
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 11, 2019

SQL to SPARQL Conversion for Direct RDF
Querying

Ahmed ABATAL1, Khadija Alaoui2, Mohamed Bahaj4
Mathematics and Computer Science Department

Hassan I University, Faculty of Sciences and Techniques
Settat, Morocco

Larbi Alaoui3
Mathematics and Computer Science Department

International University of Rabat
Sala Al Jadida Morocco

Abstract—With the advances in native storage means of RDF
data and associated querying capabilities using SPARQL, there
is a need to let SQL users benefit from such capabilities for
interoperability objectives and without any conversion of the
RDF data into relational data. In this sense, this work present
SQL2SPARQL4RDF an automatic conversion algorithm of SQL
queries into SPARQL queries for querying RDF data, which
extends the previously established algorithm with relevant SQL
elements such as queries with INSERT, DELETE, GROUP BY
and HAVING clauses. SQL users are provided with a relational
schema of their RDF data against which they can formulate their
SQL queries that are then converted into SPARQL equivalent
ones with respect to the provided schema. This avoids the birding
of translating instances and data replication and thus saving load-
ing times and guaranteeing fast execution especially in the case
of massive amounts of data. In addition, the automatic mapping
framework developed by the java programming language, and
implement many new mapping functionalities. Furthermore, to
test and validate the efficiency of the mapping approach and
adding a module for automatic execution and evaluation of the
various obtained SPARQL queries on Allegrograph.

Keywords—Resource Description Framework (RDF); Struc-
tured Query Language (SQL); Simple Protocol and RDF Query
Language (SPARQL); schema mapping; query conversion; Alle-
grograph

I. INTRODUCTION

The relational database (RDB) systems have been used as
a standard for data management for many years and involve
the development of various tools. However, in recent years,
data management solutions based on the ontology language
RDF have proven to be a well-suited alternative to relational
databases for the storage and querying RDF data. In the last
decade, the use of RDFs has indeed evolved considerably
and the amount of RDF data has increased enormously.
Since the standardization of RDF and its query language
SPARQL ([6], [7], [8]), RDF has found a growing interest
for its use in many application domains such as biology
[3], health [11], geology [15], smart cities [12], etc. This
interest has also been accompanied with the development of
various tools for handling RDF data. One of the motivations
behind this development is the need for database solutions
that are independent of existing relational databases (RDB)
technologies in order to handle massive amount of data
produced and to tackle the problems related to the limitations
of the RDB technologies. To be also noticed, is that due
to the simplicity of RDF and its power of presenting data
in a machine-readable format many attempts have been

done to convert huge amounts of relational data into RDF
(e.g., [1], [4]). This was done with the aim to benefit from
the opportunities RDF provides for integration purposes
and for linking data to make it accessible for the semantic
web. The RDF data model allows data to be structured in
graphical form, which ensures flexible navigation through
the use of well-established graphical algorithms. These
characteristics of RDF have encouraged the development of
various technologies for managing and querying RDF data.
For all these reasons, the problem that raises itself is how to
let RDB users interact with RDF data without any conversion
of data into relational data in order to facilitate sharing of RDF
data across applications. Solutions to such a problem will
also make it possible to take advantage of the multiple RDF
dedicated stores and their associated SPARQL capabilities
(e.g. Sesame [13], CliqueSquare [16], 4store [17], SOR [18],
RDF-3X [19], SHARD [21], . . . ), avoiding thus the use of
relational stores and their associated problems such as lack
of adequacy to support dynamic RDF schemas or to support
large amounts of RDF data.

This work provide a solution to this interoperability prob-
lem that consists of an extension of the SQL2SPARQL
framework established in [10] for RDF querying using SQL
without any conversion of RDF data into relational data. The
framework provides RDB users with a relational schema that
let them query RDF data using SQL. The SQL queries are
translated to SPARQL queries that will be executed directly
on RDF dataset.The extension give aims at presenting a
complete conversion solution with algorithms for the automatic
exchange of data with an execution of queries directly on
RDF data stored in native systems. Such a solution avoids
thus an extra data store and associated problems such as
synchronization of data changes between two data stores and
loading times of RDF data into relational stores.
The rest of the paper is organized as follows: Section II, he
gives an overview of the existing mapping algorithms from
SQL to SPARQL. Section III is devoted to the extension
SQL2SPARQL4RDF of the SQL2SPARQL framework where
various mapping algorithms are presented. Section IV deals
with the implementation and tests of the framework for the
validation of mapping algorithms. Section V concludes this
work.

www.ijacsa.thesai.org 599 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 11, 2019

II. RELATED WORKS - SQL2SPARQL CONVERSION
FRAMEWORK

This section describes the SQL2SPARQL in the work [10]
conversion framework and other related works. For the advan-
tages of such a framework over other conversion techniques
(e. g. [14],[20]), this work refer to the previous work in [10].
The SQL2SPARQL framework consists in converting SQL
queries to SPARQL equivalents, which can be executed on real
RDF datasets. SQL queries are formulated against a relational
schema that the framework extracts from the RDF data and
provides to SQL users.

The steps involved in the relational schema extraction are
discussed in the following subsection. Those related to the
query conversion according to this schema are detailed in the
subsequent subsection.

A. Proposed System Architecture

Fig. 1. System architecture

Fig. 1 present the proposed architecture that allows the
user to give a complete SQL query and translates to equivalent
SPARQL Query, in the first time SQL Analyzer that takes the
SQL query as input, then it checks whether it is a SQL Select
query or SQL update, after it passes the query to the cor-
responding component “SQL Select Query” or “SQL Update
Query”, to break down and extract the necessary elements like
the Triple pattern or the attributes and the sending’s to the
component responsible for the translation of the requests via
dedicating algorithms for the conversion then generates the
final SAPRQL query to run it on “SPARQL Query Executor”
the component that uses Allegrograph [2] and returns the result
to User.

B. Relational Schema Extraction

The extraction of the relational schema in
the SPARQL2SQL framework is provided by the
schemaMapping()-algorithm given in Tables I and II, is
based on the vertical partitioning work in[9]. It traverses
all triplets and extracts unique predicates that are stored in
variables to be used in the other algorithms of the framework.
First, the property table method is used to group subjects
with common predicates. In each table contains a subject as
an attribute to identify the table and a collection of predicates
attributes.

In addition, this work does not use the property table
method, which allows us to think of a response with many

TABLE I. RELATIONAL SCHEMA EXTRACTION / PART 1

Algorithm: Part 1 - schemaMapping()
Input: Bx : list of Abox
Output: N: hashMap key is “relation name” and value is “predicate name”

1 N = ”” {initialize N by null }
2 for i = 1 to Bx.size do
3 T= Bx[i] {extract a triple T from the Bx}
4 r = T.type extract type r from the triple T
5 p = T.predicate
6 extract predicate p from T
7 notExist = true
8 k = 1
9 while ((notExist) AND (j¡=N.size)) do

10 if ((r==N(k).getRelation() AND
v==N(k).getPredicate())

11 notExist =false;
12 end if
13 end while
14 if (notExist)
15 N.put (r,v ) { predivate p, and relation r to N }
16 end if
17 end for
18 Return N

TABLE II. RELATIONAL SCHEMA EXTRACTION / PART 2

Algorithm: Part 2 - schemaMapping()
Input: N: hashMap of Part-1
Output: M : Relational schema

1 For each key v of N
2 Create a table M with an attribute SUBJECT
3 For each value k associated with v in N
4 add an associated attribute k to M
5 return M

fewer tables. The proposed solution reduces joint conditions
and provides a more logical and efficient relational schema
that makes it easier for users to query the schema.

C. Query Conversion

The conversion of SQL queries that are issued on the
extracted relational schema into equivalent SPARQL queries
is the task of the convertSqlQuery()-algorithm given in Table
III. This algorithm accepts an SQL query as an input in string
format and Map P as the output of the schemaMapping()
algorithm, and produces an output in the form of a SPARQL
query.

The algorithm analyzes the SQL query to extract the
SELECT, SQwhereA and SQwhereB clauses, the correspond-
ing SQwhereA has a clause where with join conditions and
SQwhereB has a WHERE clause contains boolean conditions,
the algorithm affects the NULL value in WHERE clause in the
case this clause contains neither joins nor boolean conditions.

www.ijacsa.thesai.org 600 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 11, 2019

TABLE III. ALGORITHM FOR CONVERSION OF SQL QUERY

Algorithm: convertSqlQuery()
Input S :SQL query; N: hashMap
Output SP :SPARQL Query

1 SP =””
2 QR=analyze(S) {analyze SQL query to obtain clauses }
3 Sselect= QR.getSelectClause()
4 SwhereA= QR.getWhereJC()
5 SwhereB= QR.getWhereBE()
6 SPselect=”SELECT ”
7 SPwhere=”WHERE { ”
8 T = ”” { initialize T (Triple pattern ) by NULL }
9 T = ConvSqlSelect(Sselect).getTP()
10 SPselect=ConvSqlSelect(Sselect)
11 SPwhere +=
12 ConvWhereSql(SwhereA, SwhereB,T,N)
13 SP= SPselect+ SPwhere+”}”
14 if QR.type!= null then
15 q1=QR.GetLeftSubSL()
16 q2=QR.getRightSubSL()
17 SP1=queryConvert(q1)
18 SP2=queryConvert(q2)
19 SP=combine(SP1, SP2, QR.type)
20 end if
21 Return SP

The convertSqlQuery() algorithm uses the subalgorithms
ConvSqlSelect(), ConvSqlWhere() given in Tables VII and
VIII. if the query contains UNION or INTERSECT, this query
will be considered as two SQL queries. First of all, each one is
converted by the convertSqlQuery() algorithm. The results of
these queries are then grouped by the combinatorial algorithm
() given in Table IV to give the final SPARQL query.

TABLE IV. ALGORITHM FOR CONVERSION OF A QUERY WITH
COMBINATION OF TWO WHERE CLAUSES

Algorithm: Combine()
Input: query1 :SPARQL Query ; query2 :SPARQL Query ; type : {type

is either INTERSECT, EXCEPT or UNION }
Output: SP : SPARQL query

1 SP =”” initialize SP by empty
2 sprSelect= query1.getSelectClause()
3 sprWhere=” { ”;
4 sprWhere1=” { ”+query1. getSparqlWhere()+” }”;
5 sprWhere2 = ” { ”+query2. getSparqlWhere ()+” }”;
6 sprWhere +=sprWhere1+type+sprWhere2+” }”
7 SP += sprSelect+spWhere
8 return SP

Tables V and VI example shows a SQL query converting
to SPARQL:

TABLE V. EXAMPLE FOR INTERSECT CONVERSION

SQL query:
(SELECT client.name from client)
INTERSECT
(SELECT supplier.name from supplier)
SPARQL query:
SELECT ?o0
WHERE {
{
?s0 ¡http://uhp.ac.ma/ontology/name¿ ?o0
}
INTERSECT{
?s0 ¡http://uhp.ac.ma/ontology/name¿ ?o0
}
}

TABLE VI. EXAMPLE FOR ORDER BY CONVERSION

SQL query:
SELECT client.name, order.date
FROM client, order
WHERE client.subject=order.client
ORDER BY order.date
SPARQL query:
SELECT ?o0 ?o1
WHERE {
?s1 ¡http://uhp.ac.ma/ontology/client¿ ?s0.
?s0 ¡http://uhp.ac.ma/ontology/name¿ ?o0.
?s1 ¡http://uhp.ac.ma/ontology/date¿ ?o1.
}
ORDER BY ASC(?o1)

Conversion of the select clause

In the first version of the framework [10], the authors
developed a “ConvSelectSql ()” algorithm that allows you to
convert simple Select clauses into SPARQL Select. Now this
framework has improved this algorithm in order to convert a
complete Select clause into SPARQL.

The algorithm for the conversion of the select clause of the
SQL query is the ConvSqlSelect() algorithm given in Table
VII. It takes as input a SELECT clause, and gives as output
a SPARQL SELECT clause with a triple pattern list TP, as
mentioned in Table VII.

TABLE VII. ALGORITHM FOR CONVERSION OF THE SELECT CLAUSE

Algorithm: ConvSQLSelect()
Input: B: list of attributes of an SQL-Select query
Output: SpSelect : SPARQL Select query ; T : list TP of triple patterns

1 SpSelect =””
2 T =””
3 for j = 1 to B.size do
4 r = B{j}.relation { Retrieve the relation r from attributes A}
5 p = B{j}.attribute { Retrieve the attribute p from A }
6 if p!=’subject’ then
7 SpSelect += ”O” + j
8 tp={ ?Sj P Oj } { A triple pattern is constructed }
9 T.put (r, tp)

10 Else
11 SpSelect += ”S ” + j
12 tp={ ?Sj rdf:type r } { A triple pattern is constructed }
13 T.put (r, tp)
14 Endif
15 End for
16 Return SpSelect, T

Conversion of the where clause

The ConvSqlWhere() algorithm takes an SQL Where
clause and the outputs of schema-mapping() and conSelect-
Sql() algorithms to give an equivalent SPARQL clause. The
algorithm is given in Table VIII and the addJCtoWhere()
Method used by The ConvSqlWhere() algorithm is given in
Table IX.

www.ijacsa.thesai.org 601 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 11, 2019

TABLE VIII. ALGORITHM FOR CONVERSION OF THE WHERE CLAUSE

Algorithm: ConvSqlWhere()
Input: LJC: List of Join conditions, LBE: List of boolean expressions,T :

triple patterns
Output: SpWhere :SPARQL WHERE clause

1 SpWhere = ””
2 if (LJC.isEmpty() && LBE.isEmpty()) then
3 for each t from T do
4 SpWhere += ”?” + t.subject + ” ” + t.predicate +” ?” + t.object
5 end for
6 else if (! LJC.isEmpty) then
7 for each p from LJC do
8 lOp=p.LeftOperand;
9 rOp=p.RightOperand ;

10 SpWhere = addJCtoWhere(SpWhere,lOp,rOp);
11 end for
12 {if we have a Boolean conditions }
13 else if (! LBE.isEmpty ) then
14 for each e from LBE do
15 lOp=e.LeftOperand;
16 t =T.get(lOp.relation)
17 SpWhere += ”?” + t.subject + ” ” + t.predicat + ”?” + t.object
18 End for
19 { add FILTER in SpWhere }
20 SpWhere += ”FILTER(”
21 for each k from LBE do
22 lOp=k.LeftOperand;
23 rOp=k.RightOperand;
24 t =T.get(lOp.relation)
25 SpWhere += t.object+”” + e.operator + ”” + rOp
26 End for
27 SpWhere+=+”)”
28 Endif
29 Return SpWhere

TABLE IX. METHOD FOR ADDING JOIN CONDITIONS TO A CONVERTED
WHERE-CLAUSE

Algorithm: addJCtoWhere()
Input: TP : Triple patterns, lOp: left operand ;rOp: right Operand
Output: SpWhere : SPARQL WHERE clause

1 tr1 =TP.get(lOp.relation)
2 tr2 =TP.get(rOp.relation)
3 SpWhere += ”?”+tr1.subject+””+ tr1.predicat + ”?”+tr1.object
4 if lOp.relation = rOp.attribut then
5 SpWhere+=”?”+tr1.subject+””+rOp.attribut+” ?”+tr2.subject + ”.”
5 + ” ?”+tr2.subject +””+rOp.attribut+” ?”+tr1.object+”. ”
6 elseif (lOp.attribut = rOp.relation) then
7 SpWhere+=”?”+tr2.subject+” ”+lOp.attribut+” ?” + tr2.subject + ”.”+
7 ” ?”+tr1.subject+””+lOp.attribut+” ?”+tr2.object+”. ”
8 else
9 SpWhere+=”?”+tr1.subject+” ”+lOp.attribut+” ?”+tr1.object +

10 ”.”+ ” ?”+tr2.subject +” ”+ rOp.attribut+” ?”+tr1.object+”. ”
11 end if
12 return SpWhere

III. SQL2SPARQL4RDF: EXTENSION OF
SQL2SPARQL

This work has improved the SQL2SPARQL framework to
convert a complete SQL query of selection including all the
clauses (group, classify by ...) and the functions of aggregate
(MIN, MAX, AVG, COUNT), / in the second part this exten-
sion is able to convert INSERT and DELETE SQL queries into
SPARQL INSERT and UPDATE queries, this part introduces
pseudo-codes of algorithms

A. Conversion of Select Clauses for Aggregate Functions

The exConvSelectSql () algorithm is the improvement of
the convSelectSql () algorithm so that it can detect and extract

aggregate functions:

TABLE X. EXTENDED VERSION OF THE SELECT-CLAUSE CONVERSION
ALGORITHM

Algorithm: exConvSqlSelect()
Input: N :The list of attributes of an SQL Select
Output: SpSelect: SPARQL Select, TP: triple patterns

1 SpSelect =””
2 TP =””
4 for j = 1 to N.size do
5 r =N{j}.relation extract r from attributes N
6 p=Nj.attribute { extract p from N }
7 if p!=’subject’ then
8 if isAggregate(N{j})
9 SpSelect += getAggregate(N{j})+”(o” + j+})+”)”

10 end if
11 else SpSelect += ”o” + j
12 tp={ ?si p oi } { triple pattern generated }
13 TP.put (r, tp)
14 else
15 if isAggregate(N{j})
16 SpSelect += getAggregate(N{j})+”(s” + j+})+”)”
17 else SpSelect += ”s ” + j
18 end if
19 tp={ ?si rdf:type r } {triple pattern generated }
20 TP.put (r, tp)
21 endif
22 endfor
23 return SpSelect, TP

In the exConvSqlSelect() algorithm given in Table X, the
isAggregate() function checks each attribute in the select clause
contains an aggregate function (MIN, MAX, AVG, ...) if it
exists he calls the getAggregate () function before adding the
attribute to SPARQL Select to convert to the proper aggregate
function.

B. Conversion of GROUP BY and HAVING clauses

The algorithm for the conversion of GROUP BY clause is
given in Table XI.

TABLE XI. ALGORITHM FOR CONVERSION OF SQL GROUP BY CLAUSE

Algorithm: ConvSqlGroupBy()
Input: G an attribute of SQL-GroupBy query ,TP triple patterns
Output: SPARQL Group By,TP triple patterns

1 groupBy = ””
2 tp=””
3 if(TP.contains(G.relation) then
4 tp = TP.get(G.relation,G.attrubit)
5 else
6 { Extract p from A }
7 if G.attributeÊ!=’subject’ then
8 s = TP.getSubject(G.relation)
9 p = G.attribute

10 o = ”o”+TP.getLastObject()+1
11 tp = { ?si p oi } { triple pattern generated }
12 TP.put (r, tp)
13 groupBy = ”Group By ”+tp.getObject();
14 else
15 s = TP.getSubject(G.relation)
16 o = ”o”+TP.getLastObject()+1
17 tp = { ?s rdf:type ?o} { triple pattern generated }
18 TP.put (r, tp)
19 groupBy = ”Group By ”+tp.getSubject();
20 endif
21 end if
22 return groupBy, TP

.

www.ijacsa.thesai.org 602 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 11, 2019

.

.

Table XII presents the algorithm for converting HAVING
clauses.

TABLE XII. ALGORITHM FOR CONVERSION OF SQL HAVING CLAUSE

Algorithm: ConvSqlHaving()
Input: H having condition of SQL-Having query ,TP triple patterns
Output: SPARQL Having

1 having = ””
2 tp=””
3 {extract left and right operand from H}
4 p1 = H.getLeftOperand()
5 p2 = H.getRightOperand()
6 att = p1.getAttrubitFromAgregat();
7 tp = TP.get(att.relation,att.attrubit)
8 agg = H.getAgregat ();
9 if att.atribut=”subject”then

10 having = ”HAVING(+agg+”(”+tp.subject+”)” +H.operator+p2
11 else
12 having = ” HAVING(+agg+”(”+tp.object+”)”+H.operator+p2
13 end if
14 return having

C. Conversion of INSERT Queries

Both getTP () and generateInsert () algorithms given in
Tables XIII and XIV are needed to convert an INSERT SQL
query. The first algorithm traverses an INSERT query to extract
all the attributes and their values, to store them in a S hashmap,
then the GenrateInsert () algorithm that takes the result of
getTP () and generates an equivalent SPARQL insert.

TABLE XIII. EXTRACTION OF PREDICATES AND VALUES FROM SQL
QUERIES

Algorithm: getTP()
Input Input: sql : SQL Insert Query
Output Output: S : Map of predicates and values

1 A= sql.getAttributes() // return all attributes from INSERT
2 V= sql.getValues() //return values from INSERT
3 S={ };
4 for j = 1 to A.size do
5 S.put(A.value(j), V.value(j) );
6 end for
7 return S

TABLE XIV. INSERT CONVERSION

Algorithm: generateInsert()
ı́nput A : Map of predicates and values
Output SPARQL Insert Query

1 sparql= ”INSERT DATA \n” ;
2 for i =1 to A.size do
3 sparql += V.value(0) +” ”+V.getValue(i) +” ”+A.getValue(i)+”. \n”;
4 end for
5 return sparql

D. Conversion of DELETE Queries

The conDeleteSql () algorithm given in Table XV was
called to convert a SQL DELETE to SPARQL DELETE, which
analyzes the SQL deletion request to extract the BE Boolean
conditions, and generate the triple patterns TP.

TABLE XV. CONVERSION ALGORITHM FOR DELETE QUERIES

Algorithm: ConvDeleteSql()
Input: SQL : an sql delete query
Output: SPARQL DELETE query

1 sparql = ”DELETE { /n ”where = ” WHERE { /n”
2 BL= sql.getBE() // get Boolean conditions
3 TP = sql.getTP() // generate TP from SQL query
4 if (BL.isEmpty()) then
5 for tp in TP do
6 where += ”?” + tp.subject + ” ” + tp.predicate +” ?” + tp.object
7 end for
8 {verification of booleans conditions }
9 else if (! BL.isEmpty ) then

10 for e in BL do
11 p=e.getLeftOperand();
12 tp =TP.get(p.relation)
13 sparql += ”?” + tp.subject + ” ” + tp.predicat +”?” + tp.object
14 where += ”?” + tp.subject + ” ” + tp.predicat +”?” + tp.object
15 end for
16 { add FILTER in query }
17 where += ”FILTER(”
18 for e in BL do
19 p1=e.getLeftOperand();
20 p2=e.getRightOperand();
21 tp =TP.get(p1.relation)
22 where += tp.object+”” + e.operator + ”” + p2
23 endfor
24 sparql+=”}”
25 where+=”)”
26 endif
27 where+=”}”
28 Return sparql + where

IV. IMPLEMENTATION AND TESTS

To verify the efficiency of the conversion framework, this
work was implemented using java programming language and
jena [5] with connection to Allegrograph[2] for data storage
and query processing.

AllegroGraph [7] is a database and application framework
for building semantic applications. It can store data in the form
of triples, query these triples via SPARQL.

Fig. 2 shows a screenshot of the API execution platform
for the case of the conversion of previously given SQL query
with ORDER BY into an equivalent SPARQL query.

Fig. 2. Implementation of SQL2SPARQL4RDF Framework

The API also allows the execution on Allegrograph of
the SPARQL query that is obtained through the conversion
algorithm and the presentation of the execution result.

www.ijacsa.thesai.org 603 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 11, 2019

V. CONCLUSION

This paper present an extension of SQL2SPARQL frame-
work already developed in the previous work for efficiently
querying RDF documents using SQL queries expressed on the
basis of a relational schema model without any conversion of
extensions. With this framework, users who use SQL language
no longer need to store data in a relational database, just store
them in RDF data according to a schema mapping and SQL
processors to execute their queries. They can also query large
amounts of RDF data that are not possible to store in relational
databases. They can also query a mass of RDF data that cannot
be stored in relational databases. The considered extension
dealt with the problems of converting SQL constructs related
to INSERT, DELETE, GROUP BY and HAVING clauses. An
associated java platform is also developed with a module for
tests on the Allegrograph triplestore to prove the efficiency
of this established conversion algorithms. In the future work,
intend to optimize the conversion algorithms to apply them
in web services to provide an API to make the mapping of
SQL queries to equivalent SPARQL queries very easy to use
in other platforms.

ACKNOWLEDGMENT

The authors would like to express thiere very great appre-
ciation to there supervisors for thier valuable and constructive
suggestions during the planning and development of this re-
search work. Thier willingness to give thier time so generously
has been very much appreciated. The authors would also like
to extend thiere thanks to the colleagues of the laboratory of
the mathematics and computer science department of Faculty
of Sciences and Techniques, Hassan I University of settat, for
their help and support.

REFERENCES

[1] R2RML: RDB to RDF Mapping Language:
https://www.w3.org/TR/r2rml/.

[2] Allegrograph: http://www.franz.com.
[3] Bioportal, http://sparql.bioontology.org/.
[4] Chhaya, P. et al.: Using D2RQ and Ontop to publish relational database

as Linked Data. In: ICUFN. pp. 694–698 IEEE (2016).
[5] Kruti Jani, Dr. V.M. Chavda A Study on Semantic Web Framework:

JENA and Protégé Indian Journal of Applied Research, Vol.IV, Issue. I
- Jan 2014

[6] F. Alam, S. Ali, M. A. Khan, S. Khusro, A. Rauf, “A Comparative
Study of RDF and Topic Maps Development Tools and APIs”, BUJICT
Journal, Volume 7, Issue 1, December 2014, pp. 1-12.

[7] W3C: SPARQL Protocol for RDF. http://www.w3.org/TR/rdf-sparql-
protocol/.

[8] W3C: SPARQL Query Language for RDF. http://www.w3.org//TR/rdf-
sparql-query/.

[9] D. J. Abadi, A. Marcus, S. R. Madden, and K. Hollenbach. Scalable
semantic web data management using vertical partitioning. In VLDB,
pages 411–422, 2007.

[10] L. Alaoui, A. Abatal, K. Alaoui, M. Bahaj and I. Cherti, (2015). SQL to
SPARQL mapping for RDF querying based on a new Efficient Schema
Conversion Technique. International Journal of Engineering Research
and Technology, 4(10). IJERT.

[11] S. Anand and A. Verma, (2010). Development of Ontology for Smart
Hospital and Implementation using UML and RDF. IJCSI Int. J. of
Computer Science Issues, Vol. 7, Issue 5.

[12] P. Bellini and P. Nesi (2018). Performance assessment of RDF graph
databases for smart city services. Journal of Visual Languages and
Computing 45, 24–38.

[13] J. Broekstra, A. Kampman and F. van Harmelen (2002). Sesame: a
generic architecture for storing and querying RDF and RDF schema.
In: ISWC, pp. 54–68.

[14] E. I. Chong, S. Das, G. Eadon and J. Srinivasan (2005). An efficient
SQL based RDF querying scheme. In: VLDB, pp. 1216–1227.

[15] G. Garbis, K. Kyzirakos and M. Koubarakis (2013). Geographica:
a benchmark for geospatial RDF stores. In Proceedings of the 12th
International Semantic Web Conference, 343–359.

[16] F. Goasdoué, Z. Kaoudi, I. Manolescu, J. A. Quiané-Ruiz and S.
Zampetakis (apr 2015). CliqueSquare: Flat plans for massively parallel
RDF queries. In: 2015 IEEE 31st International Conference on Data
Engineering. pp. 771–782.

[17] S. Harris, N. Lamb and N. Shadbolt (2009). 4store: The design and
implementation of a clustered RDF store. In Proceedings of the 5th Int.
Workshop on Scalable Semantic Web Knowledge Base Systems, 16.

[18] J. Lu, L. Ma, L. Zhang, J.-S. Brunner, C. Wang, Y. Pan and Y. Yu
(2007). SOR: A practical system for ontology storage, reasoning and
search. In: Proceedings of VLDB, pp. 1402–1405.

[19] T. Neumann and G. Weikum (2010). The RDF-3X engine for scalable
management of RDF data. The VLDB Journal, 19(1):91–113.

[20] J. Rachapalli, V. Khadilkar, M. Kantarcioglu and B. Thuraising-
ham (2011). RETRO: a framework for semantics preserving SQL-to-
SPARQL translation. In: EvoDyn Workshop.

[21] [21] K. Rohloff and R. E. Schantz 2010). High-performance, massively
scalable distributed systems using the mapreduce software framework:
the shard triple-store. In ACM Programming Support Innovations for
Emerging Distributed Applications, 2010

www.ijacsa.thesai.org 604 | P a g e


