
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 11, 2019

407 | P a g e

www.ijacsa.thesai.org

Render Farm for Highly Realistic Images in a

Beowulf Cluster using Distributed Programming

Techniques

Enrique Lee Huamaní
1
, Patricia Condori

2
, Brian Meneses-Claudio

3
, Avid Roman-Gonzalez

4

Image Processing Research Laboratory (INTI-Lab)

Universidad de Ciencias y Humanidades

Lima, Perú

Abstract—Now-a-days, photorealistic images are demanded

for the realization of scientific models, so we use rendering tools

that convert three-dimensional models into highly realistic

images. The problem of generating photorealistic images occurs

when the three-dimensional model becomes larger and more

complex, so the time to generate an image is much greater due to

the limitations of hardware resources, about this problem is

implemented the render farm, which consists in a set of

computers interconnected by a high-speed network that provides

a strip of the global image distributed in each participating

computers with the intention of reducing the processing time of

highly complex computational images. The research was

implemented in a high-performance Beowulf group of the

Universidad de Ciencias y Humanidades using a total of 18

computers. To demonstrate the efficiency of a rendering farm

implementation, scalability tests were performed using a 360°

equirrectangular model with a total of 67 million pixels, the work

is carried out to achieve highly complex renderings in less time to

benefit the direction of the research.

Keywords—Distributed programming; computational

parallelism; Beowulf cluster; high-efficiency computing; render

farm

I. INTRODUCTION

In the last decades, a great demand began to grow in the
generation of high-realism images where three-dimensional
models require greater hardware resources to solve renderings
of high complexity due to this need the rendering farms are
implemented [1] which are groups of computers that they are
interconnected with each other through a network that
distributes the work of the images to each participating
computers to obtain results of photorealistic images in less
time.

The problematic of this investigation is the rendering of
high realism images that due to the complexity of the project,
the rendering processes can take hours or days to return a result
of a complex image. Because of this problem, the research
direction of the Universidad de Ciencias y Humanidades puts
at your disposal the use of the high performance Beowulf
cluster implemented by [2], which is located in the embedded
systems laboratory. This work uses this architecture for the
integration of a rendering farm using the Python programming
language that will determine the amount of participating

computers to distribute each strip of the image in order to
achieve complex renderings in less time.

There are research related to the benefit of using rendering
farms in a Beowulf cluster, as in the case of [3] that renders
complex images using a total of six computers where it isn’t
necessary to buy specialized equipment at high costs, other
research that try to emphasize the reduction of costs that it has
[4] that compare the performance of their existing systems that
of the high-ending machines used in the modern animation
industry, likewise in this paper, it uses the existing hardware
resources. There are different ways to get rendering farms, as is
the research of [5] that uses a queue management software to
get distributed renderings, instead this project uses distributed
programming techniques using Python programming language
of which the reader can customize the size of the image by
each participating computer. There is also research related to
cloud computing, a clear example is [6], which performs a
hybrid rendering farm that can be adapted to the server cloud to
increase computational capacity, therefore the use of a
rendering farm in a Beowulf cluster will achieve greater
efficiency in generating complex images and lower costs.

II. METHODOLOGY

For the realization of the rendering farms the Beowulf
cluster architecture of the embedded systems laboratory of the
Universidad de Ciencias y Humanidades, it was used with 17
slave computers and a master computer, all of them with the
same hardware characteristics and under the Linux platform
with Ubuntu distribution. The main elements that the machines
must have are Blender

1
, SSH open, ImageMagick and the

Python programming language that will divide the original
image into small strips of images that will be distributed to
each of the participating computers to perform the rendering.
Fig. 1 shows the overall architecture of the project.

A. Beowulf Cluster Physical Architecture

Beowulf's high-performance clusters are a group or
conglomerates of computers interconnected through a high-
speed network that are typically used to apply computational
parallelism techniques in order to obtain results in a shorter
time [7]. This architecture works with low-cost computers that
try to give the similarity of having a supercomputer that is
possible thanks to the manipulation of the central processing
unit (CPU) therefore, this architecture has a total of 204 cores

1 Blender Foundation, “blender.org - Home of the Blender project - Free
and Open 3D Creation Software” 2019. [Online]. Available:

https://www.blender.org/

https://www.open-mpi.org/

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 11, 2019

408 | P a g e

www.ijacsa.thesai.org

to perform rendering, Fig. 2 shows the high performance
cluster type Beowulf performing a rendering of a prototype of
a three-dimensional image.

Each computers used in the Beowulf cluster architecture
has the same hardware characteristics, as shown in Table I.

Fig. 1. Design of Rendering Farms with the Beowulf Cluster.

Fig. 2. Render Farm in a Beowulf Cluster.

TABLE. I. HARDWARE CHARACTERISTICS OF THE BEOWULF CLUSTER

COMPUTERS

 Description

Modell HP EliteDesk 800 G1 SFF

HDD 1 TB

RAM 8 GB

Processor Intel(R) Core (TM) i7-8700

Total Cores 12

Type of Operating System 64-bit

Operative System Ubuntu 18.04

B. Master Node

The computer in charge of distributing the strips of images
to the participating computers is called the master node
because it assigns the number of participating computers and
the level of complexity to be solved.

C. Slave Node

The computer in charge of obtaining the strip of the image,
rendering and returning it to its origin, it is called slave node
which complies with the direct orders assigned to it from the
master node, the slave and master nodes are interconnected
through a high-speed network.

D. Dependencies

The following tools must be taken into account in each of
the high-performance cluster machines.

1) Blender: As indicated by [8] blender is an open source

3D modeling and animation software, it is currently used by 2

million visual effects artists, animators and a growing number

of astrophysicists. The advantage of using this software is that

it is multiplatform and easy to install, it also includes methods

for rendering complex surfaces and volumes, image

composition, stereoscopic support for tracing graphics and the

ability to export models and lighting in a variety of formats.

2) Python: It is an interpreted programming language

where its syntax is legible code, this language is

multiparadigmic [9] and easy to use, therefore is ideal for

distributing the strips of images in each of the slave nodes,

thanks to its simplicity the reader can configure and add new

features to the algorithm to use it in different ways.

3) ImageMagick: It is a program built in open source C

programming language, this software is used to create, edit,

compose or convert images into bitmaps [10]. With respect to

the project, the program executes the creation of the image in

each one of the slave nodes to finally return them to the master

node.

4) SSH protocol: Secure Shell (SSH) is a remote

administration protocol that allows the reader to initiate

commands and copy files from master node to slave nodes

[11]. The SSH makes communication between computers

secure due to a key generated from the master computer and

copied to each of the slave nodes, this allows external devices

can not access the Beowulf cluster because they do not have

password identification.

E. Process Flow of a Rendering Farm

In the rendering process, distributed programming
techniques are applied where a first, a validation is carried out
to determine the number of slave nodes, if the condition of
having more than one slave computer is met, the distributed
rendering is carried out, but if only one computer is assigned,
the traditional rendering will be used, in Fig. 3 the detailed
rendering steps are explained in the form of a flow diagram.

Because this project is focused on rendering farms, the
following distributed programming steps corresponding to the
flowchart in Fig. 3 are explained.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 11, 2019

409 | P a g e

www.ijacsa.thesai.org

Fig. 3. Render Flowchart.

1) Selection of slave nodes: Before starting the rendering

the reader must indicate the number of slave nodes that will

participate. From the Linux terminal, it executes the Python

code with the following sentence:

blender_network_render.py -m node1 node2 node3 node17

With this sentence, it indicates the number of nodes, in this
case 17 slave nodes.

2) Selection of SSH protocol unique key: After classifying

the participating nodes, they are assigned their identification

key, this key allows unrestricted communication so it is

assigned from the command line as following sentence:

blender_network_render.py -R

Which indicates the key that is shared in each of the slave
nodes, this is done by security issues.

3) Strips of rendering on slave nodes: The image to be

rendered is divided into vertical strips depending on the

number of slave nodes assigned. Each strip of the image can

take a certain size for rendering, this is useful for slave nodes

with different hardware characteristics where the assignment

of a strip of image must be inversely proportional to the

rendering time of the image. With respect to the machines of

the Beowulf cluster, all have the same hardware characteristic

therefore the rendering images of high realism are not defined

personalized strips for it will be distributed of equitable form

as it is shown in the Fig. 4 in which the use of four computers

is taken as example.

Depending on the complexity of each strip or on the
characteristics in the hardware resources should be allocated an
appropriate percentage for better efficiency. It will make the
following assumption where 'Computer 0' and 'Computer 2'
have fewer cores than 'Computer 1' and 'Computer 3' when the
number of cores is not equal between the participating
machines should be assigned a custom size of the strip image
as shown in Fig. 5.

4) Obtaining the rendered image: Each machine renders a

subset of the image as explained in the previous section, when

all machines finish part of the render, the program collects all

the strips in a final image, it is recommended that all

participating machines have the same format with a color

depth of 8 to 16 bits with the color specifier RGBA, with this

format is possible to assemble images without interruptions, as

shown in Fig. 6 to be configured in each slave node.

Fig. 4. Equitable Strips of Images.

Fig. 5. Strips Images Proportional to the Number of Cores.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 11, 2019

410 | P a g e

www.ijacsa.thesai.org

Fig. 6. Output Image Format.

F. Prototype of Rendering Tests

To measure the efficiency of the rendering farms in the
Beowulf cluster of the Embedded System laboratory,
scalability tests are performed using a large and complex image
prototype that is a spatial 3D stereoscopic image with 360°
equirectangular projection, which are images used in a
dimension of 16384x4096 pixels equivalent to more than 67
million pixels, Fig. 7 shows the prototype designed with
Blender software.

Fig. 7. Prototype of Equirectangular Image of 360°.

III. RESULT

In this section, the performance tests are carried out using
as a project the 360° equirectangular image corresponding to
Fig. 6. As shown in Table II, scalability tests are performed
where the first column shows the number of participating
nodes, the second column shows the time required for

rendering and the third column shows the number of cores
involved.

Fig. 8 shows graphically the render time with respect to the
number of slave nodes involved.

As a result, it provides the image with respect to Fig. 9,
which is a realistic 360° image with a dimension of
16384x4096 pixels, which demonstrates the reduction of time
for high realism images using distributed programming
techniques.

TABLE. II. HIGH REALISM IMAGE RENDERING TIME

Number of Slave Nodes Time of result Core

1 1443 12

2 664.8 24

3 673.2 36

4 436.2 48

5 423 60

6 322.2 72

7 321 84

8 257.4 96

9 261 108

10 208.8 120

11 214.8 132

12 190.2 144

13 199.8 156

14 180 168

15 187.2 180

16 144 192

17 153.6 204

Fig. 8. Rendering Time of a Highly Realistic Image

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 11, 2019

411 | P a g e

www.ijacsa.thesai.org

Fig. 9. Rendering Time of a Highly Realistic Image.

IV. DISCUSSION AND CONCLUSIONS

The farms of distributed rendering for images of high
realism and complexity will be very useful for the research so
the need to have more cores is beneficial to improve the
rendering time so this project can be improved in increasing
the number of cores without the need to use more computers,
as it has the case of [12] that uses GPU-based engines which
has a greater number of cores in order to reduce time. In the
rendering of the prototype, it can have imbalances in a certain
number of nodes in Table II, they are appreciated five moments
of imbalance in the render these are due to several factors of
which it has the issue of communication between nodes, more
pixels in a strip of rendering and processes outside the
rendering therefore it is desirable that the participating nodes
are not doing other work that weaken to have an effective
result. With regard to the future work of this research, high-
realism animations will be carried out with respect to aerospace
engineering prototypes, image processing, Big Data techniques
and other investigations related to the existing lines in the
direction of the investigation. These works will be carried out
on the basis of distributed programming using the blender
software as a rendering engine for the unification of rendered
images and can be seen as a highly realistic animation in a
shorter time. In this paper, it demonstrates that rendering farms
under a Beowulf cluster reduces the time for obtaining large
and complex images. Therefore, it is a benefit to use them in
projects that require a realistic project model proposed for the
research direction of the Universidad de Ciencias y
Humanidades.

REFERENCES

[1] M. Z. Patoli, M. Gkion, A. Al-Barakati, W. Zhang, P. Newbury, and M.
White, “An open source grid based render farm for Blender 3D,” 2009
IEEE/PES Power Syst. Conf. Expo. PSCE 2009, no. April 2014, 2009.

[2] E. L. Huamaní, P. Condori, and A. Roman-Gonzalez, “Implementation of
a Beowulf Cluster and Analysis of its Performance in Applications with
Parallel Programming,” Int. J. Adv. Comput. Sci. Appl., vol. 10, no. 8,
pp. 522–527, 2019.

[3] N. Seticaya, “Implementasi Rendering Farm dengan Teknologi Cluster
Computing Menggunakan Back Burner di Laboratorium Multimedia,”
vol. 7, no. 2, pp. 41–56, 2018.

[4] G. V. Patil and S. L. Deshpande, “Distributed rendering system for 3D
animations with Blender,” 2016 IEEE Int. Conf. Adv. Electron. Commun.
Comput. Technol. ICAECCT 2016, no. March, pp. 91–98, 2017.

[5] A. Sheharyar and O. Bouhali, “A Framework for Creating a Distributed
Rendering Environment on the Compute Clusters,” Int. J. Adv. Comput.
Sci. Appl., vol. 4, no. 6, pp. 117–123, 2013.

[6] K. Cho et al., “Render Verse: Hybrid Render Farm for Cluster and Cloud
Environments,” Proc. - 7th Int. Conf. Control Autom. CA 2014, pp. 6–11,
2014.

[7] L. Chuquiguanca, E. Malla, F. Ajila, and R. Guamán-quinché,
“Arquitectura clúster de alto rendimiento utilizando herramientas de
software libre,” vol. 2, no. 1, pp. 1–8, 2015.

[8] J. P. Naiman, “AstroBlend: An astrophysical visualization package for
Blender,” Astron. Comput., vol. 15, pp. 50–60, 2016.

[9] A. Asadulina, M. Conzelmann, E. A. Williams, A. Panzera, and G.
Jékely, “Object-based representation and analysis of light and electron
microscopic volume data using Blender,” BMC Bioinformatics, vol. 16,
no. 1, pp. 1–9, 2015.

[10] J. Petke, M. Harman, W. B. Langdon, and W. Weimer, “Specialising
Software for Different Downstream Applications Using Genetic
Improvement and Code Transplantation,” IEEE Trans. Softw. Eng., vol.
44, no. 6, pp. 574–594, 2018.

[11] E. L. Huamaní, P. Condori, and A. Roman-gonzalez, “Virtualizing a
Cluster to Optimize the Problems of High Scientific Complexity within
an Organization,” vol. 10, no. 6, pp. 618–622, 2019.

[12] A. Martos and B. Ruiz, “Realistic virtual reproductions. Image-based
modelling of geometry and appearance,” Proc. Digit. 2013 - Fed. 19th
Int’l VSMM, 10th Eurographics GCH, 2nd UNESCO Mem. World Conf.
Plus Spec. Sess. fromCAA, Arqueol. 2.0 al., vol. 1, pp. 127–134, 2013.

