
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 11, 2019

Evaluate Metadata of Sparse Matrix for SpMV on
Shared Memory Architecture

Nazmul Ahasan Maruf1, Waseem Ahmed2

Faculty of Computing and Information Technology
King Abdulaziz University, Jeddah, Saudi Arabia

Abstract—Sparse Matrix operations are frequently used op-
erations in scientific, engineering and high-performance com-
puting (HPC) applications. Among them, sparse matrix-vector
multiplication (SpMV) is a popular kernel and considered an
important numerical method for science, engineering and in
scientific computing. However, SpMV is a computationally expen-
sive operation. To obtain better performance, SpMV depends on
certain factors; choosing the right storage format for the sparse
matrix is one of them. Other things like data access pattern,
the sparsity of the matrix data set, load balancing, sharing of the
memory hierarchy, etc. are other factors that affect performance.
Metadata, that describes the substructure of the sparse matrix,
like shape, density, sparsity, etc. of the sparse matrix also affects
performance efficiency for any sparse matrix operation. Various
approaches presented in literature over the last few decades given
good results for certain types of matrix structures and don’t
perform as well with others. Developers thus are faced with
a difficulty in choosing the most appropriate format. In this
research, an approach is presented that evaluates metadata of
a given sparse matrix and suggest to the developers the most
suitable storage format to use for SpMV.

Keywords—Sparse matrix vector multiplication; sparse ma-
trix metadata; sparse matrix vector multiplication parallelization;
shared memory architecture; sparse matrix storage formats; high
performance computing

I. INTRODUCTION

Sparse matrix-vector multiplication (SpMV) is an essential
and frequently used kernel in high-performance computing
(HPC), scientific and engineering applications. The operation
y = Ax is performed by the SpMV kernel, where A is a sparse
matrix of size M×N, and y and x are dense vectors of size
M. Although SpMV is one of the most popular and essential
kernels, it usually performs poorly for large sparse matrices.
As has been shown by Goumas and others, SpMV achieves
less than 10% of the peak performance of microprocessors [1].
Higher performance for SpMV depends on various factors - the
choice of the right sparse matrix storage format is one of them.
Other factors like data access pattern, the sparsity of the matrix
data set, load balancing, sharing of the memory hierarchy, etc.
are important when we work on shared memory architecture. In
shared memory architectures, performance degradation might
happen when all the processors try to access the memory
simultaneously. Applications on shared memory systems that
have no data dependencies and have good temporal locality
tend to perform well. On the other hand, contention on
memory subsystems in other shared memory applications with
streaming access patterns results in poor performance [2]. In
literature, we found that the SpMV kernel performs poorly on
a shared memory system because of its streaming access patter

[2]. In shared memory architecture, memory bandwidth also is
a performance bottleneck for SpMV operations when operating
on large matrices [3]. Each element of the matrix is only used
once in the SpMV operation. Irregular data access is another
performance bottleneck for SpMV operation when we use
sparse matrix storage formats like COO and CSR. For example,
when using Coordinate format (COO) for large scale SpMV,
high cache miss rate and poor performance were noticed as a
result of indirect addressing. Irregular data accessing in SpMV
also results in reduction of performance.

To address these kinds of problems, researchers have
proposed different sparse matrix storage formats [2], [4]–
[6]. For example, Compressed Sparse Row (CSR) has been
proposed to address space overhead but CSR does not reduce
irregular data accesses completely if non-zero elements (nnz)
elements are mostly in a certain row. Also, when paralleliz-
ing CSR on shared-memory architectures for operations on
such matrices, load balancing becomes an issue. Additionally,
matrix substructures also affect performance efficiency for all
sparse matrix storage format; storage formats that perform well
with certain substructures do not perform well with others.
Take for example, ELLPACK [7]. The ELLPACK storage
format is very suitable for diagonal substructures but not for
horizontal substructures. SpMV performance also depends on
other metadata like diagonal density, row or column-major
order, max non-zero values (row thickness) per row, etc.
Another example is that if the sparse matrix is not pattern
symmetric and the row thickness is very large, CSR performs
better than ELLPACK. Thus, it’s important for a developer
to know beforehand the metadata of a sparse matrix to help
him decide which storage format to use. In this research, we
propose new metrics to describe sparse matrices to add to
existing metadata description which will help developers to
take decisions easily. Our work was motivated by two key
observations

1) Different storage formats give higher performance
for particular substructures of matrices and lower on
others.

2) Most storage formats are not based on metadata or
substructures of the sparse matrices.

A tool was developed to generate the metrics to help develop-
ers find the optimal storage format to use for any given sparse
matrix. The rest of the paper is organized as follows.

Section 2 presents some popular and relevant storage for-
mats.Related work discussed in Section 3. Section 4 describes
the motivation and approach for our metrics, tool,and also
described the sparse matrix benchmarks used in this research.

www.ijacsa.thesai.org 614 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 11, 2019

Section 5 presents the empirical analysis using metrics and
experimental evaluation. Section 6 discusses future work and
concludes the paper.

II. STORAGE FORMATS

There are many storage formats for sparse matrices de-
scribed in literature [8] [9]–[14] for the SpMV operation. Some
of the important and popular storage formats are described in
the next sub sections.

To better understand the storage formats an example sparse
matrix A of size 5×5 and with elements described in Fig. 1
is used.

A5×5 =

0 4 0 7 0
2 0 3 0 6
0 5 0 0 0
0 0 0 0 2
1 0 0 6 0

Fig. 1. Sample Matrix for study

A. Coordinate (COO)

COO is one of the earliest and most basic format for storing
sparse matrices [15] [16] and is very simple and reliable. This
format stores the row index, column index and number of non-
zero (nnz) values in three one-dimensional array - one for
storing non zero values, one for storing row indices and one
for column indices. Fig. 2 shows the COO format for matrix
A given in Fig. 1.

Data =
[

4 7 2 3 6 5 2 1 6
]

Rowi =
[

0 0 1 1 1 2 3 4 4
]

Coli =
[

1 3 0 2 4 1 4 0 3
]

Fig. 2. COO Format With Data, Row And Column Field

The storage requirement for COO to store a matrix of
dimension M×N with NNZ non-zero values is

COOstorage = 3×NNZ

B. Compressed Sparse Row (CSR)

Compressed sparse row (CSR) format is the most popular
and widely used sparse formats [17]. SpMV with CSR format
gives good performance and is used in libraries like BLAS
and LAPACK. Like COO, CSR also needs three 1-D arrays
for storing data; one holds the nnz values, another one is for
the number of nnz values per row, and one for column indices.
Fig. 3 shows the CSR format for matrix A given in Fig. 1.

The storage requirement for CSR to store a matrix of
dimension M×N with NNZ non-zero values is

CSR = 2×NNZ +M+1

Data =
[

4 7 2 3 6 5 2 1 6
]

Rowptr =
[

0 2 5 6 7 9
]

Coli =
[

1 3 0 2 4 1 4 0 3
]

Fig. 3. CSR Format With Data, Row And Column Field

C. Compressed Sparse Column (CSC)

The Compressed Sparse Column (CSC) [18] [19] is similar
to the Compressed sparse row (CSR). The main diference
between them is that CSC uses column pointer instead of row
pointer. CSC uses three 1-D array for storage; one for nnz
values, one for column pointer and one for row indices. Fig.
4 shows the CSC format for matrix A given in Fig. 1.

Data =
[

4 7 2 3 6 5 2 1 6
]

col ptr =
[

0 2 4 5 7 9
]

rowi =
[

0 0 1 1 1 2 3 4 4
]

Fig. 4. CSC Format With Data, Row And Column Field

The storage requirement for CSC to store a matrix of
dimension M×N with NNZ non-zero values is

CSC = 2×NNZ +N +1

D. ELLPACK

Another commonly referenced format is ELLPACK. It is
well suited for semi-structured and unstructured meshes and
for vector architectures [7]. It is also a good storage format
for diagonal matrices. It is particularly suited in cases where
the maximum number of non-zero values per row does not
differ more with the average of non-zero elements in all rows.
ELLPACK uses two 2D matrices where one is for storing the
nnz values in row-wise order and another is for storing column
indices of the nnz values. If our matrix size is M×N and
max(Nnzr) presenting the maximum non zero values per row
then the column indices 2D array has a size of M×max(Nnzr).
So the storage for ELLPACK shows in Fig. 5 for matrix A
given in Fig. 1.

Data =

4 7
2 3 6
5
2
1 6

Coli =

1 3
0 2 4
1
4
0 3

Fig. 5. ELLPACK Format With Data And Column Field

At the implementation level, there are two ways to store
the ELLPACK format. One way is to use 2-D arrays. In this

www.ijacsa.thesai.org 615 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 11, 2019

case, the storage requirement for ELLPACK to store a matrix
of dimension M×N with NNZ non-zero values is

ELLPACKstorage = 2(max(Nnzr)×m)

E. Compressed Sparse Row-DU (CSR-DU)

In the CSR-DU [4] format, instead of using col_index and
row_ptr (or column_ptr) like in CSR (or CSC), ctl a single
byte array is used. This array consists of four elements: uflags,
usize, ujump, ucis. uflags and usize (to identify the type of
unit and size), ujump (a variable length which denotes the first
column index of each unit), and ucis (an array which denotes
the distance between the column index of the first element of
the unit and the column index of the previous element). Fig.
6 shows the CSR-DU format for matrix A given in Fig. 1.

units uflags usize ujump ucis
0 U8,NR 2 1 2
1 U8,NR 3 0 2,2
2 U8,NR 1 1 -
3 U8,NR 1 4 -
4 U8,NR 2 0 3

Data =
[

4 7 2 3 6 5 2 1 6
]

Fig. 6. CSR-DU Format with data and ctl values

F. Compressed Sparse Row-VI(CSR-VI)

This format is extension of the CSR format. In CSR-VI
[4], the values array of CSR is replaced with two arrays,
val_unique: which contains the unique values of the matrix
and val_ind: the index of the value in the vals_unique array
for each of the nnz matrix element. Fig. 7 shows the CSR-VI
format for matrix A given in Fig. 1.

val− indx = [1 3 0 2 4 1 4 0 3]
val−unique = [4 7 2 3 6 5 1]

Fig. 7. CSR-VI Format with Values

G. Compressed Sparse eXtended (CSX)

CSX [2] is also an extension of CSR-DU where CSX
support different classes of regularities. In CSX, run time
code generation method is employed. In CSX, five types of
substructures are considered: horizontal, vertical, diagonal,
anti-diagonal, and 2-D substructures. For any substructures,
CSX uses run length encoding on delta values for more
aggressive index compression. For 2-D substructures, transfor-
mation is used to convert different substructures to horizontal
substructures. Fig. 8 shows the CSX format for matrix A given
in Fig. 1.

III. RELATED WORKS

Here presenting some of related works, where researcher
want to optimize SpMV with respect to sparse storage format.

Kenli Li, analysis and optimize SpMV using probabilistic
method, they present probability mass function (PMF) for

delta− values = [2 2 2 3]
indices =[1 3 0 2 4 1 2 0 3]

Directions Elements
y x

Horizontal yo xo + iδ
Vertical yo + iδ xo

Diagonal yo + iδ xo + iδ
Anti-Diagonal yo + iδ xo− iδ

Fig. 8. CSX with data directions and transformation

non zero elements in sparse matrix, they also evaluate the
performance and efficiency of COO, CSR, ELL and HYB and
find out the optimistic solution for SpMV using probability
mass function (PMF), they also observed that different most
of the matrices have their own most appropriate storage format
for achieving best performance [15].

Daniele Buono, works with shared memory multiprocessor,
they evaluate a new methodology to implement SpMV on
shared memory multiprocessor which has two phases, one is
for building a scalar matrix and on the second phase at first
they reduce the scalar matrix by row by providing numerous
opportunities to memory location, in this paper they use CSR
as there baseline because CSR is inefficient with very sparse
and graphs [20].

Zhang, on there paper they want to optimize data locality of
sparse matrix vector multiplication algorithm by improving the
sparse matrix storage format, they proposed cache oblivious
extension quadtree storage structure (COEQT), where the
sparse matrix is recursively divided into sub module and that
will also fit into the cache by doing this it will improve the
data locality [21].

Xiaowen Feng, proposed a new storage format for Sparse
matrix name Segmented Interleave Combination (SIC), Instead
of using compressed sparse row (CSR) they proposed this
format because they find out a problem if the non zero
variables are very high then thread divergence can cause and
that will affect the performance while using CSR, so they
combined the CSR values and proposed a new storage format
name SIC [22].

Arash Ashari, proposed Blocked row column (BRC) stor-
age format that optimize the Sparse Matrix vector with
addressing the thread divergence, redundant computation in
GPUs in the paper they also find out the optimizing challenges
which are thread divergence, load imbalance, non-coalesced,
and memory access [10].

Yang, introduce a SpMV that represent large graphs which
has noticeable performance, they marge the ideas form Trans-
posed Jagged Diagonal storage (TJDS) [23] with coo [24].

Francisco Vazquez, evaluated a new approach based on
ELLR-T kernel on GPU using CUDA where they find out
the performance of this specific kernel based on the thread
block size and the number of accumulated threads, they also
proposed a auto tuning model based on memory access for
GPU for ELLR-T kernels [25].

Baskaran, they optimize SpMV on compilation and run
time basis, in compilation time they include synchronization

www.ijacsa.thesai.org 616 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 11, 2019

free parallelism, thread mapping, optimize memory access and
data redundancy on their optimization they proposed a new
Blocked storage format and implement it on GPUs [26].

Shizhao Chen, perform a comprehensive study on repre-
sentation of sparse matrix on Intel Knights landing XeonPhi
and ARM-based FT-200PLUS architecture, they found that
best representation of sparse relay on architecture and the
unit of program, in their paper they use very well known
CSR,CSR5,ELL,SELL and HYB sparse matrix storage format
[27].

Weifeng Liu, they introduce a new storage format CSR5
(compressed sparse row) which provides high throughput
SpMV on CPUs,GPUs and Xeon Phi, in the paper they
also mention an efficient storage format should agree with
two criteria, one is it should avoiding structure-dependent
parameter tuning, another one is it should support fast sparse
matrices vector for regular and irregular matrices [28].

IV. METRIC

A. Motivation

For the SpMV kernel, the actual and maximum perfor-
mance strongly depends on the characteristics and nature
(substructure) of a sparse matrix. Any generalized storage
format like CSR, COO, ELLPACK, etc. does not make any
assumption about the shape and metadata of an input sparse
matrix [2]. From our research, we found that some storage
formats perform better on some sets of sparse matrices and
perform poorly on some. In Fig. 9, performance evaluation for
the basic and essential storage formats with GFLOPS (Float-
ing point operation per second) is presented. As described
earlier, performance of the SpMV operation depends on data
access pattern, data dependency among storage arrays in some
formats, load balancing when parallelizing the operation on
shared memory architecture, sharing of the memory hierarchy,
choosing the right storage format for specific sparse matrices.
For choosing the right storage format, we need to know the
nature of the sparse matrix, but storage format do not make
any assumptions about the sparse matrix substructure.

In our research, we find out that shape and substructure
of the sparse matrix plays an important role in choosing
the appropriate storage format. For example, any horizontal
shaped sparse matrix, CSR will perform better than ELLPACK.
Another example is ELLPACK which will perform better on
the diagonal shape of data. Additionally, we need to use the
thickness of the diagonal. If the thickness of diagonal increases
then the performance of ELLPACK will be decreased, because
for ELLPACK the 2D array has a size of m×Nmnzr where
Nmnzr is the maximum non zero values per row. If the number
of non-zero values differs more with the average then ELL-
PACK performance will be decreased. Other characteristics
(described in later sections) like symmetry, density, sparsify,
etc. also helps in deciding the most appropriate storage formats
for sparse matrix.

Besides COO, CSR (and its variances), CSC and ELL-
PACK, this extends to other proposed storage formats in liter-
ature. Table III describe, proposed sparse storage formats and
their sparse matrix characteristics. From Table III Bell and Gar-
land’s HYBRID(HyB) format which is a hybrid of ELLPACK

and COO, is generally the fastest format for unstructured
matrices [7]. Hiroki Yoshizawa claims that performance of
SpMV with compressed sparse row (CSR) storage format
depends on selection of parameter. In the paper, they also
mention that conjugate gradient method is one of the popular
iterative methods for solving SpMV; they put their focus on
optimizing thread mapping for the CSR; they propose an effi-
cient algorithm for automatic selection of optimal parameter on
GPU, which is generally performing better then CUSPARSE
when the diagonal density is higher [29]. F. Vazquez [25]
proposed and evaluated implementation of ELLR-T which is
based on ELLPACK storage format, and the evaluation goes
with some parameters like number of rows, total number
of nnz elements, average number of entries with respect to
rows, difference of the maximum number of entries in a row
and average entries with respect to row, percentage standard
deviation of entries. Their proposed approach performs better
with less diagonal density data.

B. Bench Mark

In this paper, we will use a wide range of sparse matrix
with different structural and numerical properties. We collect
our sparse matrix from University of Florida sparse matrix
collection (UFSMC) [30], which is the standard and most
popular benchmark in SpMV research. Table I shows the
benchmarks used for the experimental evaluation.

C. Metrics

To better understand the substructure of a sparse matrix
and to automate the decision of choosing the best storage
format given a sparse matrix, a set of newer metrics are needed
to complement the existing metadata used to describe the
substructure of a sparse matrix. This subsection describes these
newer metrics in more detail.

1) rowThickness - In a given sparse matrix, the maxi-
mum number of nnz values per row is defined here
as rowThickness and is given by Equation1, where ri
indicates the number of nnz values in row i.

rowT hickness = max(r1,r2,r3,rN) (1)

The SpMV performance for any storage for-
mat depends on rowThickness.For example, if
rowT hickness � avg(r1,r2,r3,rN) the perfor-
mance of ELLPACK storage format decreases. In
this case, CSR, COO or other formats will be the
better choice for developers. On the other hand
when rowT hickness ≈ avg(r1,r2,r3,rN) ELL-
PACK performs better.

2) Pattern Symmetry - The sparse (square) matrix will
be pattern symmetric if the existence of nnz entries
match across the diagonal [30]. To better understand
pattern symmetry, let’s consider a square matrix P of
size M×M. This matrix will be pattern symmetric if
∀i, j P(i, j) 6= 0→ P(j, i) 6= 0.

3) Numeric Symmetry - The sparse matrix will be nu-
meric symmetric if the nnz entries numerically match
across the diagonal [30]. Consider a square sparse
matrix P of size M×M. Matrix P will be pattern
symmetric if ∀i, jP(i, j) = P(j, i) or P = PT .

www.ijacsa.thesai.org 617 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 11, 2019

TABLE I. THE BENCHMARKS USED FOR THE EXPERIMENTAL
EVALUATION.

No. Matrix Name Rows Columns Non-zeros Plot

1 sherman3 5,005 5,005 20,033

2 airfoil_2d 14,214 14,214 259,688

3 bbmat 38,744 38,744 177,1722

4 ill_stokes 20,896 20,896 131,368

5 gt01r 7,980 7,980 430,909

6 cavity26 4,562 4,562 138,040

7 lowthrust 18,476 18,476 224,897

8 windtunnel 40,816 40,816 803,978

9 circuit 12,127 12,127 48,137

10 qa8fm 66,127 66,127 1,660,579

11 ga3as3h12 61,349 61,349 5,970,947

12 nd24k 72,000 72,000 28,715,634

13 bcsstm 15,439 15,439 15,439

14 robot 2,358 2,358 18,218

15 dw2048 2,048 2,048 10,114

4) Horizontal Symmetry - A sparse matrix P of size
M×N will be horizontal symmetric if ∀i∀ jP(i, j) =
P(M− i,M− j).

5) Vertical Symmetry - A sparse matrix P of size M×
N will be vertical symmetric if ∀i∀ jP(i, j) = P(N−
i,N− j).

6) Row or Column-major Order - A Sparse matrix
entries stored in a file like ∀e =< row,col,val >.
Row-major order for that stored sparse matrix will
be ∀erow(erow ≤ erow+1) and column-major order will
be ∀ecol(ecol ≤ ecol+1).

7) Density and Sparsity - Sparsity of a sparse matrix
will be sparsity = zeroElements/(M × N).On the

other hand, Density = nnz/(M × N) will give us
density of a sparse matrix. Density and sparsity are
related as sparsity = 1− density. Thus, any matrix
with sparsity≥ 0.5 is generally considered as sparse
otherwise the matrix is considered dense.

8) Diagonal Density - The diagonal density for any
square sparse matrix is calculated by finding out
the count of nnz values on the diagonal. Equation2
describe the diagonal density of a sparse matrix.

count(∀iP(i, i) 6= 0) (2)

9) Upper Triangle Density - The upper triangle density
for any sparse matrix calculated by finding out the
count of upper triangle nnz values where row indices
are less then column indices. Equation 3 describe the
upper triangle density of a sparse matrix.

count(∀i∀ jP(i, j) = P(i, j) : j > i) (3)

10) Lower Triangle Density - The lower triangle density
for any sparse matrix calculated by finding out the
count of lower triangle nnz values where row indices
are greater then column indices. Equation describe
the lower triangle density of a sparse matrix.

count(∀i∀ jP(i, j) = P(i, j) : i > j) (4)

D. Metric Generation

In this subsection, we describe the algorithms for generat-
ing the metrics to describe the substructure and shape of the
sparse matrix. These metrics help to suggest the best storage
format for a given sparse matrix. For generating the metrics,
at first we will find out the rowThickness, in rowThickness we
will find the maximum number of non zero values per row.
Algorithm 1 describe rowThickness function.

Algorithm 1 Maximum Number per rows(rowThickness)
1: function ROWTHICKNESS(col)
2: count[col]++
3: maxcol← 0
4: for i← 1,col do
5: if count[i]> maxCol then
6: maxCol← count[i]
7: end if
8: end for
9: return maxCol

10: end function

Next, for getting more specific knowledge about the sparse
matrix we need to find out the information about pattern
symmetric, our algorithm will find the pattern symmetric by
matching the upper triangle and lower triangle value, if it is the
same the sparse matrix will be pattern symmetric. Algorithm
2 describe pattern Symmetric function.

After that, we will find out the percentage of numeric,
horizontal and vertical symmetric. In numeric symmetric, our
algorithm will find the percentage of the same upper triangle
and lower triangle nnz values which are separated by a
diagonal. Algorithm 3 describe numeric Symmetric function.

www.ijacsa.thesai.org 618 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 11, 2019

Algorithm 2 Pattern Symmetric
1: function PATTERNSYMMETRIC(rowindices,colindices)
2: for row← 1,rowindecies do
3: for col← 1,colindecies do
4: if row < col then
5: up← up+1
6: end if
7: if row > col then
8: lw← lw+1
9: end if

10: end for
11: end for
12: if up! = lw then
13: patternSym == 1
14: else
15: patternSym == 0
16: end if

return patternSym
17: end function

Algorithm 3 Numeric Symmetric
1: function NUMERICSYMMETRIC(rowindices,colindices)
2: for row← 1,rowindecies do
3: for col← 1,colindecies do
4: if data[row][col]! = data[col][row] then
5: nCount← nCount +1
6: end if
7: end for
8: end for
9: numeric = (nCount/nnz)∗100

10: return numeric
11: end function

In horizontal and vertical algorithms, we will check the
percentage of the same value which is presented horizontally
and vertically. Algorithm 4, 5 describes the horizontal and
vertical symmetric function.

Algorithm 4 Horizontal Symmetric
1: function HORIZONTALSYMMET-

RIC(rowindices,colindices)
2: for row ← 1,rowindecies/2,AND,nrow ←

rowindecies−1,nrow← nrow−1 do
3: for col← 1,colindecies do
4: if data[row][col]! = data[nrow][col] then
5: hCount← hCount +1
6: end if
7: end for
8: end for
9: horizontal = (hCount/nnz)∗100

10: return horizontal
11: end function

Row and column-major order is also an important char-
acteristic to find out the appropriate storage format for a
particular sparse matrix. Our algorithm will find the row and
column-major order by checking the row and column values
from the data set are sorted or not. If row indices are sorted
then it will print row-major order if column indices are sorted
then it will print column-major order. Algorithm 6 describe

Algorithm 5 Vertical Symmetric
1: function VERTICALSYMMETRIC(rowindices,colindices)
2: for row← 1,colindecies/2,AND,ncol← colindecies−

1,ncol← ncol−1 do
3: for col← 1,colindecies do
4: if data[row][col]! = data[ncol][col] then
5: vCount← vCount +1
6: end if
7: end for
8: end for
9: vertical = (vCount/nnz)∗100

10: return vertical
11: end function

the row and column-major order. After finding the row and
column-major order, we will approach for sparsity and density,
Algorithms will find out the sparsity by dividing the zero-
elements with row multiple column and density by dividing
the nnz by row multiple column. Algorithm 7 describe the
sparsity and density functions. After that we will find out the
density of the diagonal, upper, lower triangle. For calculating
the percentage of diagonal density, our algorithm at first find
out the diagonal values where row and column indices are same
then nnz elements will be divided by those diagonal values and
for upper and lower triangle density our tools will find out the
upper and lower values where row indices are less or greater
then column indices, respectively then nnz elements again
divided by the upper and lower values. Algorithm 8 describe
the diagonal density function where upper and lower triangle
also describe. After evaluating those results metrics will help to
suggest developers for most suitable storage formats for their
particular sparse matrix.

Algorithm 6 Row and Column major
1: function ROWCOLMAJOR(nnz)
2: for row← 1,nnz−1 do
3: if rowdata[row]> rowdata[row+1] then
4: dataorder == 1
5: else
6: dataorder == 0
7: end if
8: end for
9: for col← 1,nnz−1 do

10: if coldata[col]> coldata[col +1] then
11: dataorder ==−1
12: else
13: dataorder == 0
14: end if
15: end for
16: return dataorder
17: end function

V. EXPERIMENTAL EVALUATION

A. Experimental Setup

The experiments have been performed on Aziz Super-
Computer at King Abdulaziz University, Saudi Arabia. In
experiment, one nodes with 16 processors is being requested.

www.ijacsa.thesai.org 619 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 11, 2019

Algorithm 7 Sparsity and Density of Matrix data
1: function SPARSIFY(row,col,nnz)
2: rowCol = [row]∗ [col]
3: zeroElement = rowCol−nnz
4: sparsi f y = zeroElement/rowCol
5: return sparsi f y
6: end function
7: function DENSITY(row,col,nnz)
8: rowCol = [row]∗ [col]
9: density = nnz/rowCol

10: return density
11: end function

Algorithm 8 Upper, Lower Triangle and Diagonal Density
1: function DIAGONALDENSITY(rowindices,colindices)
2: for row← 1,rowindecies do
3: for col← 1,colindecies do
4: if row < col then
5: upper = nnz/(up← up+1)
6: else if row > col then
7: lower = nnz/(lw← lw+1)
8: else if row = col then
9: diagonal = nnz/(dia← dia+1)

10: end if
11: end for
12: end for
13: return upper, lower,diagonal
14: end function

TABLE II. METRICS WITH SPARSE MATRIX SPMV
PERFORMANCE(GFLOPS)

mtx Diagonal
Den-
sity(%)

Numeric
Sym-
me-
try(%)

Row
Thick-
ness

Avg
nnz
val-
ues

COO CSR IDX ELL

sherman 4.003 25 7 4 1.514 1.788 1.715 1.718
Ill_stokes 9.158 11 12 9 9.419 14 13.186 11.949
airfoil_2d 18.27 5.5 23 18 13.033 17.588 16.318 15.365
gt01r 54 1.9 75 53 20.352 26.369 24.153 20.228
cavity 30.29 3.3 62 30 9.506 11.222 10.799 9.145
bbmat 45.73 2.2 132 45 39.555 49.206 40.264 22.618
lowthrust 6.364 16 7184 6 4.641 8.726 8.947 6.360
windtunnel 66.9 0.99 93 66 17.089 59.388 47.609 98.01
circuit 3.969 25 5682 3 2.699 4.103 4.009 3.017
qa8fm 13.06 7.7 14 13 19.675 33.065 32.265 28.224
bcsstm 1 1.00E+02 1 1 0.901 1.346 1.315 1.322
robot 4.162 24 23 4 0.762 0.881 0.886 0.898
dw2048 4.938 20 8 4 0.847 0.922 0.958 0.936
nd24k 199.9 0.5 483 199 47.167 71.32 58.514 462.15
ga3as3h12 49.16 2 1024 49 29.524 81.224 43.407 105.96

Fig. 9. SpMV performance in GFLOPS

TABLE III. PROPOSED STORAGE FORMATS BY AUTHORS

Authors
name

Storage
format

mtx performance Metrics

Bell and
Garland
[7]

HYB
Lowthrust 15.873 Pattern Symmetric =YES

Numeric Symmetric=16%
Horizontal and Vertical Sym
= 7.9%
Column Major Order =Yes
Sparsity= 0.997
Density = 0.0003444
Diagonal Density = 6.364

Circuit 5.987 Pattern Symmetric =YES
Numeric Symmetric=25%
Horizontal and Vertical
Sym= 11%
Column Major Order =Yes
Sparsity= 0.997
Density = 0.0003273
Diagonal Density = 3.969

Windtunnel 5.988 Pattern Symmetric =YES
Numeric Symmetric=0.99%
Horizontal and Vertical Sym
= 7.1%
Column Major Order =Yes
Sparsity= 0.9984
Density = 0.001639
Diagonal Density = 66.9

Hiroki
Yoshizawa
[29]

CSR-T
qa8fm 5.988 Pattern Symmetric =YES

Numeric Symmetric=7.7%
Horizontal and Vertical Sym
= 0.041%
Column Major Order =Yes
Sparsity= 0.9889
Density = 0.0111
Diagonal Density = 13.06

ga3a3h2 9.001 Pattern Symmetric =YES
Numeric Symmetric=2%
Horizontal and Vertical Sym
= 1%
Column Major Order =Yes
Sparsity= 1.006
Density = -0.005677
Diagonal Density = 49.16

nd24k 12.214 Pattern Symmetric =YES
Numeric Symmetric=0.5%
Horizontal and Vertical Sym
= 0.25%
Column Major Order =Yes
Sparsity= 0.9838
Density = 0.01619
Diagonal Density = 199.9

F.Vazquez
[25]

Approach
based on
ELLR-T

rbsa480 3.4 Pattern Symmetric =YES
Numeric Symmetric=2.8%
Horizontal and Vertical Sym
= 1.3%
Column Major Order =Yes
Sparsity= 0.9258
Density = 0.07417
Diagonal Density = 35.9

dw2048 2.1 Pattern Symmetric =YES
Numeric Symmetric=20%
Horizontal and Vertical Sym
= 7.2%
Column Major Order =Yes
Sparsity= 0.9976
Density = 0.002411
Diagonal Density = 4.938

mhd32000 9.8 Pattern Symmetric =YES
Numeric Symmetric=4.7%
Horizontal and Vertical Sym
= 2.4%
Column Major Order =Yes
Sparsity= 0.9934
Density = 0.006643
Diagonal Density = 21.26

www.ijacsa.thesai.org 620 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 11, 2019

Fig. 10. SpMV performance evaluation respect to Diagonal Density

Fig. 11. SpMV performance(GFLOPS)

Each compute node has Dual socket hex-core processor run-
ning at 2.4GHz with 256GB RAM. Linux version 2.6.32-
358.23.2.e16.x86_64 and GCC compiler version 4.4.7 is used
in our experiment.

B. Metrics and Performance Analysis

In this section, Presents metrics evaluation using selected
benchmark in previous chapter and also evaluate those similar
benchmark according to the metrics behavior. In this approach,
first generated metric is rowThickness. rowThickness is used
to find out the maximum non-zero values per row. Row
thickness is important for any sparse matrix because there
is a relation between rowThickness and SpMV performance.
If the row thickness does differ from the average non-zero
values, then the ELLPACK storage format will not be a great
choice for any data set. In this case, the experiment showed
that CSR or any other storage format is more efficient then
ELLPACK. From Table II section “Row Thickness” gives the
generated rowThickness values for every sparse matrix. The
sparse matrix characteristic’s pattern symmetric is used in our
approach for getting a clear visualization of the sparse matrix.
If the sparse matrix is pattern symmetric any system can easily
figure out that the row thickness does not very much higher
from the average non-zero values.

Numeric, Horizontal and vertical symmetries are the other
symmetric metrics of a sparse matrix, by using those parame-
ters we can clearly understand the behavior and the structure
of any sparse matrix. From the experiment, found that sparse
matrix storage formats perform better with less numerically
symmetric data. From the experiment, also found that if the
percentage of numerically symmetric is less then horizontal
and vertical ELLPACK perform better then other sparse matrix
storage formats. In Table IV, will find out the symmetry
information of selected sparse matrix. Row or column-major

order showed in Table IV is another metric that is used in our
approach. Experiment showed that, when a sparse matrix is
in row-major order CSR and IDX perform better than other
storage formats. The Table II sections “Sparsity and Density”
gives the status of any matrix, those will justify the sparsity
of any matrix using sparsity = 1− density. Another section

TABLE IV. STORAGE FORMATS WITH METRICS

mtx file metadata mtx file metadata

bcsstm Pattern Symmetric =YES
Numeric
Symmetric=1e+02%
Horizontal and Vertical
Sym = 50%
Column Major Order =Yes
Sparsity= 0.9999
Density = 6.477e-05
Diagonal Density = 1

sherman Pattern Symmetric =YES
Numeric Symmetric=25%
Horizontal and Vertical
Sym = 9.7%
Row Major Order =Yes
Sparsity= 0.9992
Density = 0.0007997
Diagonal Density = 4.003

robot Pattern Symmetric =YES
Numeric Symmetric=24%
Horizontal and Vertical
Sym = 12%
Column Major Order =Yes
Sparsity= 0.9982
Density = 0.001765
Diagonal Density = 4.162

airfoil_2d Pattern Symmetric =YES
Numeric Symmetric=5.5%
Horizontal and Vertical
Sym = 2.7%
Row Major Order =Yes
Sparsity= 0.9987
Density = 0.001285
Diagonal Density = 18.27

gt10R Pattern Symmetric =YES
Numeric Symmetric=1.9%
Horizontal and Vertical
Sym = 0.93%
Row Major Order =Yes
Sparsity= 0.9932
Density = 0.006767
Diagonal Density = 54

bbmat Pattern Symmetric =YES
Numeric Symmetric=2.2%
Horizontal and Vertical
Sym = 1.1%
Row Major Order =Yes
Sparsity= 0.9988
Density = 0.00118
Diagonal Density = 45.73

Cavity26 Pattern Symmetric =YES
Numeric Symmetric=3.3%
Horizontal and Vertical
Sym = 1.7%
Row Major Order =Yes
Sparsity= 0.9934
Density = 0.00664
Diagonal Density = 30.29

Ill_stokes Pattern Symmetric =YES
Numeric Symmetric=11%
Horizontal and Vertical
Sym = 5.5%
Row Major Order =Yes
Sparsity= 0.9996
Density = 0.0004383
Diagonal Density = 9.158

from Table II diagonal density provide the description about
diagonal density. Diagonal density is very important for any
sparse matrix. Storage formats performance can determined by
the percentage of diagonal density. Experiments showed that
for higher percentage of diagonal density ELLPACK perform
better then CSR. Fig. 10 showed performance of SpMV for
different storage formats with different sparse matrix respect
to diagonal density. Fig. 11 presents the performance graph re-
spect to COO, CSR, IDX and ELLPACK. ELLPACK perform
peak performance with windtunnel sparse matrix, where the
percentage of numerical symmetry is 0.99%, diagonal density
66.9% and column major order. ELLPACK perform worst
performance with bcsstm sparse matrix, where the percentage
of numerical symmetry is 1e+02%, diagonal density 1% and
column major order. After experimental analysis we found that
ELLPACK perform best with higher diagonal density and give
lowest performance where diagonal density is very low. CSR
perform best among the sparse matrix with bbmat, where the
percentage of numerical symmetry is 2.2%, diagonal density
45% and row-major order data.While the percentage of numer-
ical symmetry 24%, diagonal density is 4.162% and column-
major order then CSR perform worst.Our experimental result
showed that CSR perform worst when the nature of the sparse
matrix is column-major order. Any row-major order sparse
matrix with better percentage of diagonal density CSR perform
peak performance. For any column-major order sparse matrix
we can use another solution which also compressed the data

www.ijacsa.thesai.org 621 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 11, 2019

but here the format used column pointer instead of row pointer,
named CSC. On the other hand COO performed average for
all the sparse matrix, COO give us its peak performance with
bbmat but the performance is not greater than CSR. COO also
perform worst with bcsstm, where the percentage of numerical
symmetry is 1e+02%, diagonal density 1% and column-major
order. For bcsstm sparse matrix CSR gives better performance
than other three storage format used in our literature. Another
newly storage format which we used in our tools is IDX, these
storage format perform better then all others with lowthrust
sparse matrix, where the percentage of numerical symmetry
16%, diagonal density is 6.364% and column-major order. IDX
performance is always very close to CSR.

VI. CONCLUSION

SpMV operation’s performance affects the efficiency of
large number of applications like CFD, computer graphics,
robotics, structural problems, acoustics problems, etc. The
performance of SpMV operations depends on many factors.
Matrix characteristics, storage formats, software and hardware
implementations are most common problems for the perfor-
mance of SpMV operation.

In this paper, we focused on matrix characteristics, an ap-
proach has been proposed and evaluated to assume the matrix
characteristics by generating several metrics. Our approach
allows the developers to choose the most suitable storage
formats for given sparse matrix and improve the performance
of SpMV operation. The aim of our approach is suggest the
best suitable storage format for any sparse matrix by analyzing
our generated metrics. We have evaluate our approach using
15 real world sparse matrices from University of Florida
sparse matrix collection (UFSMC) [30] with four most popular
storage formats. Along with some well-known metrics we also
generate some new metrics in our approach. In our evaluation
we observed that, CSR perform best when the row thickness
is very large that means CSR is a better choice for horizontal
substructures. ELLPACK perform best with higher diagonal
density (49.16%) when the numeric symmetry (2%) is very
less.

In future we will extend our research with newer metrics to
describe the sparse matrix with metadata more accurately. We
will incorporate other common dependency for SpMV opera-
tion and increasing both sparse matrix and storage format. We
will enhance our research by incorporating machine learning.

ACKNOWLEDGMENT

Experiment for the work presented in this paper was
supported by High Performance Computing Center (Aziz Su-
percomputer) at King Abdulaziz University.

REFERENCES

[1] G. Goumas, K. Kourtis, N. Anastopoulos, V. Karakasis, and N. Koziris,
“Performance evaluation of the sparse matrix-vector multiplication on
modern architectures,” J. Supercomput., vol. 50, no. 1, pp. 36–77, oct
2009. [Online]. Available: https://doi.org/10.1007/s11227-008-0251-8

[2] K. Kourtis, V. Karakasis, G. Goumas, and N. Koziris, “CSX: An
extended compression format for SpMV on shared memory systems,”
ACM SIGPLAN Not., vol. 46, no. 8, pp. 247–256, 2011.

[3] W. DGROPP, D. KKAUSHIK, D. EKEYES, and G. BFSMITH, “To-
wards Realistic Performance Bounds for Implicit CFD Codes,” Parallel
Comput. Fluid Dyn. 1999, pp. 241–248, 2000.

[4] K. Kourtis, G. Goumas, and N. Koziris, “Optimizing Sparse Matrix-
Vector Multiplication using index and value compression,” Conf. Com-
put. Front. - Proc. 2008 Conf. Comput. Front. CF’08, pp. 87–96, 2008.

[5] A. Buluç, J. T. Fineman, M. Frigo, J. R. Gilbert, and C. E. Leiserson,
“Parallel sparse matrix-vector and matrix-transpose-vector multiplica-
tion using compressed sparse blocks,” Annu. ACM Symp. Parallelism
Algorithms Archit., pp. 233–244, 2009.

[6] J. Willcock and A. Lumsdaine, “Accelerating sparse matrix computa-
tions via data compression,” Proc. Int. Conf. Supercomput., pp. 307–
316, 2006.

[7] N. Bell and M. Garland, “Implementing sparse matrix-vector
multiplication on throughput-oriented processors,” in Proc. Conf. High
Perform. Comput. Networking, Storage Anal. - SC ’09, no. 1. New
York, New York, USA: ACM Press, 2009, p. 1. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=1654059.1654078

[8] Yousef Saad, “Iterative Methods for Sparse Linear Systems: Second
Edition - Yousef Saad - Google Books,” 2003.

[9] M. Heller and T. Oberhuber, “Adaptive Row-grouped CSR Format
for Storing of Sparse Matrices on GPU,” 2012. [Online]. Available:
http://arxiv.org/abs/1203.5737

[10] A. Ashari, N. Sedaghati, J. Eisenlohr, and P. Sadayappan, “An
efficient two-dimensional blocking strategy for sparse matrix-
vector multiplication on GPUs,” in Proc. 28th ACM Int.
Conf. Supercomput. - ICS ’14. New York, New York,
USA: ACM Press, 2014, pp. 273–282. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2597652.2597678

[11] D. Guo and W. Gropp, “Applications of the streamed storage format for
sparse matrix operations,” Int. J. High Perform. Comput. Appl., vol. 28,
no. 1, pp. 3–12, 2014.

[12] M. Maggioni and T. Berger-Wolf, “AdELL: An adaptive warp-
Balancing ELL format for efficient sparse matrix-Vector multiplication
on GPUs,” Proc. Int. Conf. Parallel Process., pp. 11–20, 2013.

[13] C. Zheng, S. Gu, T. X. Gu, B. Yang, and X. P. Liu, “BiELL: A
bisection ELLPACK-based storage format for optimizing SpMV on
GPUs,” J. Parallel Distrib. Comput., vol. 74, no. 7, pp. 2639–2647,
2014. [Online]. Available: http://dx.doi.org/10.1016/j.jpdc.2014.03.002

[14] J. Hartmanis and J. V. Leeuwen, High Performance Embedded Archi-
tectures and Compilers 5th, J. v. L. Gerhard Goos, Juris Hartmanis,
Ed., 2010, vol. 9, no. 3.

[15] K. Li, W. Yang, and K. Li, “Performance analysis and optimization
for SpMV on GPU using probabilistic modeling,” IEEE Trans. Parallel
Distrib. Syst., vol. 26, no. 1, pp. 196–205, 2015.

[16] R. Shahnaz, A. Usman, and I. R. Chughtai, “Review of
Storage Techniques for Sparse Matrices,” in 2005 Pakistan Sect.
Multitopic Conf. IEEE, dec 2005, pp. 1–7. [Online]. Available:
http://ieeexplore.ieee.org/document/4133468/

[17] Y. Nagasaka, A. Nukada, and S. Matsuoka, “Adaptive Multi-level
Blocking Optimization for Sparse Matrix Vector Multiplication
on GPU,” Procedia Comput. Sci., vol. 80, pp. 131–142,
2016. [Online]. Available: http://dx.doi.org/10.1016/j.procs.2016.05.304
https://linkinghub.elsevier.com/retrieve/pii/S187705091630655X

[18] I. P. Stanimirovic and M. B. Tasic, “Performance comparison
of storage formats for sparse matrices,” Ser. Math. Informatics,
vol. 24, no. 1, pp. 39–51, 2009. [Online]. Available:
http://facta.junis.ni.ac.rs/mai/mai24/fumi-24_39_51.pdf

[19] E. Montagne and A. Ekambaram, “An optimal storage format for sparse
matrices,” Inf. Process. Lett., vol. 90, no. 2, pp. 87–92, 2004.

[20] D. Buono, F. Petrini, F. Checconi, X. Liu, X. Que,
C. Long, and T.-C. Tuan, “Optimizing Sparse Matrix-Vector
Multiplication for Large-Scale Data Analytics,” Proc. 2016 Int.
Conf. Supercomput. - ICS ’16, pp. 1–12, 2016. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2925426.2926278

[21] J. Zhang, J. Wan, F. Li, J. Mao, L. Zhuang, J. Yuan, E. Liu,
and Z. Yu, “Efficient sparse matrix-vector multiplication using
cache oblivious extension quadtree storage format,” Futur. Gener.
Comput. Syst., vol. 54, pp. 490–500, 2016. [Online]. Available:
http://dx.doi.org/10.1016/j.future.2015.03.005

[22] X. Feng, H. Jin, R. Zheng, K. Hu, J. Zeng, and Z. Shao, “Optimization
of sparse matrix-vector multiplication with variant CSR on GPUs,”
Proc. Int. Conf. Parallel Distrib. Syst. - ICPADS, pp. 165–172, 2011.

www.ijacsa.thesai.org 622 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 11, 2019

[23] D. Hutchison and J. C. Mitchell, Lecture Notes in
Computer Science, 1973, vol. 9, no. 3. [Online]. Available:
http://www.mendeley.com/research/lecture-notes-computer-science-2/

[24] X. Yang, S. Parthasarathy, P. Sadayappan, H. Yoshizawa, D. Takahashi,
E. Montagne, A. Ekambaram, M. E. Epstein, I. Rodan, G. Griffenhagen,
J. Kadrlik, M. C. Petty, S. A. Robertson, and W. Simpson,
“Fast sparse matrix-vector multiplication on GPUs,” Proc. VLDB
Endow., vol. 90, no. 2, pp. 130–136, mar 2012. [Online].
Available: http://journals.sagepub.com/doi/10.1177/1098612X15572062
http://dl.acm.org/citation.cfm?doid=1938545.1938548

[25] F. Vázquez, J. J. Fernández, and E. M. Garzón, “Automatic tuning of the
sparse matrix vector product on GPUs based on the ELLR-T approach,”
Parallel Comput., vol. 38, no. 8, pp. 408–420, 2012.

[26] M. M. Baskaran, R. Bordawekar, M. Manikandan, and
B. Rajesh Bordawekar, “Optimizing Sparse Matrix-Vector
Multiplication on GPUs Using Compile-time and Run-

time Strategies,” Tech. Rep., 2008. [Online]. Available:
http://domino.watson.ibm.com/library/CyberDig.nsf/home.

[27] S. Chen, J. Fang, D. Chen, C. Xu, and Z. Wang, “Adaptive Optimization
of Sparse Matrix-Vector Multiplication on Emerging Many-Core Archi-
tectures,” 2018 IEEE 20th Int. Conf. High Perform. Comput. Commun.
IEEE 16th Int. Conf. Smart City; IEEE 4th Int. Conf. Data Sci. Syst.,
pp. 649–658, 2018.

[28] W. Liu and B. Vinter, “CSR5 : An Efficient Storage Format for Cross-
Platform Sparse Matrix-Vector Multiplication Categories and Subject
Descriptors,” pp. 339–350.

[29] H. Yoshizawa and D. Takahashi, “Automatic Tuning of Sparse
Matrix-Vector Multiplication for CRS Format on GPUs,” in 2012 IEEE
15th Int. Conf. Comput. Sci. Eng. IEEE, dec 2012, pp. 130–136.
[Online]. Available: http://ieeexplore.ieee.org/document/6417285/

[30] T. A. Davis and Y. Hu, “The university of Florida sparse matrix
collection,” ACM Trans. Math. Softw., vol. 38, no. 1, pp. 1–25, 2011.

www.ijacsa.thesai.org 623 | P a g e

