and ECSC-128 [15] stream 
ciphers. 

However, the parallelized parts of these algorithms are 
restricted to some internal sections and do not focus on the 
general production of keystreams. In the next section, we 
introduce a parallel platform for supporting efficient 
parallelization of stream ciphers. 

IV. PROPOSED PARALLEL PLATFORM FOR STREAM CIPHERS 

The proposed parallel platform is designed to support 
stream cipher operations on machines of different numbers of 
cores. For instance, the sender may encrypt a text on a machine 
with two cores, while the receiver may decrypt the text on a 
machine with any number of cores. The platform works 
flexibly regardless the number of cores on both sides. Our 
parallel platform is presented in Fig. 4. 

The overall design of the parallel platform is divided into 
multiple parts to ensure maximum parallelism and a balanced 
workload among the available cores. In addition, the design of 
the platform also focuses on avoiding synchronization among 
the running threads for higher performance. This is possible 
through the use of multiple controllers in the platform. 

 

Fig. 4. The Architecture of the Parallel Platform. 

(2.1) 
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The parallelized platform shown in Fig. 4 consists of 
several components, controllers and detectors. The main 
components of the platform are: Parameter Extractor (PEx), 
Keystream Generator (KG), Keystream-size Controller (KC) 
and Plaintext Encoder (PEn). In addition, the platform uses 
three supportive controllers and detectors: Machine Core 
Detector (MCD), Thread Creation Controller (TCC) and Bit-
sync Controller (BsC). These controllers and detectors are 
designed to achieve the optimum level of performance gained 
from the parallel platform. 

The parallel platform is also designed such that there is no 
direct-dependency among the components. In other words, the 
design of these components will enable us to easily parallelize 
the workload between the running threads. From another 
perspective, we have designed special detectors and controllers 
to ensure the consistency and accuracy of the keystream 
generation and plaintext encryption process. 

As our platform may support different types of stream 
ciphers, the parallel platform is able to extract the 
corresponding parameters of the corresponding stream cipher. 
Accordingly, the Parameter Extractor component (PEx) 
extracts the required parameters to be used in other 
components, as shown in Fig. 5. The extracted parameters vary 
from one keystream generator to another in terms of the 
number of parameters, the size of the parameters and the 
representation of the parameters.  For instance, if the DSP-128 
stream cipher is selected, two parameters are extracted: 
parameter C (integer) of 128-bit length and parameter 𝕭 
(polynomial) of degree 128. 

The functionality of the Keystream Generator (KG) 
component is the most important part of the platform, whereby 
it is responsible for generating sequences of keystream bits. In 
this stage, a counter is used to increment the corresponding 
parameters, as shown in Fig. 6. 

 

Fig. 5. Parameter Extractor (PEx) Component. 

 

Fig. 6. Parallel Keystream Generated by the Keystream Generator (KG) 

Component. 

The generation process of the keystream bits is mainly 
dependent on the parameters obtained from PEx to be applied 
on the mathematical problem being used in the core of the KG 
component. Fig. 6 illustrates the process of producing n-
keystreams in n-rounds associated with every increment carried 
out by the counter k. Applying parallelism on the KG 
component to generate multiple keystreams concurrently is 
possible with the existence of controllers, which will be 
discussed later in this section. However, the only task that the 
KG component has to accomplish at this stage is to generate 
multiple keystreams in parallel, based on the incremented value 
of the extracted counter parameter, as shown in Fig. 7. 

The KG component will use the initial value of the counter 
and the thread number (Thread_ID) to increment the value of 
the counter. At this stage, the KG component creates n threads 
(where n = no. of_cores) to handle the generation of new 
keystreams, concurrently. 

Variable keystream lengths might be generated from the 
KG stage owing to the differences in the deployed stream 
cipher. Therefore, the Keystream-size Controller (KC) 
component is designed to standardize and control the size of 
the generated keystreams and limit their size to a 32-bit length. 

As shown in Fig. 8, the keystream controller maps the n-
bits of the reformatted key to a fixed-size key of m–bits length. 
The mapping process is known as pre-encryption processing. 
The size of the keystream can vary from one byte to five bytes. 
If the size of n is greater than 32 bits, KC will truncate the 
keystream to 32 bits and uses the rest of the bits in the 
following round, as presented by Equation (2): 

Knew = Trunc (Ks, m)             (2) 

 

Fig. 7. The Code Snippet of KG in the Parallel Platform. 

 

Fig. 8. Keystream-Size Controller (KC) Component. 
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where m is the upper limit of the size of the keystream (e.g. 
32-bit). The content of the new keystream is given by Equation 
(3): 

Knew = Ks[i], for all 0 < i < m            (3) 

The process of setting up the length of the final keystream 
is also known as the pre-encryption process, since the next 
component will use this key for data encryption. However, the 
importance of this component comes from the process of 
standardizing the size of the keystream regardless of the 
selected generator, which in turn gives the platform additional 
flexibility. 

Consequently, the Plaintext Encoder (PEn) component is 
carried out. The main task of this component is to encrypt a 
sequence of plaintext and produce a corresponding ciphertext. 
The input to this component is the keystream generated by the 
KG component, as shown in Fig. 9. The encryption process is 
performed as follows: One word (32-bit) of plaintext is XORed 
with one word of the keystream. When PEn employs all the 
bits of the keystream, the KG component will be invoked to 
generate a new round of keystreams. Equation (4) forms the 
condition which needs to be satisfied when calling for the KG 
in a new round: 

Call (KG): ∑     ∑                 (4) 

where   refers to the unused (available) bits. 

Unlike other components, the encryption component (PEn) 
has a direct dependency on the keystream generator in which 
PEn must keep checking the number of available bits of the 
keystream in order to trigger the KG if the number of bits in 
the keystream is insufficient to perform the encryption. 

The five components described above form the basic design 
of the proposed platform. The next step will parallelize these 
components and add other controllers and detectors, while 
applying multithreading techniques on multi-core processors 
for a fully parallelized platform. 

Parallelizing the platform requires a detector called a 
Machine Cores Detector (MCD) to detect the number of cores 
on the corresponding machine. The MCD works at low 
hardware level in which it detects the total number of logical 
processors (cores) in a particular machine. We refer to the total 
number of cores as the NOC. The MCD is associated with a 
Thread Creation Controller (TCC) to create a specific number 
of threads, as many as the number of the available cores 
detected by the MCD. The other task of the TCC is to bind 
each job assigned to a thread with its correspondent core to 
isolate any potential concurrency issues (e.g. synchronization, 
system bottleneck, etc.) at the thread level. Accordingly, the 
TCC allows all jobs to run in parallel, in order to maximize the 
performance gains from the multi-core processors. 

Binding each thread with one specific core is achieved by 
changing the scheduling policy by calling the processor’s 
affinity routine. Processor affinity is designed to force threads 
to work on a specific core during the run. This is possible by 
using the POSIX threading library that provides developers 
with the one routine known by pthread_setaffinity_np. The 
default scheduling policy usually switches threads from one 

core to another during the run of multiple threads. Therefore, 
setting the processor affinity is sufficient to avoid thread 
switching since thread switching requires copying the thread 
instructions from its current L1 cache to the L2 cache of the 
new (switched) core. 

For instance, in dual-core processors, the thread creation 
controller will create two threads and associate them with the 
two cores on that machine. The two cores share several 
resources and peripherals on a high-speed on-chip bus except 
the L1-cache, which is designated for each core. An example 
of an MCD and TCC implemented on a dual core processor is 
shown in Fig. 10. 

For consistency, the keystream generation component and 
the plaintext encoder component are associated with an 
additional controller to ensure correct data encryption of each 
plaintext byte encrypted by its corresponding keystream. We 
refer to this controller as a Bit-sync Controller (BsC). This 
controller will ensure the synchronization between each bit in 
the plaintext with the corresponding keystream bit, for a correct 
decryption process. The encryption process E controlled by 
BsC is described in Equation (5): 

        (  )(   (  ))             (5) 

 

Fig. 9. Plaintext Encoder (PEn) Component. 

 

Fig. 10. MCD and TCC in Dual-Core Processor. 
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where Ct and Pt are the ciphertext and plaintext bytes 

respectively. 

The BsC controller associates each 32-bit of plaintext with 
each thread so that the parallel threads can run concurrently. 
The pseudocode of BsC is shown in Fig. 11, and visualized by 
Fig. 12. 

This algorithm is applicable to work on n-core processors, 
which provides a platform with higher scalability with regards 
to the rapid growth of the processor architecture. 

Associating the keystream with the running threads is 
conceptually controlled in the same way as associating threads 
with their corresponding plaintext segment. There are two 
important equations used to increment the counter value 
associated with each round in the KG component. Let          
be the initialized counter extracted in PEx, the new initial value 
of          is calculated and stored in a new counter denoted 
by Ctr as shown by Equation (6): 

Ctr0 =          + Thread_ID            (6) 

 

Fig. 11. The Code Snippet of a BsC Controller. 

 

Fig. 12. Bit-Sync Controller (BsC). 

The subsequent rounds will increment the value of Ctr as 
shown by Equation (7): 

Ctrj+1 = Ctrj + NOC             (7) 

When the keystream generation component is requested to 
perform a new round, calculating Ctr by Equation (7) will be 
carried out. Table I shows an illustration of the associated 
counter values and plaintext segments with corresponding 
threads for three rounds of generating new keystreams in an 8-
core processor. Let          = 0, the incremented Ctr with its 
associated plaintext segments will be as follows: 

Based on Table I, the thread with ID 1 will call KG three 
times and it will accordingly use the values 1, 9 and 17 as its 
counter values to generate three new 32-bit keystreams. The 
three generated keystreams by thread 1 will be associated with 
bits 1 to 32 (1-32), 257-288 and 513-544 of the plaintext, 
respectively. The functionality of the BsC controller is 
described in Fig. 13 where each KG component is associated to 
each of the existing cores. 

Note that the plaintext segments are associated with a 
specific keystream generated by its corresponding counter. 

However, the design of the platform and the plaintext 
encoder will ensure the correct sequence of the ciphertext 
segments, as shown in Fig. 14. 

TABLE. I. ASSOCIATION TABLE BETWEEN THE COUNTER, PLAINTEXT 

SEGMENT AND THREAD ID 

Thread_ID 1 2 3 4 5 6 7 8 

Ctr0 1 2 3 4 5 6 7 8 

Plaintext 
Bits 

1-32 33-64 
65-
96 

97-
128 

129-
160 

161-
192 

193-
224 

225-
256 

Ctr1 9 10 11 12 13 14 15 16 

Plaintext 

Bits 

257-

288 

289-

320 

321-

352 

353-

384 

385-

416 

417-

448 

449-

480 

481-

512 

Ctr2 17 18 19 20 21 22 23 24 

Plaintext 

Bits 

513-

544 

545-

576 

577-

608 

609-

640 

641-

672 

673-

704 

705-

736 

737-

768 

 

 

Fig. 13. Parallel Keystream Generation Controlled by BsC. 
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Fig. 14. Concurrency and Consistency in Parallel Keystream. 

Fig. 14 illustrates the process of generating multiple 
independent and parallel counters by multiple threads. 
Technically, a copy of selected generator KG is associated to 
each core of the multi-core processor. Accordingly, each copy 
of the generator will use these independent counters to generate 
sequences of keystreams. 

In this research, we present a high scalable platform that is 
capable of working on different numbers of cores on multi-core 
processor. The uniqueness of this parallel platform is that one 
can encrypt a stream of plaintext on n-core processors and 
decrypt the ciphertext on m-core processors (where n ≠ m), as 
illustrated in Fig. 15 and 16 (for n=2 and m=4 respectively). 
This is due to the flexibility and the design of the platform’s 
structure, which ensure the correctness of the encryption and 
decryption processes on any number of cores. 

The process of matching a specific keystream sequence for 
a specific plaintext segment is a critical task that depends on 
the appropriate use of the counters. This task must be designed 
properly owing to its importance in allowing users to encrypt 
and decrypt their data on different numbers of cores. The 
following is an example (Example 1) of encrypting plaintext 
bits using keystreams generated by the keystream generator. 
The encryption is performed on a dual-core processor, while 
the decryption is performed on a quad-core processor 
(Example 2). 

 

Fig. 15. Encryption Performed on Dual-Core Processor. 

 

Fig. 16. Decryption Performed on Quad-Core Processor. 

Example 1: Let    be the plaintext with length of five bytes 
(40 bits) such that    = 
1101110111011011111000000111111110011111. The 
encryption of    on a dual-core processor with an 8-bit segment 
is performed as follows: 

First, we divide the plaintext into segments of 8-bit length 
as follows: 

 
Subsequently, each thread associated with its 

corresponding core will generate a unique value of the counter 
C to be later used to encrypt a specific segment of the plaintext, 
as shown in Table II. 

The resulting ciphertext is formed such that the position of 
the ciphered segment in the final ciphertext is based on the 
order of its corresponding counter. The ciphertext    will be in 
the following form: 

 

TABLE. II. GENERATING NEW COUNTER VALUE FOR ENCRYPTION ON 

EACH THREAD 

 
Core 

Number 

Counter  

C 

KG  

     
Ciphertext 

Segment    

Plaintext 

      
   

Thread 

(1) 
1 1 10101101 

Segment (1) 

11011101 
01110000 

Thread 

(1) 
1 3 00100111 

Segment (5) 

11100000 
11000111 

Thread 

(2) 
1 5 11110111 

Segment (2) 

10011111 
01101000 

Thread 

(3) 
2 2 00010011 

Segment (3) 

11011011 
11001000 

Thread 

(4) 
2 4 11000101 

Segment (4) 
01111111 

10111010 
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One can see the association between the threads and the 
cores, such that thread 1 with counters 1, 3 and 5 will be 
executed on core 1, while thread 2 with counters 2 and 4 will 
be executed on core 2. Another important issue is related to the 
association between counter C, keystream and plaintext 
segments. This association will assure the consistency and 
coherence between the interchangeable encryption/decryption 
processes on a different number of cores. 

However, decrypting the ciphertext above on quad-core 
processor is possible, and the following example (Example 2) 
shows the relation between the running threads and the 
ciphertext segments. 

Example 2: Let    be the ciphertext of five bytes (1 byte = 
8bits) such that    = 01110000110010001100011110111010 
1101000. The decryption of    on a quad-core processor with 
an 8-bit/segment is performed as in Table III: 

Similar to the encryption process in Example 1, the 
plaintext is formed such that the position of the plaintext 
segment in the final plaintext is based on the order of its 
corresponding counter. The plaintext    will be in the 
following form: 

 

Fig. 17 visualizes the relationship between multiple threads 
associated with multiple cores performing data encryption and 
decryption. However, the previous sub-sections have discussed 
the functionality of each component in order to understand the 
connection between those components running on multiple 
threads, forming a parallelized platform. 

The proposed platform is mainly targeted for stream 
ciphers based on complex mathematical problems due to their 
high security attributes. The platform is designed to provide the 
opportunity for a more secure stream cipher to be designed 
regardless of the speed since the platform is able to provide 
those stream ciphers with higher efficiency and throughput. 
The platform is practical and has a great impact on the field of 
information security systems and cryptography. 

TABLE. III. GENERATING NEW COUNTER VALUE FOR DECRYPTION ON 

EACH THREAD 

 
Core 

Number 

Counter  

C 

KG  

     
Ciphertext 

Segment    

Plaintext 

      
   

Thread 

(1) 
1 1 10101101 

Segment (1) 

01110000 
11011101 

Thread 

(1) 
1 5 11110111 

Segment (5) 

01101000 
10011111 

Thread 

(2) 
2 2 00010011 

Segment (2) 
11001000 

11011011 

Thread 

(3) 
3 3 00100111 

Segment (3) 

11000111 
01111111 

Thread 

(4) 
4 4 11000101 

Segment (4) 

10111010 
10011111 

 

Fig. 17. Performing Encryption and Decryption on a different Number of 

Cores. 

V. SECURITY AND PERFORMANCE ANALYSIS 

Evaluating the efficiency of our parallel platform is 
measured against a set of stream ciphers. These stream ciphers 
are divided into two categories: parallelized and sequential 
ciphers. The chosen ciphers in our experiments are summarized 
in Table IV. The main reason of choosing these two categories 
of stream cipher is to examine the efficiency of these 
algorithms in utilizing the capabilities of the parallel platform. 

The parallel platform is also measured from the security 
perspective. We analyze the impact of the parallel platform on 
the security attributes of the stream ciphers running over the 
platform. The platform is designed such that it does not affect 
the security attributes of the plugged-in stream ciphers, since 
each core is responsible for executing its own workload 
independently. Hence, there will be no interaction or 
dependency between any two or more keystream generators 
running over multiple cores, due to the avoidance of using 
global shared variables between the running threads. 

The security level of the parallelized keystream generation 
on independent cores is similar to the security level of the 
sequential version of the stream ciphers. Technically, there are 
no shared parameters among the cores, which prevents any 
attempt to criticize the parallel platform on the security of the 
stream ciphers. 

For testing purposes, we ran our model on two 
workstations. The first workstation (denoted by DualC) used an 
Intel Core 2 Duo ® E6400 processor of CPU speed 2.13 GHz, 
L2 cache memory of size 2MB, RAM of size 2GB. The second 
machine (denoted by QuadC) used an Intel Core 2 Quad ® 
Q6600 processor of CPU speed 2.40 GHz, L2 cache memory 
of size 8MB, RAM of size 2GB. The parallel platform was 
coded in C++ using MinGW-2.05 and tested on Microsoft 
Windows XP® operating system. POSIX-2.8.0 (Pthread) 
library was used to handle thread-related functions of the 
model. 

Our testing started by examining the performance of the 
selected stream ciphers over DualC and QuadC machines. The 
results presented in Fig. 18 and 19 illustrate the performance of 
the stream cipher running over DualC and QuadC, respectively. 
Four sets of plaintext have been considered, of the sizes: 100, 
500, 1000 and 2000 Mbits. 
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TABLE. IV. LIST OF STREAM CIPHERS CONSIDERED IN PERFORMANCE 

ANALYSIS 

Stream ciphers Category 

Salsa20 Parallelized 

DSP-128 Parallelized 

ECSC-128 Parallelized 

RC4 Sequential 

Sosemanuk Sequential 

 

Fig. 18. Performance of Stream Ciphers over DualC Machine. 

 

Fig. 19. Performance of Stream Ciphers over QuadC Machine. 

Obviously, ECSC-128 is the slowest algorithm among the 
other algorithms. The results also show that little difference 
was found on the performance of the stream ciphers running on 
the quad-core machine compared to the encryption rates 
obtained on dual-core machines. The utilization of the two 
extra cores is not well identified by the selected stream ciphers. 
Table V presents the performance enhancements gained on the 
QuadC machine compared to the DualC machine. 

On the next step, we plugged in the stream ciphers to our 
parallel platform (denoted by P(stream cipher)) to examine the 
impact of the platform on enhancing the encryption rates of 
these ciphers. Fig. 20 and 21 presents the results of running the 
five stream ciphers over the DualC and QuadC machines, 
respectively. 

According to the performance analysis, we found that the 
parallel platform managed to support the parallelizable stream 
ciphers to utilize the two cores available on the DualC machine. 
Table VI shows that the parallel platform was able to enhance 
the encryption of the three parallelizable stream ciphers 
dramatically. The encryption rates of Salsa20, DSP-128 and 
ECSC-128 are enhanced by approximately 31%, 28% and 34%, 
respectively. However, the sequential stream ciphers are not 
capable of utilizing the support of the parallel platform. 

TABLE. V. ENHANCEMENT RATIO GAINED FOR THE ORIGINAL STREAM 

CIPHERS RUNNING OVER QUADC MACHINE COMPARED TO DUALC MACHINE 

Stream cipher Enhancement Ratio 

Salsa20 11% 

DSP-128 6% 

ECSC-128 2% 

RC4 8% 

Sosemanuk 9% 

 

Fig. 20. Performance of Plugged Stream Ciphers on the Parallelized Platform 

over the DualC Machine. 

 

Fig. 21. Performance of Plugged Stream Ciphers on the Parallelized Platform 

over the QuadC Machine. 

TABLE. VI. ENHANCEMENT RATIO GAINED FOR THE STREAM CIPHERS 

PLUGGED INTO THE PARALLEL PLATFORM AND RUNNING OVER DUALC 

MACHINE 

Stream cipher Enhancement Ratio 

Salsa20 31% 

DSP-128 28% 

ECSC-128 34% 

RC4 6% 

Sosemanuk 10% 

Similarly, the performance analysis shows that the parallel 
platform managed to support the parallelizable stream ciphers 
to utilize the four cores available on the QuadC machine. 
Table VII shows that the parallel platform was able to 
significantly enhance the encryption of the three parallelizable 
stream ciphers. The encryption rates of Salsa20, DSP-128 and 
ECSC-128 were enhanced by approximately 64%, 55% and 
62%, respectively. However, the sequential stream ciphers are 
not capable of utilizing the support of the parallel platform. 

To examine the efficiency of the parallel platform in 
utilizing the extra cores of QuadC compared to DualC, we 
compare the efficiency of the parallel platform over DualC and 
QuadC machines. Unlike the sequential stream ciphers (RC4 
and Sosemanuk), results in Table VIII shows that an extra two 
cores doubled the encryption speed of the other parallelizable 
stream ciphers. 
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TABLE. VII. ENHANCEMENT RATIO GAINED FOR THE STREAM CIPHERS 

PLUGGED INTO THE PARALLEL PLATFORM AND RUNNING OVER QUADC 

MACHINE 

Stream cipher Enhancement Ratio 

Salsa20 64% 

DSP-128 55% 

ECSC-128 62% 

RC4 7% 

Sosemanuk 17% 

TABLE. VIII. ENHANCEMENT RATIO GAINED BY THE PARALLEL PLATFORM 

RUNNING OVER QUADC COMPARED TO DUALC MACHINES 

Stream cipher Enhancement Ratio 

Salsa20 33% 

DSP-128 27% 

ECSC-128 28% 

RC4 1% 

Sosemanuk 7% 

We conclude that the design of the stream ciphers plays an 
important role in utilizing multi-core processors. The parallel 
platform is able to enhance the encryption rate significantly on 
the QuadC machine with four cores, while the sequential 
stream ciphers failed to utilize such computing resources. 
Fig. 22-26 illustrates the efficiency of the stream ciphers over 
different environments, where Seq-DualC and Seq-QuadC 
refer to running the original stream ciphers on DualC and 
QuadC machines, and Parallel(DualC) and Parallel(QuadC) 
refers to running the stream ciphers with the support of the 
parallel platform on DualC and QuadC machines. 

 

Fig. 22. Performance Efficiency of Salsa20 for different Environments. 

 

Fig. 23. Performance Efficiency of DSP-128 for different Environments. 

 

Fig. 24. Performance Efficiency of ECSC-128 for different Environments. 

 

Fig. 25. Performance Efficiency of RC4 for different Environments. 

 

Fig. 26. Performance Efficiency of Sosemanuk for different Environments. 

VI. CONCLUSION 

In this paper we present a novel parallel platform to 
enhance the performance of stream ciphers. The underlying 
architecture of the platform relies on the use of multithreading 
technology. The platform is designed to be scalable and 
adaptable to the increasing number of cores in the future. 
Parallelism on our platform is implemented at two levels: task 
and data parallelism. Task parallelism is achieved by dividing 
the workload among the available cores in the corresponding 
machine, where each core will have its own components and 
parameters set. On the other hand, data parallelism is achieved 
by encrypting smaller sets of plaintext in multiple cores, 
concurrently. 

The experiments’ results show that parallel stream ciphers 
(Salsa20, DSP-128, ECSC-128) are capable of achieving 
higher performance on the parallel platform. The results also 
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show that increasing the number of cores from two to four 
cores has doubled the performance of these three algorithms. 
This is due to the parallelizable design of these ciphers. 
However, sequential stream ciphers (RC4, Sosemanuk) are not 
able to utilize the support of the parallel platform running over 
the quad-core machine. 

From the security perspective, the underlying architecture 
of the parallel platform is constructed to avoid the existence of 
shared global of local attributes between the running keystream 
generators. Each core is associated with one independent set of 
data and operates over separate input keys and counters. 
Accordingly, the parallel platform does not affect the security 
of the plugged-in stream ciphers. 
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