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Abstract—This paper proposes an automatic policy selection
method using spreading activation theory based on psychological
theory for transfer learning in reinforcement learning. Intel-
ligent robot systems have recently been studied for practical
applications such as home robot, communication robot, and
warehouse robot. Learning algorithms are key to building useful
robot systems important. For example, a robot can explore for
optimal policy with trial and error using reinforcement learning.
Moreover, transfer learning enables reuse of prior policy and
is effective for environment adaptability. However, humans de-
termine applicable methods in transfer learning. Policy selection
method has been proposed for transfer learning in reinforcement
learning using spreading activation model proposed in cognitive
psychology. In this paper, novel activation function and spreading
sequence is discussed for spreading policy selection method. Fur-
ther computer simulations are used to examine the effectiveness of
the proposed method for automatic policy selection in simplified
shortest-path problem.

Keywords—Reinforcement learning; transfer learning; spread-
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I. INTRODUCTION

Intelligent robot systems are increasingly being developed
to solve practical problems. For example, house cleaning, con-
veyance systems in warehouses, and agricultural systems [1]–
[3]. Particularly, reinforcement learning framework is widely
discussed in applications of machine learning such as deep
Q-network [4], [5]. Reinforcement learning can be explored
for optimal policy selection alternate to trial–and–error. This
learning algorithm is used with other functions as framework
in real world application. Traditional reinforcement learning
techniques have long learning time; a disadvantage for imple-
mentation in robot systems. To address this problem, transfer
learning is proposed for reinforcement learning [7], [8]. The
concept of ç has appeared in psychology and education [9].
Transfer learning theory allows the application of a prior
knowledge to another similar task. In reinforcement learning,
a learning agent is used to draw and transfer policies from
previous tasks (source task) to current tasks (target task)
[7]. Advantages of transfer learning in reinforcement learning
include [7], [8]:

• Fast adaptation to environments (Jump start).

• Learning faster than reinforcement learning (Time to
threshold).

• Exploring more effective performances (Asymptotic
performance).

The descriptions in parenthesis are the original represen-
tation of improvement in performance in transfer learning.
In applications of transfer learning of reinforcement learning
with pairs, source task and target task, the transfer schemes is
called sequential transfer learning [10]. In sequential transfer
learning, reusing policy is selected by humans as supervisors
[11]–[13]. Parallel transfer learning [10] and multi-task and
mutl-robot transfer [14] are proposed alternative approaches.
They adopt multiple policy to improve performance of learning
agents in target task. A typical disadvantage is if an agent
includes an unprofitable policy. Fernández et al. and Takano
et al. in [15]–[18] proposed some policy selection approach.
Other related approaches are available in [19]–[21] Here, a
learning agent selects a policy from stored multiple policies.
Optimal policies are then selected for specific tasks. However,
previous policy selection methods have high computational
cost if an agent decides to reuse policy from sets of policies
such as database.

For humans, many concepts are memorized using a
schematic representation as network structure in brain. Spread-
ing activation theory is regarded as realizing cognitive economy
in cognitive process of humans [22]. Quillian in [23], [24]
thoroughly discusses spreading activation theory. An example
of semantic network structure for human memory is shown
in Fig. 1. Each concept (e.g. red, orange, yellow, and green
) is connected using paths with semantic distance. That is,
connected concepts are related in semantic. In spreading ac-
tivation theory, each concept has an activation value that can
be activated or deactivated by external stimuli such as visual
information. If activation value increases beyond the threshold
value, the concept remain in human brain. This phenomena
is called recall. Activated values spread to related concepts
that are connected via paths of semantic distance. If a related
concepts’ activation value exceed threshold value, they get
recalled.

Spreading activation model is an autonomous distributed
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Fig. 1. A schematic representation of network structure including concepts.
It is adapted from reference [22].

type. Many existing approaches have centralized decision
system architecture. Thus, spreading activation model based on
policy selection method is proposed in this study. Stored poli-
cies are connected to other policies in the network structure.
The network paths denote the semantic distance of spread-
ing activation model. All policies have values equal to the
activation value. Concrete functions such as activate function,
and spreading function are not formulated in psychological
domain. Gaines et al. proposed SAN-RL learning algorithm
that learns the structure of spreading activation network by
reinforcement learning [25]. His study does not consider
selecting and leveraging of policies. This study proposes some
necessary functions for implementation in a policy selection
method based on spreading activation model. From computer
simulations, the proposed method for reinforcement learning
enables selection of effective policies for task by a learning
agent.

The rest of this paper is organized as follows. Section 2
gives an overview of learning algorithms such as reinforcement
learning and transfer learning and spreading activation mode in
cognitive psychology. Section 3 discusses spreading activation
policy network and selection algorithm for transfer learning in
reinforcement learning. Section 4 presents the computer simu-
lation experiments and results. Section 5 presents concluding
remarks.

II. PREVIOUS WORKS

A. Probabilistic Policy Reuse

Fernández et al. proposed a policy selection method us-
ing probabilities in [15], [16]. In this method called PRQ-
learning, the reusing policy is decided based on Boltzmann
distribution selection method (Eqn. (1)) from policy library
L = {Π1,Π2, · · · ,Πn},

P (Πi) =
eτWj∑n
p=0 e

τWp
, ∀Πj , 0 ≤ j ≤ n. (1)

where τ is a temperature parameter. The expected average
reinforcement per episode, W , as defined by

W =
1

K

K∑
k=0

H∑
h=0

γhrk,h, (2)

where γ, ( 0 ≤ γ ≤ 1 ), denotes reducing value for future
rewards, and rk,h represents immediate reward obtained in

step h of the episode k in a total episodes K. Reusing policy
decided using the above method enables an agent to reuse
policy with the following π–reuse strategy.

a =

{
Πpast(s) w/prob.ψ
ε− greedy(Πnew(s)) w/prob.(1− ψ)

. (3)

Here past policy is reused with probability ψ and new
policy is exploited with probability 1− ψ.

PRQ-learning has remarkable success in computer simu-
lation with navigation task based on grid world and keeps
away soccer task . It adjusts policy selection based on ex-
pected rewards, and adjusts balance between policy reuse
and exploring new policies. PRQ-learning does not consider
environmental information where the agent act. In robotics
applications, observable information are rich because aside
reward information, they contain obstacle information from
agent, environmental shape and color . Takano et al. noted
that if a policy is selected; unnecessary actions are increased
to select policy [18].

B. Transfer Learning with Forbidden Rule Set

Takano et al. proposed a policy selection method different
from probabilistic policy reuse. It’s selection is based on
forbidden rules that pair with policy in policy library [17], [18].
Before policy selection, the agent records forbidden action and
state information to the database as forbidden rules set F as a
source task. If the agent executes a forbidden action, state and
action pair (s, a) are added to F . After building database, the
agent selects a policy using a step-by-step selection action in
target task.

This approach is applicable in maze exploration simulation
to prevent negative transfer until new learning in target task.
It considers small maze environment between source task and
target task. This method depends on forbidden rule generated
in source task, and cannot modify the selection rule. In broad
and dynamic environments, the selection frequency or the
selection probability is desired to change flexibly.

III. LEARNING ALGORITHMS AND PSYCHOLOGICAL
THEORY

A. Reinforcement Learning

Reinforcement learning (RL) is a method of machine
learning [4].RL agent explores for optimal solution via trial–
and–error and creates its own policies. Thus, RL does not need
training data sets unlike supervised learning. Many types of RL
algorithms have been developed in decades. In this study, Q-
learning is adopted as the learning algorithm [6]. Q-learning
is defined by

Q(s, a)← Q(s, a) + α{r + γmax
a′∈A

Q(s′, a′)−Q(s, a)}, (4)

where s, s′ ∈ S are state of environments in state space S,
a ∈ A is the action of agent in action space A, α is learning
rate (0 < α ≤ 1), γ is discount rate (0 < γ ≤ 1), and r
denotes reward. Q(s, a) called Q-table contains all state of
environment and each action value pair.
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In this study, Boltzmann distribution is adopted as action
selection function. The action selection probability adapted
from Boltzmann distribution is given by

P (a|s) =
exp{Q(s, a)/T}∑

b∈A

exp{Q(s, b)/T}
, (5)

where T is a parameter that determines the randomness of the
action selection.

B. Transfer Learning

Transfer learning is a method that reuses prior knowledge
in human brain. This concept has been applied in machine
learning domain for decades. Transfer method is proposed for
reinforcement learning [7]. Transfer policy is given by

Qc(s, a)← Qt(s, a) +Qs(s, a), (6)

were, Qc(s, a) is current policy including reusing policy.
Qt(s, a) is a policy in target task and Qs(s, a) is reusing policy
from source task. However, Qc(s, a) has high probability of
over fitting if Eq. (6) is used in the target task. To reduce
the value of action in Qc(s, a), transfer rate is proposed to
prevent over fitting [26]. Transfer rate similar parameter ζ is
proposed by Takano [18]. ζ is analogously used to adjust value
of reusing policy, and Kono et al. leveraging ζ ( denoted by τ
in his paper) to prevent over fitting. Transfer method including
transfer rate τ (0 < τ ≤ 1) is

Qc(s, a)← Qt(s, a) + τQs(s, a). (7)

In this study, Eq. (7) is adopted for implementation of
transfer learning.

In using transfer learning for heterogeneous agents, Tay-
lor et al. proposed mapping function, χ(·), called inter-task
mapping (ITM) between source task agent and target task
agent. ITM presents the correspondence of state-space and
action-space between source task and target task. In this study,
homogeneous agents are assumed in source task and target
task. Therefore, ITM χ(·) is not needed for transfer learning.

In the transfer learning, if the agent obtains good effect
through reusing policy, it is called positive transfer. In contrast,
if the agent encounters the bad situation, this situation is called
negative transfer in general.

C. Spreading Activation Model

Spreading activation model is proposed in cognitive psy-
chology as a recall of concept in human brain [22]. In Fig. 1,
if concepts “red” is recalled, the activation value of proximate
concepts (e.g.“orange”, “fire” and “Cherries”) increase based
on activation value of “red”. This is spreading of activation
value. If activation value is beyond the threshold value, the
proximate concepts are recalled simultaneously. Activated con-
cept’s activation value can spread to neighboring concepts
during the spreading activation process.

TABLE I. VARIABLE DECLARATION IN PROPOSED METHOD

Character Description

πi a policy
Π Set of policies
Ai Activated value in πi

Aa Activation coefficient
Πc Set of candidate policies for selection
Ta Threshold for activation of policy
Tr Threshold for recall

∆Ai Decaying value for Ai

wij Weight in SAP–net between πi and πj

wp Adjustment value for wij with positive transfer
wn Adjustment value for wij with negative transfer

IV. PROPOSED METHOD

This section discuss the proposed method. Relevant param-
eters of the method is defined in Table I. The subsections in se-
quel explain necessary functions used in the proposed method.
We commence with descriptions of preliminary functions. We
assume that the agent has policies and policy network structure
in initial state, and all policies have variable activated values.

1) The agent observes environmental information
through sensors.

2) Extracted features form observed environmental in-
formation.

3) Corresponding policies are activated based on
matches between extracted features and policies’
label that are labeled using learned environmental
information.

4) Activated value is spread to nearby policies from
activated policy in this time.

5) Candidate policies are gathered using threshold value.
6) Selection of recall policies based on probabilistic

function.
7) Transferring policy (This part is transfer learning).
8) Selecting action and learning (This part is reinforce-

ment learning).
9) Evaluation of policy reuse effectiveness.

10) Adjusting of weights in policy network structure.
11) Back to process of 1).

From above, simplified system architecture of proposed
method with reinforcement learning is shown in Fig. 2.

A. Spreading Activation Policy Network

To select the policy selection method in transfer learning
through reinforcement learning method, spreading activation
mode is adopted. Spreading Activation Policy Network (SAP–
net) is a policy selection method of transfer learning in
reinforcement learning. This was proposed by Takakuwa et al.
in [27]. We propose effective functions based on Takakuwa et
al.

In the initialization, obtained policy πi is included in policy
set Π as an undirected graph G is defined by G = {V,E}
where E denotes the set of edges between policies. SAP–net
is defined as the adjacency matrix A given by G and the set
of weights W , that is, A = (G,W ).
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Fig. 2. Simplified system architecture of proposed method. This figure
represents standard reinforcement learning concept overview with procedure

of spreading activation for policy selection.

Fig. 3. Example of SAP–net. As default, all nodes are connected with full
mesh. All path wij are assigned weight values and all πk have activation

value Ak .

A =


π1 π2 π3 π4 π5

π1 0 w12 0 w14 w15

π2 w12 0 w23 w24 w25

π3 0 w23 0 0 w35

π4 w14 w24 0 0 0
π5 w15 w25 w35 0 0

 (8)

is example adjacency matrix associated with Fig. (3) with
wij ∈W and wij ≥ 1. Note that large wij values indicate long
paths. Initial state G is a full mesh network and behavior of
graph depend on the weights wij . Extremely large wij indicate
that path is disconnected asymptotically.

All policies have activated value A. Therefore, node vi ∈ V
of graph is configurated as (πi,Ai). As the default Ai = 0.

B. Activation Function

In match of a feature paired with corresponding policy,
activated value Ai is updated by feature comparison function
C(·, ·) between feature of observed environmental information

Fig. 4. Simplified illustration of spreading of activated value from πi to πj .
In this situation, πi is activated and outputs the activation value. πj receives

activated value ηi that is reduced by wij .

s and feature of policy that is environmental feature when the
policy is obtained. Activation function is defined by

Ai =

{
Ai +Aa (C(s, sπi

) ≥ Ta)

Ai (Otherwise)
, (9)

where Aa is activation coefficient value, C(s, sπi
) is a function

of extracted features similarity between s and sπi
, and sπi

is
environmental feature when the policy πi is obtained by the
agent.

C. Spreading Function

Each policy included in SAP–net can spread the activated
value to neighboring policies. A simplified spreading is de-
picted in Fig. 4. If policy πi has activated value Ai, it spreads
to neighbor πj as propagating activated value ηi.

ηi =
1

N
Aie−wij . (10)

Here, N is number of output path of policy πi. Therefore,
policy πi outputs same activated value calculated from Eq.
(10). Policy πj receives more than one activated value from
neighboring policies as shown in Fig. 4. The total activated
value received by πj is given by

Aj ← Aj +

n∑
k=1

ηk. (11)

For example, if two spreading target are exit in the activa-
tion scene like Fig. 5, each spread activation value is calculated
by Eq. (10). Policies πj and πk spread values to each other
after spreading activation of πi. Policy πj received spread
value ηl from πk, and πk received spread value ηm from πj .
Spreading direction and spreading activation value are decided
by following equation.

ηl =

{
Mη (Mη > 0)

0 (Otherwise)
, (12)

Mη =
1

N − 1
Ake−wjk − 1

N − 1
Aje−wjk . (13)

Here, Mη is deference of propagating activation value from
πj and πk. In calculating propagating activation value, N is
changed to N − 1 because a node as policy is prohibited to
use receiving path (e.g. ηj and ηk) for output path.
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Fig. 5. Situation of multiple spreading of activation value. In this case πj
and πk are affected to each other in same time. As a calculation result,

activation value is propagated to either one like Eq. (13).

Note that, if SAP–net is contained with multiple nodes, and
activation and spreading are emerged simultaneously, SAP–net
will behave as the system, like a many-body problem. This
SAP–net is set to sequential spreading of activation as a basic
setting.

D. Threshold for Recall

Before selecting a reusing policy, candidate policy πi
is extracted with activation value Ai. To create the set of
candidate policies Πc, πi is filtered by following threshold
function T(·) using Ai.

T(πi) =

{
πi ∈ Πc (Ai > Tr)

πi 6∈ Πc (Ai 6 Tr)
, (14)

where, Πc is the set of candidate policies, and Tr is the thresh-
old value. For the implementation, πi is gives the optional
value Aci .

E. Policy Selection

We forbid the recall of multiple policy in same time.
Therefore, a policy is selected by the following function.
Reusing policies are selected from candidate policies Πc. A
reusing policy is decided by soft-max like function defined by

S(πi) =
expAi∑

πj∈Πc

expAj
. (15)

Reusing policy is decided in arbitrary timing. In further
works, we will seek to reuse multiple policy in same time and
their assimilation.

F. Decaying Process

Activated values decay in each time step. It synchronizes
with time or actions. This mechanism is inspired by human
oblivion phenomenon. Decay process is implemented for pro-
posed method to re-flesh the state of SAP–net in long time
learning.

In this study, decay value is calculated using

∆Ai =

{
0 (Ai = 0)

d (Ai > 0)
, (16)

where ∆Ai is the decaying value for the activated value Ai in
πi, and d is the value of decay constant. This decaying value
is used in the following equation to decrease present activated
value Ai

Ai = Ai −∆Ai. (17)

G. Activation Evaluation

Until an action by the agent, proposed method evaluates
the effectiveness of selected policy reuse. If the agent observes
positive transfer (PT) effect, weight in SAP–net is adjusted to
small between previous used policy and current reuse policy.
Thus, the network path’s length becomes short in SAP–net. In
case of negative transfer (NT), the weight is also adjusted to
big value. Thus, the network path’s length becomes long.

In this study, weights wij are adjusted in each action.
Adjustment function is defined by.

wij =

{
wij − wp if PT is emarged
wij + wn if NT is emarged

, (18)

where wij is weight of connection between current reusing
policy πi and previous reused policyπj . Weight wij needs to
be controlled using wij < 1 if positive transfer.

Activated policy’s activated value is evaluated by action
result. If negative transfer is emerged such as the agent collide
obstacles based on action with selected policy, activated value
gives penalty value. This function is defined by

Ai =

{
Ai −Ap (NT is emerged)

Ai (Otherwise)
. (19)

V. COMPUTER SIMULATION

A. Conditions

This experiment aims to confirm the emerging effect of
transfer using the proposed method. To evaluate proposed
method SAP–net, shortest path problem is adopted in this
paper as the basic evaluation with single agent and learned
multiple policies. Learning environment is set as Fig. 6 in
computer simulation. In Fig. 6, if the agent achieved the goal,
the agent can obtain reward from environment. Agent can
observe self-localization and around environment such as wall
or street with range defined by FOV (field of view) of agent.
Reinforcement learning parameter is set as Table II. Positive
reward is given to the agent if achieves goal position. Negative
reward is given if the agent conflicts to the obstacle per every
step, this situation means negative transfer in Eq. (18) and Eq.
(19).

The agent has 100 policies that are learned as a source
task, for random start and goal positions. When the agent is in
a target task environment (Fig. 6), selecting policies include
helpful and useless policies for transfer. Helpful policies refer
to policies that can be contributed to solve shortest path in
target task environment. In contrast, useless policies refer to
those policies that are not related to solve the shortest path;
these policies have the probability for emerging as negative
transfers to use useless policies. Examples of helpful and
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Fig. 6. Experimental environment in computer simulation. An environment
includes an agent and a goal. The agent can observe self-localization and

around environmental situation such as wall or street.

TABLE II. SET VALUES OF PARAMETERS FOR REINFORCEMENT
LEARNING AND PROPOSED METHOD

Parameter Source task Target task

Learning rate α 0.9 0.9
Discount rate γ 0.1 0.1
Positive reward r+ 1.0 1.0
Negative reward r− 0.0 -1.0
Boltzmann parameter T 0.01 0.01
Number of episodes 400 200
Number of trial – 10

useless policies are shown in Fig. 7 and Fig. 8, respectively.
The environmental shape of helpful policies are the same as the
target task environment. In contrast, the environment of useless
policies are different compared with target task environment.
In this experiment, some shape of an environment is used in
source tasks.

As default SAP–net configuration, all weights wij are five,
all activation values Ai are zero. The network structure of
the SAP–net is also set as a full mesh. The parameters of
SAP–net are set as Table III. In this experiment, environmental
information can be described with a discrete state, the feature
comparison function C(s, sπi

) helps determine whether the
information is “matched” or not. Therefore, Ta needs not be
adjusted in this experiment; the policy is activated only if there
is a perfect matched between the current state s and the state
sπi , which is observed when the policy πi is learned.

B. Evaluation Factors

This experiment adopted the two types of basic evaluation
factors. 1st is “learning” curve and area of learning curve,
which is called “transfer ratio”. The others are three main ob-
jectives in transfer such as “jumpstart improvement”, “learning

Fig. 7. Example of helpful policies for policy selection. Each learned path is
included to the shortest path of the target task.

Fig. 8. Example of useless policies. The shape of the environment and path
are slightly different.

TABLE III. PARAMETERS SETTING FOR SAP–NET FOR THE
EXPERIMENTAL SETUP

Variable value

Default activation value Ai 0.0
Activation coefficient Aa 1.0
Threshold for activation of policy Ta Perfect match
Threshold for recall Tr 0.6
Decaying value ∆Ai -0.001
Default weight between policies wij 5
Adjustment value of wij when PT -0.5
Adjustment value of wij when NT 2.5

speed improvement”, and “asymptotic improvement”. Learn-
ing speed, asymptotic, and jumpstart improvement are pro-
posed by Langlay in 2006 that are described in Lazaric’s paper
[8].

1) Learning curve: The learning curve is the most basic
evaluation method among learning procedures. Reinforcement
learning can also use the learning curve to evaluate the
performance of the learning process (Fig. 9). The vertical axis
of the learning curve denotes the performance of the learning
agent, and the number of actions and problem solving time
serve as its performance. The horizontal axis of the learning
curve is time steps.

If the environment is defined as a Markov decision process
(MDP), the learning curve is converged to optimum solution,
which means that the fast problem-solving time, shortest
path route, and so on. The converged learning curve aids
understanding performance transition intuitively by humans.
In a non-MDP environment such as a dynamic environment,
learning curve is not converged; however, the shape of curve
is emerged propensity for convergence with some fluctuations.

2) Jump start: Jump start is the difference between the
value of the performance obtained with transfer and that
without (Fig. 10). Normally, the learning curve of the initial
state has some fluctuations; therefore, in this experiment, jump
start value Js is formulated as follow:
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Fig. 9. Example of learning curve. This curve is not converged to optimal
solution because this result is obtained by non-MDP environment

experiment. However, an observer can read the increasing performance of
the agent using this learning curve with every time step.

Fig. 10. Simplified example of the jump start that emerged in the learning
curve. The blue curve explains the performance transition without transfer,

which is the learning curve of reinforcement learning. The red curve denotes
performance transition with transfer.

Js =
1

n

(
n∑
i=1

Lt(i)−
n∑
i=1

Lwt(i)

)
(20)

Here, i is episode number of learning simulation. Lt(t) is
learning curve in transfer, and Lwt(t) is learning curve without
transfer, which means that pure reinforcement learning. Eq.
(20) is formulated by Kono et al. [26]. If jump start is
calculated with an upward curve such as Fig.10, the value of
the jump start is positive; in other words, the performance is
increasing. In contrast, if the jump start has a downward curve
such as learning curve (Fig. 9), the value represents a negative
that means that learning time is decreasing.

3) Learning speed improvement: Learning speed improve-
ment means a reduction of area of the learning curve even
if the start performance is the same value. Fig. 11 shows that
learning curve converges faster than the learning curve without
transfer. In other words, this phenomenon is represented as the
speed of convergence.

If the initial performance and converged values of the
learning curve are the same with or without transfer, learning
speed improvement can help calculate transfer ratio r as
defined below:

r =

∑
Lt(t)−

∑
Lwt(t)∑

Lwt(t)
. (21)

4) Asymptotic Improvement: Asymptotic improvement
means that the final performance is improved by transfer. Fig.
12 shows the case of improvement; however, this emergence
depends on the task and learned policy. This is because when

Fig. 11. Simplified example of learning speed improvement that emerged in
the learning curve. The blue curve explains the performance transition

without transfer, which is the learning curve of reinforcement learning. The
red curve denotes performance transition with transfer.

Fig. 12. Simplified example of asymptotic improvement which emerged in
the learning curve. The blue curve explains the performance transition

without transfer, which is the learning curve of reinforcement learning. The
red curve denotes performance transition with transfer.

depending on the task, there is an upper limit on performance,
for example shortest path problem.

5) Transfer ratio: Taylor [7] proposed transfer ratio as a
comparison method based on the area of the learning curves
with or without transfer. If learning curve can be described as
function L(t), transfer ratio is defined by Eq. (21).

If the evaluation function is shaped as an upward curve (e.g.
transition of rewards) as shown in Fig. 10, value r is positive. It
represents the increasing performance or learning efficiency. In
contrast, if the transfer ratio is evaluated as a downward curve,
such as the learning curve, the value r becomes negative. It
represents the decreasing of learning time or learning cost at
the results .

C. Results and Discussions

First, criterial three learning curves are shown in Fig. 13.
“Without transfer”, “Positive transfer” and “Negative transfer”
are abbreviated as WT, PT and NT respectively. Proposed
method as SAP–net is abbreviated as SAP. In the Fig. 13,
represented learning curves are calculated averages from 10
trial, and standard deviation is represented with learning curve
at 50 episode intervals. The red colored line is learning curve
of WT equivalent to reinforcement learning. The blue colored
line is learning curve of PT if the agent transferred policy from
source task with helpful policy. This gives positive transfer.
Green colored line is learning curve of NT. Here, the agent
reused useless policy from the source task, and transferred
policy inhibited learning in target task. This learning curve
does not converge. It has huge fluctuation because the agent
encountered dead lock with the wall in grid world, and it was
difficult to re-learn the impeding behavior of dead lock until
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Fig. 13. Basic results of learning curve reinforcement learning, transfer
learning with positive transfer and transfer learning with negative transfer.

1000 episodes. From the learning curve without transfer and
learning curve on positive transfer, jump start and learning
speed were improvement. However, asymptotic improvement
did not occur because of optimal policy as shortest path in the
grid world is the same between conditions without transfer and
positive transfer.

The result of the learning curve with proposed method
is shown in Fig. 14 represented with 200 episodes. Black
colored line is learning curve of proposed method as SAP–
net. It is a calculated 10 trials average. Standard deviation
is represented at 50 episode intervals. SAP–net’s learning
curve extremely decreases compared to conditions WT, PT
and NT, and convergence speed is faster than other conditions.
Comparison of jump start value is indicated in Table IV. From
WT, result of condition PT and SAP are exhibited jump start.
This phenomenon means that the agent can solve the problem
with fast time compared to WT. Moreover, SAP has a lower
jumpstart value than PT, indicating that performance is high in
the early stages of learning. Condition NT does not give jump
start value, thus the performance worsens. A comparison of
transfer ratio is shown in Table V. Condition PT and SAP
decrease the value of transfer ratio thus the overall learning
time is improved. In this result, WT and NT have near value
of transfer ratio r. From Fig. 13, NT has a higher transfer
ratio than WT. From these results, learning speed of condition
PT is improved compared to WT. SAP can shorten the total
learning time compared to condition PT. Therefore, not only
PT but also SAP exhibited learning speed improvement. This
result indicate that policy selection by proposed method has
effectiveness for transfer learning in reinforcement learning.
Additionally, in this experimental condition, shortest path has
minimum limits, therefore asymptotic improvement is not
achieved from this results.

Each activation value of policies is shown in Fig. 15 if the

Fig. 14. Comparison among proposed method’s learning curve and above
basic results as Fig. 13. WT, PT and NT are the same as shown in Fig. 13.

TABLE IV. COMPARISON IN JUMP START

Condition Averaged steps (10 episodes) Jump start

WT 3024.33 0.00

PT 623.07 −2401.26

NT 4253.29 1228.96

SAP 90.08 −2934.25

TABLE V. COMPARISON IN TRANSFER RATIO

Condition Area under curve Transfer ratio

WT 237463.40 0.00

PT 66689.40 −0.72

NT 248607.10 0.05

SAP 8033.40 −0.97

simulation is terminated. Activation value is averaged from
10 trials and standard deviation is calculated with 10 trials.
Mainly seven policies are used and selected for solving shortest
path problem. Initial activation value and weights of the path
in SAP–net are same initialized value; therefore, activation
value is adjusted by proposed method with learning in target
task, and helpful policies’ activation value become high value.
Useless policies’ activation value are not activated. Although
some policies (e.g. policy number 36, 38 and 83) have low
values, the activity value is updated a little. Transferred policies
are generated in source task with random start position and
goal position; therefore, a few policies selected were not
effective. However, because the proposed method is learning
algorithm, the process of selecting a policy through trial and
error is important in transfer learning phase. Fig. 15 shows
that final activation value of helpful policies are approximately
200; its higher value compared with initial activation value
as 5. This is caused by insufficient tuning of decaying value
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Fig. 15. Activation values when simulation terminated. Seven policies are founded useful from random generated source task’s policy, and useless policies are
not activated in SAP–net through this experiment.

∆Aj . SAP–net is sensitive for parameter tuning, and many
parameters are implemented. SAP–net effective from this
experiment, however parameter setting needs to be discussed
for generalization and applications.

VI. CONCLUSION

This paper proposed a novel policy selection method for
transfer learning in reinforcement learning. Proposed method
is inspired by the spreading activation theory discussed in
cognitive science. SAP–net proposed contains functions such
as networked stored policies, activation function, spreading
function, decaying function, and recall function. Basic ex-
periments were performed with shortest path problem using
reinforcement learning agent that can select learned policies.
From the experimental results, quantitative evaluation was
performed, and results suggest that learning agent with SAP–
net can solve the problem faster than WT and PT conditions.
The agent with SAP–net selects policies adaptively from the
environment.

As the future works, it is necessary to discuss the parameter
settings. SAP–net is sensitive for activation and decaying
and is related to trade-off. If a high activation value is set,
the decaying value cannot cancel the activation value hence
continues to rise. Further, decaying is strongly affected by
the SAP–net and activation value may not rise. The proposed
method is constructed with implementation as sequential, and
calculation cost increases with number of policies. Order of
proposed method is approximately O(n2), calculation is se-
quential processing. Parallelization method is also an important
issue in implementation phase. Moreover, behavior SAP–net is
connected to N-body problem, more theoretical consideration
is required for system behavior.
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