
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 11, 2019

Survey on Domain Specific Languages
Implementation Aspects

Eman Negm1, Soha Makady2, Akram Salah3
Faculty of Computers and Artificial Intelligence

Cairo University, Giza, Egypt

Abstract—Domain Specific Languages (DSLs) bridge the gap
between the business model and the technical model. DSLs allow
the technical developer to write programs with the business
domain notations. This leads to higher productivity and better
quality than General Purpose Languages (GPLs). One of the main
challenges of utilizing DSLs in the current software process is how
to reduce the implementation cost and the knowledge required
for building and maintaining DSLs. Language workbenches are
environments that provide high level tools for implementing
different language aspects. The purpose of this paper is to provide
a survey on the different aspects of implementing DSLs. The
survey includes structure, editor, semantics, and composability
language aspects. Furthermore, it overviews the approaches used
for each aspect and classify the current workbenches according
to these approaches.

Keywords—Domain Specific Language (DSL); language work-
bench; language implementation aspects; software language engi-
neering

I. INTRODUCTION

Domain Specific Languages (DSLs) [1] are languages
that are designed and implemented to express and solve a
specific class of problems. This class represents the domain
of the language. SQL (Structured Query Language) is a DSL
specialized in database domain, HTML (Hyper Text Markup
Language) is another DSL that concerns with the web domain.
Throughout the paper, MiniIoT DSL is used to describe the
different aspects of DSL implementation, it is a fake DSL for
Internet of Things (IoT) domain. Listing 1 shows a sample of
MiniIoT code that defines sensors and actuators to send alarm
and open the extinguisher in case of the temperature exceeds
some threshold in a specific building.

DSLs have many advantages over General Purpose Lan-
guages (GPLs) for representing a specific domain. On one
hand, it provides higher abstractions for the given domain
which raises the productivity and the quality of the develop-
ment process [2]–[4]. The user, who utilizes MiniIoT, will use
concepts like devices, sensors, and actuators to write IoT pro-
grams. In case of utilizing one of the GPL like Java and C, the
user is forced to use concepts that are not related to his domain
like classes, fields, and arrays to represent his problem. The
latter representation consumes more time and effort and may
generate more errors than the direct MiniIoT representation.
DSL also provides better validation and verification for the
output programs since it utilizes domain specific constraints.
The DSL developer could define constraints to verify that
the generated program is meaningful. For example, MiniIoT
will not allow to configure the same sensor in two different
locations in the same time. In addition, the error messages are

also more meaningful since it utilizes the domain concepts.
MiniIoT will display error messages like “This sensor is
already located in building No. 11 in this time”. On the other
hand, the use of domain notations in the DSLs allows more
involvement for the domain expert in the development process.
This leads to bridge the gap between the business model which
is owned by the domain expert and the technical model which
is owned by the programmer. As a result, The quality of the
final product is enhanced [5], [6].

Listing 1: MiniIoT Code Sample
Define Sensor temperatureSensor measures

Temperature located in Building 11
Define Actuator alarmActuator that send Alarm

to number 911 located in Building 11
Define Actuator extinguisherActuator that open

fire extinguisher located in Building 11
if (temperatureSensor.temperature >

TEMPERATURE_THURSHHOLD) {
alarmActuator.execute
extinguisherActuator.execute
}

Despite the advantages mentioned above, DSL doesn’t have
the expected role in the current software development life
cycle. There are many reasons for this, one of the main reasons
is the cost of designing, implementing, and composition of a
new DSL. Designing a DSL, that covers all domain aspects, is
not an easy task. Implementing a new language from scratch,
in case of no suitable one is available, is a very difficult task if
the normal GPL techniques are used. Building a compiler or
an interpreter from scratch consumes a lot of time and effort,
plus special technical skills are required. Most of the current
applications involve more than one domain, consequently the
modularity and composability of the DSL are very important
aspects when creating a new DSL or even choose an existing
one.

Language workbenches, the term is proposed by Martin
Fowler [7], are comprehensive environments that try to provide
a solution for the above problems by providing high level
tools. These tools facilitate the development, maintaining, and
composition of DSLs. Most of language workbenches apply
the idea of modular language and language extension. They
enable the language developer to create languages’ modules
that are fully integrated with each other.

Although the DSL concept is not a new one, there are no
standard approaches for DSLs development. There are many
aspects that should be handled by the language workbenches to

www.ijacsa.thesai.org 624 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 11, 2019

TABLE I. DSL WORKBENCHES

Workbench Name URL
Ensō http://www.enso-lang.org/
Intentional Software http://www.intentsoft.com/
LISA —–
Mas http://www.Mas-wb.com/
MetaEdit+ http://www.metacase.com/
MontiCore http://www.monticore.de/
MPS http://www.jetbrains.com/mps/
Neverlang http://neverlang.di.unimi.it/
Rascal http://www.rascal-mpl.org/
Silver http://melt.cs.umn.edu/silver/
Spoofax http://www.spoofax.org/
SugarJ http://www.sugarj.org/
Whole Platform http://whole.sourceforge.net/
Xtext http://www.eclipse.org/Xtext/

achieve their goals. Each workbench follows its own approach
to implement these aspects. Some of these approaches are
published in scientific papers and others are in the workbench
documentation. Up to our knowledge, no recent study done to
discuss and classify these approaches.

This paper discusses the different approaches for achieving
the various DSL implementation aspects. It includes struc-
ture, editor, semantics, and composability language aspects.
There are other aspects that are not included in this survey
like language validation and testing aspects. The language
workbenches are classified based on the approaches used in
each aspect. The survey includes 14 language workbenches
(Table I). Unfortunately, there are some workbenches that
the authors couldn’t fetch their approaches in some aspects
due to poor documentation or due to their being commercial
workbenches.

The rest of the paper is structured as follows, Section II
describes some concepts of the language implementation and
workbenches. Section III looks at related surveys on DSL
implementation. Sections IV, V, VI, and VII introduce the
different aspects of the DSL implementation. They illustrate
each aspect and the main approaches, that are used in the
current workbenches, to achieve these aspect. Section IX
concludes the paper and presents prospective ongoing research
directions.

II. BACKGROUND

Programing languages are a set of languages used to give
instructions to the computers to preform a specific task. There
are two types of programming languages: General Purpose
Languages (GPLs) and Domain Specific Languages (DSLs).
GPL is a language that is used to write programs for any
domain. It does not contain any constructs that are related
to a specific domain. Java, C++, and Python are examples of
GPLs. DSL is a language that concerns with a specific class of
problems that represents a specific domain. It contains abstrac-
tions and optimizations for the given domain. A specialized
editor is often provided with the DSL to provide a specialized
editor services and error messages. SQL, HTML, and CSS are
examples of DSLs.

DSL could be implemented as internal or external DSL.
Internal DSL is the DSL that is embedded into a general
purpose language. This type is limited with the grammar of the
host language. Additionally, there is a lack in the editor support
since the editor is not aware of the grammar and constraints of

the embedded DSL. In contrast, external DSL are implemented
independently from any host language. It has its own grammar
and editors which makes the language more flexible and the
editor could assist the programmer during the development
process with the domain knowledge. Throughout the paper,
The term DSL is used to refer to the external DSL.

DSL development process involves five stages: 1) Domain
Analysis: this stage includes understanding and analyzing
the concerned domain, getting the concepts and relations of
the domain, and determining the boundaries of the domain,
2) Design: this stage defines the design of the DSL that
could encode the problems of the domain determined in the
previous phase, 3) Implementation: the concrete language is
implemented in this stage using one of the existing tools, 4)
Evaluation: where the new DSL is evaluated to determine if it
satisfies the business’s need or not, and 5) Maintenance: it is a
continues stage to update the new developed DSL to satisfy the
continues changes in the business requirements. This survey
concerns with the approaches used in the implementation stage
only.

There are two general approaches for programing lan-
guages implementation: compilation and interpretation. In the
compilation approach, the compiler translates the programs,
written in a high level language, into a low level language
that will be executed by the machine. In the interpretation
approach, the interpreter executes the actions written in the
given program directly on the machine without any translation.
Building a compiler or an interpreter from scratch is a complex
task that needs a lot of effort and time. It also needs special
technical skills. DSLs are lightweight languages than GPLs
since they cover limited domain. It should be implemented
faster with less effort and knowledge. Therefore, using the
classical GPL implementation approaches for DSL implemen-
tation is not realistic.

Language Workbench is an environment for DSLs de-
velopment. It provides high level tools for implementing,
evaluating, and maintaining DSLs. Language Workbench re-
duces the effort and knowledge needed for building DSLs and
hides the complexity of the GPL implementation approaches.
Fowler [7] lists three components that should be supported by
any language workbench to create a new DSL: 1) The abstract
representation that includes defining the language structure,
2) The editor that allows the user to manipulate the abstract
representation, and 3) The generator that transforms the ab-
stract representation into an executable coded. The current
approaches used to support the above three components are
described in Sections IV, V, and VI. In addition, the language
workbench should support the integration among DSLs which
is described in Sections VII.

Throughout the paper, the language developer is the person
who is responsible for developing the DSL, and the user is
the person who utilizes the DSL to write programs. Fig. 1
shows the relation among language developer, language user,
and language workbench.

III. RELATED WORK

Although, there are many research directions in the domain
specific languages field, there is a limited number of survey
papers that cover the aspects of implementing DSLs. Van

www.ijacsa.thesai.org 625 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 11, 2019

Fig. 1. DSL Implementation Stockholders

Deursen et al. [8] lists the implementation approaches for the
semantic aspect only. Kosar et al. [9] provides a preliminary
study on ten DSL implementation approaches. A unified DSL
is designed to be implemented by the ten approaches to
compare the DSL implementation effort and the end-user
effort to build programs with the given DSL. Similar work is
done by [10] to evaluate four DSL implementation approaches
based on unified state machine DSL. It concludes that no
single approach is valid for all scenarios. Oliveira et al. [11]
provide a theoretical survey on DSLs that does not describe
any implementation techniques. Erdweg et al. [12] focus on
the language composability aspect and how it is covered by
different language workbenches.

A systematic mapping study is provided by [13] that
includes research questions related to the techniques and meth-
ods of DSLs, the existing DSLs with their related domains, and
the tools for DSL creation and usage. The study lists some
techniques used in DSLs and it provides statistics about the
DSL research types and their respective domains. The results
show that defining external DSLs for the different domains
gains a lot of attention. This indicates that utilizing of DSLs
is very useful and applicable in many domains.

Language Workbench Challenge 2013 (LWC’13) published
a work where the authors propose a feature model for lan-
guages workbenches and classify the workbenches according
this model [14], [15]. It provides a unified challenge (i.e. a DSL
for questionnaires) to be implemented by ten workbenches
that are included in LWC’13. The paper compares the features
provided by the different workbenches in the different aspects.
It shows that no one language workbench supports all the
required features. The authors is concerned with the supported
features of each workbench more than the approaches used to
implement these features.

Kosar et al. [16] and Mernik [17] performed another sys-
tematic mapping study on the research papers published from
2005 to 2013. The authors include the papers published after
their survey paper in 2005 [18].The systematic mapping study
includes research questions that try to catch the research space
and trends of the DSL field within the given period. One of
the main conclusions of this study is that the DSLs will be the
main programming languages for the next period. Additionally,
it reports that one of the open problems in DSL field is
how to facilitate the DSL development for domain expert.
This survey discusses the current approaches that contribute
in solving the above problem. Thanhofer-Pilisch et al. [19]
preformed another systematic mapping study that focuses on
DSL evolution only.

As per the previous paragraphs, no recent survey papers
cover the latest approaches of implementing DSLs. Unlike the
above work, this survey describes the recent approaches used

in four different aspects. It focuses on the internal approaches
used in the current workbenches rather than the provided
features of each workbench. The provided survey could be
a starting point for the DSL researchers to catch the current
status of DSL implementation aspects.

IV. LANGUAGE STRUCTURE ASPECT

The language structure aspect includes defining the struc-
ture of the new DSL. This structure represents the concepts and
the relations that reflect the target domain. In this aspect, the
language developer defines the concepts that are included in
the MiniIoT language. Fig. 2 shows a subset of the concepts of
MiniIoT DSL and their relations. MiniIoT contains two types
of devices: sensors and actuators. The device is located in
some place. The Sensor generates a specific observation and
the actuator does some action.

Fig. 2. MiniIoT Concepts

There are two main approaches, used in the current
language workbenches, for defining the language structure:
Grammar-driven approach and Model-driven approach. The
subsequent sections describe each approach in details. Table II
classifies the included workbenches according to the above
mentioned approaches.

TABLE II. DSL WORKBENCHES CLASSIFICATION ACCORDING TO
LANGUAGE STRUCTURE ASPECT

Approach Workbench Used Techniques

Grammar-driven Approach

Spoofax SDF
SugarJ SDF
Silver Attribute Grammar
LISA Attribute Grammar
Neverlang Grammar DSL
MontiCore Grammar DSL
Rascal Grammar DSL
Xtext Grammar DSL
Ensō Object Grammar

Model-driven Approach

Whole Platform Meta-model DSL
MPS Meta-model DSL
Mas Meta-model DSL
MetaEdit+ GOPPRR Model
Intentional Software Meta-model DSL

A. Grammar-Driven Approach

In the grammar-driven approach, the definition of the
language depends on defining the grammar of this language.
Context Free Grammar(CFG) is used as the formal definition
for the concrete syntax of the language. The meta languages,
that are used to define CFG, are reused to define the DSLs with
some modifications to be more appropriate for DSL definition.
Backus–Naur Form (BNF) is a one of the main formal meta-
languages that are used to define CFG. Extended Backus–Naur
Form (EBNF) is a meta-language that extends BNF by adding
more notations and symbols like multiplicity symbol.

Attribute grammar is a context free grammar with attributes
and evaluation rules. It can contain syntax and semantics

www.ijacsa.thesai.org 626 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 11, 2019

information while (E)BNF contains syntax only. The values
of the attributes are evaluated by a compiler or a parser
according to the given evaluation rules. Attribute grammar
defines two types of attributes: synthesized attributes and
inherited attributes. The values of the synthesized attributes
are computed from the values of the attributes of the children
nodes. They pass semantic information down in the abstract
syntax tree. However, the values of the inherited attributes are
computed using the values of the attributes of the parent nodes.
They pass semantic information up in the abstract syntax tree.
Silver [20] and LISA [21] are examples of systems that utilize
the attribute grammar to define the structure of the DSL.

Syntax Definition Formalism [22] (SDF) is another meta-
language for defining the grammar of a language. SDF is
richer than (E)BNF and more modular. It allows to divide the
grammar into modules which facilitates the language’s embed-
ding and reusing. In addition, SDF provides more declarative
grammar definition and declarative disambiguation. Moreover,
It enables to define both lexical and context-free syntax. For
the above reasons, SDF is more suitable to be utilized for
DSL definition. SDF implementation provides a scannerless
parser for the SDF definition. Spoofax [23] and SugarJ [24] are
examples of workbenches that use SDF for defining language
structure.

Another technique for defining the grammar of the lan-
guage is to develop a new DSL for the grammar definition.
The main advantage of this technique is that the new developed
DSL is designed to be easier and more user friendly than the
above standards. In addition, most of the proposed languages
support modularity and reusability. Xtext [25] workbench pro-
posed a grammar DSL which is an EBNF-like DSL developed
by Xtext itself. This grammar DSL defines the concrete syntax
and how it is mapped to the semantic model of the new DSL.
Rascal [26] workbench has a meta-programming DSL that
includes notations for defining the syntax of the new DSLs.

Neverlang [27], [28] also proposes a DSL that represents
the syntax by a set of productions coded in BNF. Monti-
Core [29], [30] proposes Grammar Definition Language for
defining both concrete and abstract syntax. The benefit of
using the same language for both elements is to reduce the
inconsistency and redundancy between the two elements. One
of the drawbacks of this technique is that it does not sup-
port languages that have multiple concrete syntax and single
abstract syntax.

Object grammar [31], [32] is another technique proposed
in Ensō workbench. It provides a declarative mapping between
text and object graph. Object grammar extends EBNF by
adding constructs to build an object graph while parsing the
text. It also defines how to transform the generated graph back
into text. Object grammar produces a graph as an output for
the parsing process instead of the parse tree in the above
techniques. The graph is described by a schema. One of the
main advantages of Object Grammar that it supports language
reusabilty easier than traditional grammar-based techniques.

B. Model-Driven Approach

The Model-driven approach does not use grammar rules
to define the language structure. In contrast, it utilizes the
meta-modeling for defining the structure of the language. The

program, written by the user, is the model that conforms to the
meta-model defined by the language developer. A Language
structure meta-model is used to describe the abstract syntax
not the concrete syntax. It defines the concepts, relations,
and constraints of the language. This meta-model does not
describe how the user will edit these concepts and relations.
The concrete syntax is determined by a projection process that
describes how to edit the concepts and relations defined in
the previous meta-model. The projection process is described
in more details in the Language Editor Aspect (Section V-B).
One of the main advantages of this technique is that it provides
higher abstraction level than the grammar-driven techniques.
The language developer doesn’t have to know the grammar
details or the parser techniques. He defines a semantic model
rather that a concrete syntax which makes the definition
process more easier.

Most of the language workbenches, that follow this ap-
proach, propose a DSL to define of the language structure
meta-model. MPS [33], Whole Platform [34], Mas, and In-
tentional Software [35] workbenches follow this approach.
MPS’s DSL is called Structure Language which is a DSL for
representing and editing the Abstract Syntax Tree (AST) of the
program. It defines the concepts, attributes and relations of the
nodes of the AST. Whole Platform has a modeling framework
that utilizes a DSL called Models Language. Models Language
defines the language as a set of entities, features, and types.
Mas also has its own DSL to define the structure of the
language. It a web-based language that allows the users to
define the abstract syntax of the DSL.

Intentional Software Workbench [36] proposed a tree rep-
resentation for the software programs that merges the abstract
syntax and the concrete syntax. It represents any program
as a so-called intentional program tree which is a kind of
syntax tree. This tree consists of a set of nodes and references;
the nodes represent the program elements and the references
represent relations among elements. The intentional program
tree includes different types of nodes that hold semantic and
syntactic information. This mix between abstract and concrete
syntax facilitates the textual representation of the semantic
model as described in Section V-B.

MetaEdit+ [37] is a language workbench that supports only
graphical DSLs. It proposes a model called GOPPRR Model
to define the abstract syntax of the graphical DSL. GOPPRR
stands for Graph, Object, Property, Port, Role, and Relation
which are the elements of the language structure in MetaEdit+.
The user creates the GOPPRR model by filling in a set of forms
or by specifying the model graphically.

V. LANGUAGE EDITOR ASPECT

In language editor aspect, the language developer defines
how the user views and edits the language structure defined
in the above aspect. In this aspect, the developer of the
MiniIoT language should define the editor of the sensors and
the actuators concepts. The editor should allow the user to
define new sensors and actuators and to define the relations
among them. In addition, It should support all the language
editor services like highlighting, error checking, and code
completion. Fig. 3 shows a sample textual editor for MiniIoT
script that defines sensors and actuators. This editor is created
by MPS workbench.

www.ijacsa.thesai.org 627 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 11, 2019

Fig. 3. MiniIoT Editor

TABLE III. DSL WORKBENCHES CLASSIFICATION ACCORDING TO
LANGUAGE EDITOR ASPECT

Editing Mode Workbench Supported Language Notations
Textual Tabular Symbols Graphical

Parser-based

Spoofax
Neverlang
MontiCore
Silver
Rascal
Ensō
SugarJ
Xtext
LISA

Projectional
Whole Platform
MPS
Mas
MetaEdit+

The user should be able to edit either the grammar-
driven or the model-driven definition. The usability of the
language editor is one of the key factors for the success of
any DSL. There are two editing approaches implemented in
the language workbenches: the parser-based editing and the
projectional editing (i.e. parser-less editing). Table III classifies
the workbenches according to the above editing approaches.

A. Parser-based Editing

Parser-based editing depends on a parser that translates a
textual code into an AST. Users interact with the concrete
syntax by entering a sequence of characters into a text buffer.
The parser then matches this sequence with the language
grammar to construct the abstract syntax tree (AST) of the
program. This editing approach is the main approach that
are applied in the grammar-driven workbenches. The parser
is automatically generated after the grammar of the DSL is
defined by the language developer. The generated parser is
utilized to build the final editor of the DSL. Most of the parser-
based workbenches generate the editor as an Eclipse plugin
based on the generated parser. Consequently, The parser-based
editors support textual DSLs only. Ensō is an exceptional
case, it is a grammar-driven workbench that supports graphical
notations since it depends on the object grammar that defines
the bidirectional mapping between the text and the object graph
(Section IV-A).

Spoofax and SugarJ use SDF for the grammar definition,
SDF generates scannerless generalized LR parser [38]. Spoofax
also has a configuration DSL called Editor SerVice (ESV) to
configure the editor services. Silver has a parser and context-
aware scanner generator called Copper. LISA tool generates a

source code of the scanner, parser, interpreter, and compiler in
Java. Silver and LISA do not support editor generation. Xtext
and MontiCore workbenches also generate a parser based on
the given grammar. In addition, they generate an Eclipse plugin
as a textual editor for the language. Neverlang has a modular
LR parser generator called DEXTER but it does not support
editor generation.

B. Projectional Editing

Projectional editing is an editing approach that depends on
the abstract representation as the main source of information. It
is also called parser-less editing since no parsing is needed to
build the AST. Unlike parser-based editing, projectional editing
allows the user to directly build and edit the AST. No need for
transformation from the concrete syntax to the abstract syntax.
Instead, the projection process generates a visual representation
from the AST. This representation could be textual, graphical,
or tabular. The workbenches that apply this approach are
called projectional workbenches, they follow the model-driven
approach for the language structure definition. One of the
main advantages of the projectional editing is the ability to
represent the same abstract representation with different visual
representations according to the user’s need.

As in the language structure aspect, new meta-languages
are defined for projecting the abstract representation to the
end user and defining the editor services like coloring and
error marking. MPS, Whole Platform, Intentional Software,
and Mas are examples for projectional language workbenches.
MPS has a DSL for creating the projectional editors called
Editor Language. It defines the editor as a set of cells [39],
[40], each cell can contain a static symbol or a user defined
symbol. These cells allow the language developer to define
different types of notations for the DSL (i.e. textual, tabular,
symbols, or graphical) since they reflect the AST directly
without parsing.

Whole Platform has a Model-Based Editing (Mbed) frame-
work that provides the Editors DSL. It is a DSL that allows the
user to create editors based on the language structure defined
by Models DSL. Mbed is implemented based on the Eclipse
Graphical Editing Framework1 (GEF). Whole Plateform edi-
tors are generated as an Eclipse plugin.

Intentional Software uses the intentional program tree
described in (Section IV-B) to facilitate the textual editing.
This is done by continuous loop of unparsing, editing, and
parsing steps. The unparsing step transforms the tree to a
sequence of tokens, each token is a sequence of characters or

1http://www.eclipse.org/gef

www.ijacsa.thesai.org 628 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 11, 2019

an extended formate (e.x. image). The token also holds other
information like formating information and author information.
The generated token sequence is the textual representation
of the given tree (i.e. program). The user can edit the token
sequence by adding new tokens or deleting existing ones. Then,
the updated sequence is parsed to generate an updated tree. The
final step is to unparse the updated part of the tree to derive
tokens that will be displayed through the editor. The main goal
of this method is to keep the advantage of the model-driven
approach while simulating the normal textual editors behavior.

C. Language Notations

This section discusses the types of notations that could be
supported by the DSL editors. A DSL could include textual,
tabular, symbols, and graphical notations. It could be restricted
to only one type or it can mix different types of notations. The
types of notations supported by the editor is totally dependent
on the used editing approach. Table III lists the notations types
supported by different workbenches.

Parser-based workbenches (Spoofax, Neverlang, Monti-
Core, LISA, Silver, SugarJ, and Xtext) support textual notations
only since they are based on parser-based editing. However,
Ensō supports graphical notations since it depends on the
object grammar that include bidirectional mapping between the
text and the object graph. MetaEdit+ is the only workbench
that does not support textual notations, it supports graphical,
symbol, and tabular notations only. Projectional workbenches
simplify the integration among different types of notations
since they are parser-less. Consequently, MPS, Mas, and Whole
Platform support mixing among different notations in the same
DSL.

D. Projectional Editing vs. Parser-based Editing

Table IV lists a comparison between the projectional edit-
ing and the normal parser-based editing. Language modular-
ity, notational freedom, and program representation flexibility
could be achieved easily by projectional editing while it
more difficult to be implemented using parser-based editing.
Projectional editing is still not compatible with many systems
in the current infrastructure like source control systems. One of
main advantages of the normal parser-based editing over the
projectional one is avoiding the tool lock-in, the user is not
limited to specific editors with specific versions. The user can
open the code and edit it with any textual editor. Additionally,
the code is always open even it contains incomplete or wrong
syntax. Finally, the usability of the textual parser-based editors
overcomes the usability of the projectional ones. The main
reason for this situation is that the user works directly with
the program tree in the projectional editors rather than the
character sequence in the parser-based editors. Consequently,
a special handling should be done for deletion, insertion, and
copy/past actions done by the user which is not the case for
the parser-based editors.

VI. LANGUAGE SEMANTICS ASPECT

With the structure and the editor aspects, the language
developer defines the structure of the DSL and how to edit
this structure. In the language semantics aspect, the language
developer defines how the program, written in the given

TABLE IV. PARSER-BASED EDITING VS PROJECTIONAL EDITING

Criteria Parser-based
Editing

Projectional Editing

Editor Usability Normal text edi-
tors

Specialized editors

Language Modu-
larity

Done by merging
Grammars (Am-
biguity)

Done by merging ASTs

Notational Free-
dom

Support textual
notations only

Support non-textual notations

Language Evolu-
tion

Code is always
opened

Editors should take special care for
incompatible models

Infrastructure In-
tegration

Can be easily in-
tegrated with cur-
rent tools

Not compatible with many tools
and copy/past from projectional ed-
itor to/from text editor is still an
issue.

Tool Lock-in Any text editor
can work

Users are limited to specific editors
with specific versions.

Program
Representation

Only textual rep-
resentation

Providing several projections

DSL, will be executed. Language semantics describes the
meaning of the language notations. It describes the steps, the
computer should follow, to execute the given program. There
are two ways for defining the semantics of a DSL: translational
semantics and interpretive semantics.

A. Translational Semantics

Translational semantics defines the meaning of the lan-
guage by translating this language into another target language.
The compiler is an example for translational semantics that
describes the semantics of a high level language by translating
it into a low level language. For DSLs, the target language
is often one of the general purpose languages, and the AST
represents the model of the language. Listings 2, 3, 4, and 5
show a sample code that describes the meaning of the MiniIoT
code shown in Fig. 3 using Java language.

Listing 2: MiniIoT Java code generated - Device.java
public class Device {
protected String place;
public String getPlace() {
return place;

}
public void setPlace(String place) {
this.place = place;

}
}

Listing 3: MiniIoT Java code generated - Actuator.java
public class Actuator extends Device {
private String action;
public Actuator(String place, String action)

{

www.ijacsa.thesai.org 629 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 11, 2019

super();
this.place = place;
this.action = action;

}
public String getAction() {
return action;

}
public void setAction(String action) {
this.action = action;

}
}

Listing 4: MiniIoT Java code generated - Sensor.java
public class Sensor extends Device {
private String observation;
public Sensor(String place, String

observation) {
super();
this.place = place;
this.observation = observation;

}
public String getObservation() {
return observation;

}
public void setObservation(String observation

) {
this.observation = observation;

}
}

Listing 5: MiniIoT Java code generated - IoTScript.java
public class IoTScript {
public static void main(String[] args) {
Sensor temperatureSensor = new Sensor("

Temperature", "Building 11");
Actuator alarmActuator = new Actuator("send

Alarm to number 911", "Building 11");
Actuator extinguisherActuator = new Actuator

("open fire extinguisher", "Building 11")
;

}
}

The translation could be implemented by two ways: model
transformation and code generation [41]. The model transfor-
mation (i.e. model-to-model) translates the model of the source
language into the model of target language independently of
the concrete syntax of both languages. The classical approach
for implementing model transformation is to construct the
target AST while traversing the source AST. Xtext and MPS
support this approach. Another approach is to build a relation
between the source AST and the target AST. Then, utilizing
this relation to implement the translation between them [42].
The advantage of this approach is to support bidirectional
mapping between the source and the target ASTs.

The code generation (i.e. Model-to-Text) translates the
model of the source language into the source code of target
language directly. Template languages are used for imple-
menting code generation where the source code of the target

language is embedded as a text within the template language.
Consequently, the tool used for editing template language
is not aware of the target language. Xtext supports code
generation by template languages. By composing the template
language and the target language, the tool becomes aware
of both languages which facilitates the translation definition.
MPS and Spoofax utilize language composition and template
languages to support code generation.

Xtext uses Xtend2 language for code generation and model
transformation. Xtend is a general purpose language very
similar to Java syntax but with less linguistics redundancy.
Xtext supports code generation and model transformation by
generating the target text or the target AST while traversing
the source AST.

MPS also supports code generation and model transforma-
tion. However, the code generation is only used at the end of
the chain where the AST is translated into a GPL code to be
passed into the compiler. This translation is done by textgen
language. MPS supports model transformation by templates
and macros. The template code is an instance of the target
model that defines the actual transformation. These templates
contain a set of macros that are used to define the dependences
between the target model and the source model. Macros also
define queries over the source model that are utilized to build
the target one.

Whole Platform supports code generation by providing a
Java model generation framework that translates the model to
Java compilation units. The framework provides a set of APIs,
that is based on Eclipse platform Java tools3, to allow the
language developer to define the translation from the model
to the Java compilation units. Whole Platform supports model
transformation by a traversal framework that facilitates travers-
ing the source model to implement the translation process to
the target model.

Spoofax has a DSL for program transformation called
Stratego [43]. It utilizes rewrite rules and rewriting strategies
to support code generation and model transformation. The
rewriting strategies contain a set of rewrite rules in a specific
order and conditions. If the right-hand sides of the rewrite rules
are the final text of the target language, then it will preform
a code generation. However, If the right-hand sides are parts
of the model of the target language, then it will preform a
model transformation. SugarJ also uses Stratego for defining
the language’s translational semantics.

B. Interpretive Semantics

Unlike translative semantics, interpretive semantics defines
the meaning of the programs by executing them directly
without translation to another language. The language devel-
oper defines how the different language constructs will be
evaluated (i.e. executed). The semantic actions, defined by the
language developer, are executed while traversing the AST.
The developer of MiniIoT in this case will build an interpreter
that generates an executable code directly, no intermediate Java
code will be generated.

2https://www.eclipse.org/xtend/
3http://www.eclipse.org/jdt/ index.html

www.ijacsa.thesai.org 630 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 11, 2019

Xtend is utilized by Xtext to allow the language developer
to build interpreters for DSLs. MPS utilizes the BaseLanguage,
a Java similar language, to define interpreters. Baselanguage is
defined by MPS itself, so it could be extended to support more
features for building interpreters. The developer uses Xtend
in Xtext or BaseLanguage in MPS to define how the DSL
statements will be executed and how the expressions will be
evaluated. In addition, he defines the changes in the program’s
variables and states.

Whole Platform supports interpretive semantic through its
traversal framework, the language developer utilizes the APIs
provided by this framework to traverse the model and define
the corresponding execution actions. Spoofax and SugarJ fol-
low a different way to build interpreters. It utilizes the rewrite
rules to define the current state of the program and to define
the transformation among different states to reach the final
execution state.

VII. LANGUAGE COMPOSABILITY ASPECT

DSL is a language that is specialized in a specific domain,
while the real life programs may contain more than one
domain. Merging more than one DSL in the same program is
called language composition. Language composability aspect
defines how the new DSL will be composed with other DSLs.
Assuming that the developer of MiniIoT has a new require-
ment for extending MiniIoT to support robots functionalities.
MiniRobot is a ready DSL for robotic application development.
Accordingly, the developer will decide to compose MiniRobot
DSL with MiniIoT DSL to satisfy the new requirements.

Erdweg et al. [12] proposed a theoretical classification
for the different types of language composition. The authors
specify four types of language composition: Language Ex-
tension, Language Unification, Self-Extension, and Extension
composition. These types describe the relations among the
languages that will be composed. The composition process
includes combining the different language aspects: Language
Structure, Language Editor, Language Semantics, and Lan-
guage Validation.

Parser-based workbenches support composability by merg-
ing the grammars of the combined languages. Xtext supports
only language extension. It defines the grammar in a modular
way by the grammar DSL, where the module could extend
another module. The grammar in Xtext only inherits from one
base grammar, consequently it could not support language em-
bedding, extension composition, and language unification. The
limitation of Xtext composability is due to utilizing ANTLR’s
LL(*) algorithm [44]. Alternatively, workbenches that depend
on generalized parsing techniques support different types of
grammar composition.

Spoofax and SugarJ uses SDF and Stratego for composing
different language aspects. SDF applies scannerless general-
ized LR parsing, which enables language unification. Rascal
is another example for workbenches that utilizes generalized
parser. Spoofax, SugarJ, and Rascal support language seman-
tics and validation composition by combining the rewrite rules.

MontiCore supports composability by grammar inheritance
and language embedding. The grammar inheritance enables
language extension without changing the base language. The

extension adds new productions or overrides existing ones.
The language embedding between two grammars is done by
defining external nonterminals that should be filled by the
embedded language.

Neverlang depends on feature orientation and modular
language development to implement language composability. It
proposes a feature oriented composition model that defines the
language’s implementation as a set of components. The model
defines the relations among the components as dependencies.
The dependency is a property that is required by the component
but it is not defined in the same component. The dependency
is represented by a placeholder in the syntax level or by a
semantic property in the semantic level.

Ensō achieves composability by implementing a merge
operator between the two object grammars that define the
combined languages. The merge operator is a union operator
that merges the object graphs of the two languages and
overrides the duplicate objects and attributes by the values
of the second language. This allows the second language to
extend and modify the first one.

Projectional workbenches support composability aspect
easier than parser-based ones, since the composition is based
on the integration between the abstract representations rather
than the grammar rules. MPS supports the idea of modular
language [45]. Modular language is a bridge between large
languages and small languages. It depends on a small core
language and a set of language modules (extensions) come
with its own syntax, editor, and IDE tooling. The composition
in MPS is very similar to object oriented programming.

VIII. DISCUSSION

The survey indicates that the approaches of developing
DSL could be classified into two main classes: Model-based
approaches class and Text-based approaches class. The model-
based approaches represent the language as a meta model and
the program as an instance model of the given meta model. The
meta model is the abstract representation of the language. The
definition of the meta model represents the language structure
aspect. The definition for the process of editing the meta
model represents the language editor aspect. The composition
aspect is achieved by merging the meta models of the given
languages.

On the other hand, the text-based approaches represent the
language as a set of grammar rules and the program as a text
that follows the given rules. The definition of the grammar
rules represents the language structure aspect. The definition
of the parser that translates the text into an abstract syntax tree
represents the language editor aspect. The composition aspect
is achieved by merging the given grammar rules.

The language semantic aspect defines the translation or the
interpretation of the abstract representation to other represen-
tation or executable code. Since the language semantic aspect
depends on the abstract representation, the same techniques are
used in model-based approaches and text-based approaches to
implement this aspect.

The text-based approaches are similar to the approaches
used for developing general purpose languages, accordingly
they are more mature than the model-based approach. In

www.ijacsa.thesai.org 631 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 11, 2019

addition, they are applied by more language workbenches
than model-based approaches. Alternatively, the model-based
approaches are considered as a new direction for implementing
programming languages. They facilitate the implementation of
many language aspects and they provide editing capabilities
more than text-based approach.

IX. CONCLUSION

This paper introduces a survey of the different aspects of
implementing a new DSL. The survey covers structure, editor,
semantics, and composability language aspects. It lists the
approaches used for achieving each aspect and describes how
different workbenches apply this aspect.

The survey concludes that there are no standards for
applying the different DSL implementation aspects. More
research is needed to set standards for DSL implementation.
Additionally, the key aspect of the DSL implementation is the
structure aspect. The technique used in the structure aspect
determines the techniques used in the other aspects. Finally,
no one existing approach facilitates all DSL implementation
aspects.

Future work should consider other aspects like validation
and testing aspects. Further research is needed to cover the
missing workbenches in each aspect. The survey shows that
the projectional editing approach is a very promising approach
that could facilitate the implementation of many aspects.
Accordingly, further studies will be done to address the current
challenges of applying the projectional editing approach.

REFERENCES

[1] R. Lämmel, “A story of a domain-specific language,” in Software
Languages. Springer, 2018, pp. 51–86.

[2] R. B. Kieburtz, L. McKinney, J. M. Bell, J. Hook, A. Kotov, J. Lewis,
D. P. Oliva, T. Sheard, I. Smith, and L. Walton, “A software engineering
experiment in software component generation,” in Proceedings of
the 18th international conference on Software engineering. IEEE
Computer Society, 1996, pp. 542–552.

[3] S. Kelly and J.-P. Tolvanen, “Visual domain-specific modelling: Benefits
and experiences of using metacase tools,” in International Workshop on
Model Engineering, at ECOOP, vol. 2000. Citeseer, 2000, pp. 1–9.

[4] A. N. Johanson and W. Hasselbring, “Effectiveness and efficiency of
a domain-specific language for high-performance marine ecosystem
simulation: a controlled experiment,” Empirical Software Engineering,
vol. 22, no. 4, pp. 2206–2236, 2017.

[5] T. Kosar, M. Mernik, and J. C. Carver, “Program comprehension of
domain-specific and general-purpose languages: comparison using a
family of experiments,” Empirical software engineering, vol. 17, no. 3,
pp. 276–304, 2012.

[6] T. Kosar, S. Gaberc, J. C. Carver, and M. Mernik, “Program compre-
hension of domain-specific and general-purpose languages: replication
of a family of experiments using integrated development environments,”
Empirical Software Engineering, vol. 23, no. 5, pp. 2734–2763, 2018.

[7] M. Fowler, “Language workbenches: The killer-app for domain specific
languages,” 2005.

[8] A. Van Deursen, P. Klint, and J. Visser, “Domain-specific languages:
An annotated bibliography,” ACM Sigplan Notices, vol. 35, no. 6, pp.
26–36, 2000.

[9] T. Kosar, P. E. Martı, P. A. Barrientos, M. Mernik et al., “A prelim-
inary study on various implementation approaches of domain-specific
language,” Information and software technology, vol. 50, no. 5, pp.
390–405, 2008.

[10] N. Vasudevan and L. Tratt, “Comparative study of dsl tools,” Electronic
Notes in Theoretical Computer Science, vol. 264, no. 5, pp. 103–121,
2011.

[11] N. Oliveira, M. J. Pereira, P. Henriques, and D. Cruz, “Domain specific
languages: A theoretical survey,” INForum’09-Simpósio de Informática,
2009.

[12] S. Erdweg, P. G. Giarrusso, and T. Rendel, “Language composition
untangled,” in Proceedings of the Twelfth Workshop on Language
Descriptions, Tools, and Applications. ACM, 2012, p. 7.

[13] L. M. do Nascimento, D. L. Viana, P. A. S. Neto, D. A. Martins, V. C.
Garcia, and S. R. Meira, “A systematic mapping study on domain-
specific languages,” in Proceedings of the 7th International Conference
on Software Engineering Advances (ICSEA’12), 2012, pp. 179–187.

[14] S. Erdweg, T. Van Der Storm, M. Völter, M. Boersma, R. Bosman,
W. R. Cook, A. Gerritsen, A. Hulshout, S. Kelly, A. Loh et al., “The
state of the art in language workbenches,” in International Conference
on Software Language Engineering. Springer, 2013, pp. 197–217.

[15] S. Erdweg, T. Van Der Storm, M. Völter, L. Tratt, R. Bosman, W. R.
Cook, A. Gerritsen, A. Hulshout, S. Kelly, A. Loh et al., “Evaluating
and comparing language workbenches: Existing results and benchmarks
for the future,” Computer Languages, Systems & Structures, vol. 44, pp.
24–47, 2015.

[16] T. Kosar, S. Bohra, and M. Mernik, “Domain-specific languages:
A systematic mapping study,” Information and Software Technology,
vol. 71, pp. 77–91, 2016.

[17] M. Mernik, “Domain-specific languages: A systematic mapping study,”
in International Conference on Current Trends in Theory and Practice
of Informatics. Springer, 2017, pp. 464–472.

[18] M. Mernik, J. Heering, and A. M. Sloane, “When and how to develop
domain-specific languages,” ACM computing surveys (CSUR), vol. 37,
no. 4, pp. 316–344, 2005.

[19] J. Thanhofer-Pilisch, A. Lang, M. Vierhauser, and R. Rabiser, “A
systematic mapping study on dsl evolution,” in 2017 43rd Euromi-
cro Conference on Software Engineering and Advanced Applications
(SEAA). IEEE, 2017, pp. 149–156.

[20] E. Van Wyk, D. Bodin, J. Gao, and L. Krishnan, “Silver: An extensible
attribute grammar system,” Science of Computer Programming, vol. 75,
no. 1, pp. 39–54, 2010.

[21] M. Mernik, M. Lenič, E. Avdičaušević, and V. Žumer, “Lisa: An
interactive environment for programming language development,” in
International Conference on Compiler Construction. Springer, 2002,
pp. 1–4.

[22] J. Heering, P. R. H. Hendriks, P. Klint, and J. Rekers, “The syntax
definition formalism sdf—reference manual—,” ACM Sigplan Notices,
vol. 24, no. 11, pp. 43–75, 1989.

[23] L. C. Kats and E. Visser, The spoofax language workbench: rules for
declarative specification of languages and IDEs. ACM, 2010, vol. 45,
no. 10.

[24] S. Erdweg, T. Rendel, C. Kästner, and K. Ostermann, “Sugarj: library-
based syntactic language extensibility,” in ACM SIGPLAN Notices,
vol. 46, no. 10. ACM, 2011, pp. 391–406.

[25] M. Eysholdt and H. Behrens, “Xtext: implement your language faster
than the quick and dirty way,” in Proceedings of the ACM interna-
tional conference companion on Object oriented programming systems
languages and applications companion. ACM, 2010, pp. 307–309.

[26] P. Klint, T. Van Der Storm, and J. Vinju, “Easy meta-programming
with rascal,” in International Summer School on Generative and Trans-
formational Techniques in Software Engineering. Springer, 2009, pp.
222–289.

[27] W. Cazzola and E. Vacchi, “Neverlang 2–componentised language
development for the jvm,” in International Conference on Software
Composition. Springer, 2013, pp. 17–32.

[28] E. Vacchi and W. Cazzola, “Neverlang: A framework for feature-
oriented language development,” Computer Languages, Systems &
Structures, vol. 43, pp. 1–40, 2015.

[29] H. Krahn, B. Rumpe, and S. Völkel, “Monticore: a framework for
compositional development of domain specific languages,” International
journal on software tools for technology transfer, vol. 12, no. 5, pp.
353–372, 2010.

[30] A. Butting, R. Eikermann, O. Kautz, B. Rumpe, and A. Wortmann,
“Systematic composition of independent language features,” Journal of
Systems and Software, vol. 152, pp. 50–69, 2019.

www.ijacsa.thesai.org 632 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 11, 2019

[31] T. van Der Storm, W. R. Cook, and A. Loh, “Object grammars,” in
International Conference on Software Language Engineering. Springer,
2012, pp. 4–23.

[32] T. Van Der Storm, W. R. Cook, and A. Loh, “The design and implemen-
tation of object grammars,” Science of Computer Programming, vol. 96,
pp. 460–487, 2014.

[33] M. Voelter and V. Pech, “Language modularity with the mps language
workbench,” in 2012 34th International Conference on Software Engi-
neering (ICSE). IEEE, 2012, pp. 1449–1450.

[34] R. Solmi, “Whole platform,” Ph.D. dissertation, PhD thesis, University
of Bologna, 2005.

[35] C. Simonyi, M. Christerson, and S. Clifford, “Intentional software,” in
ACM SIGPLAN Notices, vol. 41, no. 10. ACM, 2006, pp. 451–464.

[36] D. Waggoner, M. A. Jensenworth, P. Kwiatkowski, and C. Simonyi,
“System and method for combining text editing and tree encoding for
computer programs,” Jun. 13 2017, uS Patent 9,678,724.

[37] S. Kelly, K. Lyytinen, and M. Rossi, “Metaedit+ a fully configurable
multi-user and multi-tool case and came environment,” in International
Conference on Advanced Information Systems Engineering. Springer,
1996, pp. 1–21.

[38] E. Visser et al., Scannerless generalized-LR parsing. Universiteit van
Amsterdam. Programming Research Group, 1997.

[39] M. Voelter, J. Siegmund, T. Berger, and B. Kolb, “Towards user-friendly
projectional editors,” in International Conference on Software Language
Engineering. Springer, 2014, pp. 41–61.

[40] F. Steimann, M. Frenkel, and M. Völter, “Robust projectional editing,”
in Proceedings of the 10th ACM SIGPLAN International Conference on
Software Language Engineering. ACM, 2017, pp. 79–90.

[41] M. Völter, S. Benz, C. Dietrich, B. Engelmann, M. Helander, L. C. Kats,
E. Visser, and G. Wachsmuth, “Dsl engineering-designing, implement-
ing and using domain-specific languages (2013),” URL: http://voelter.
de/dslbook/markusvoelter-dslengineering-1.0. pdf, http://dslbook. org,
2013.

[42] OMG, “Mof 2.0 query/view/transformation (qvt) adopted specification.”
2005, oMG document ptc/05-11-01.

[43] M. Bravenboer, K. T. Kalleberg, R. Vermaas, and E. Visser, “Stratego/xt
0.17. a language and toolset for program transformation,” Science of
computer programming, vol. 72, no. 1-2, pp. 52–70, 2008.

[44] T. J. Parr and R. W. Quong, “Antlr: A predicated-ll (k) parser generator,”
Software: Practice and Experience, vol. 25, no. 7, pp. 789–810, 1995.

[45] M. Voelter and K. Solomatov, “Language modularization and compo-
sition with projectional language workbenches illustrated with mps,”
Software Language Engineering, SLE, vol. 16, no. 3, 2010.

www.ijacsa.thesai.org 633 | P a g e

