
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 12, 2019

219 | P a g e

www.ijacsa.thesai.org

Indonesian Words Error Detection System using

Nazief Adriani Stemmer Algorithm

Anton Yudhana
1
, Abdul Fadlil

2

Electrical Engineering Department

Universitas Ahmad Dahlan Yogyakarta, Indonesia

Muhamad Rosidin
3

Informatics Engineering Department

Universitas Ahmad Dahlan, Yogyakarta, Indonesia

Abstract—Stemming in each language has a different process

and is determined according to the structure of the language.

Stemming is mostly used as a complete step in the processing of

words and phrases. There are many stemming algorithms

available, and some used as a process for word processing. One

function of stemming is to detect word errors in Indonesian. In

this study, researchers created the Indonesian words error

detection system using Nazief and Adriani algorithm. In the trials

conducted, the system will accept text input obtained from the

user. Then the system will preprocess the text. In this study, there

are three stages of preprocessing, namely tokenization, case

folding, and filtering. After the stages in preprocessing are

finished, the system will call each word for the process of

stemming. The results of the stemming will be compared with the

base words available in the database. If it does not match, then

the word is highlighted and is considered an error word. The first

finding is the Nazief Adriani's algorithm can be able to detect

words error until 100%. The second finding is the Nazief

Adriani's algorithm also detect non-words error, the accuracy of

detecting is 97.464%.

Keywords—Indonesian; word error; stemming; Nazief and

Adriani stemmer algorithm; detection system

I. INTRODUCTION

Affixes can be easily found in Indonesian because it uses a
lot of affixes. Affixes can be used in all Indonesian words and
it can be combining each other [1]. There are three types of
affixes in Indonesian, namely prefixes, insertions, and
suffixes. It is not simple to separate words that contain affixes
into base words. There are base words whose letters initially
change when given an affix. This rule makes it difficult to use
the right words. The word that containing affixes can be
changed into base words using the stemming algorithm. The
implementation of stemming is very large because stemming
is the most important part of text mining. An example of
stemming development can be found in research about
plagiarizing. Indeed, the phenomenon of plagiarizing in the
scope of Indonesian education has long occurred so that
educational institutions are tainted by plagiarism act [2].
Based on the description above, the researchers will develop
the Indonesian words error detection system using Nazief
Adriani's algorithm.

Typing has two ways, namely typing by looking at the
keyboard and typing without looking at the keyboard [3].
Nowadays, to detect error words in a document is very
difficult because it has been checked manually.

In the previous study, stemming algorithm implementation
has been carried out in detecting word errors, for example, in
the research of Marsel Widjaja and Seng Hansun (2015) [4].
The stemming can be done with Nazief and Adriani, Porter,
Confix Stripping, Enhanced Confix Stripping, Porter
Stemmer, and Modified Porter Stemmer algorithm.

II. RESEARCH METHOD

A. Proposed Method

The ability of the algorithm used in this method will be
tested. Then the test results showed error words and
processing time. The steps used in this study can be seen in
Fig. 1.

In Fig. 1, it can be seen that the initial stage in carrying out
this research is the design of the Indonesian words error
detection system. Then implement a design that has been
created using the PHP programming language. Then enter the
Nazief Adriani algorithm into the Indonesian words error
detection system. At the last stage is the testing of system
functions.

B. Nazief Adriani’s Stemmer Algorithm

The stemming algorithm in this study is based on Nazief
and Adriani’s algorithm [5]. The flow chart of the Nazief
Adriani algorithm can be seen in Fig. 2.

Fig. 1. Proposed Method.

Implementation of
Indonesian words

error detection system

Application’s
Design

Testing

Nazief-Adriani
Stemmer
Algorithm

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 12, 2019

220 | P a g e

www.ijacsa.thesai.org

Fig. 2. Flow Chart of the Nazief Adriani Stemmer Algorithm.

Nazief Adriani's algorithm has been used in research [6],
[7], [8], dan [9]. The algorithm created by Bobby Nazief and
Mirna Adriani has the following stages:

1) Check the original word: The algorithm checks the

original word towards a base word dictionary. If it works, thus

algorithm stops, and the word is declared as the base word. If

it fails, the algorithm goes to the next step.

2) Remove the inflection suffix: The algorithm removes

the inflection suffix ("- lah", "–kah", "-ku", "-mu", "-nya"). If

it works and the inflection suffix is a particle ("-lah" atau "-

kah"), the algorithm eliminates possessive pronoun inflection

("-ku", "-mu", "-nya").

3) Remove the derivation suffix: The algorithm removes

the derivation suffix ("-i", "-an", "-kan"). If it works, thus the

algorithm continues to step 4. If step 4 fails, the algorithm

continues to step a, as follow:

a) Delete the character“-k”: If the derivation suffix is

"-an" and the last character of the word is "-k", the algorithm

removes the "-k". Then, proceed to step 4. If it fails, go to step

b.

b) Restore the original word: The algorithm returns

the deleted suffix (“-i”, “-an”, “-kan”) to the original word.

4) Remove the derivation prefix: The algorithm removes

the derivation prefix, consists of several steps:

a) Unauthorized prefixes and suffixes: If the removal

of inflection suffixes in step 3 is performed, the algorithm

checks for unauthorized prefixes and suffixes. If the algorithm

finds it, the algorithm will returns.

b) Similar prefixes: Check if the current prefix is

similar to the previous prefix, then the algorithm is returned.

c) Limitation of derivation prefix deletion: If removal

of derivation prefix has been performed three times, the

algorithm is returned.

d) Check and delete the derivation prefix: The

algorithm checks the type of derivation prefix and removes the

prefix.

e) Find the root word: If the root word is found, the

algorithm is returned. Instead, step 4 repeats again to removes

the second prefix.

f) Recoding: The algorithm does the recoding process,

depending on the type of prefix.

5) Recording: The algorithm is recording the process.

If the algorithm is failed in doing all steps above, then the
first word is assumed to be the base word. So the process is
complete [10].

III. PROPOSED SYSTEM

A. Flowchart System

The design’s process of the study uses the main flowchart
that can be observed in Fig. 3.

Fig. 3 shows the main flowchart in this study. Initially, the
system will accept text input obtained from the user. Then the
system will be preprocessing the text. There are three stages of
preprocessing. The first stage is case folding, where the
contents of the text will be changed to the default form,
usually lowercase. The second stage is tokenizing, where the
system will parse the input text into units of words. The third
stage is filtering, where the system will eliminate characters
that are not needed in the next process. After the
preprocessing stages are completed, the system will call each
word using an array to perform the stemming process using
the Nazief Adriani algorithm. The results of the stemming will
be matched with the base words available in the database to
confirm their validity. If it does not match, then the word is
highlighted and is considered an error word.

Fig. 3. Main Flowchart System.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 12, 2019

221 | P a g e

www.ijacsa.thesai.org

B. Information Retrieval

Information Retrieval is the stage in identifying or
retrieving documents from directories (files) as feedback in
requests for information [11]. Information retrieval of
researchers explains that queries are the basis for providing
better search engine performance [12]. Specific techniques are
needed to retrieve documents relevant to user requests, one of
the techniques that can be used is Information Retrieval (IR)
[13].

C. Text Processing

Text preprocessing is part of building the text corpus.
Building a text corpus has two main steps, namely collecting
and preprocessing [14]. Text preprocessing is an early stage of
semantic analysis (meaning accuracy) and syntactic analysis
(arrangement accuracy) [15]. The steps in Indonesian text
processing consist of; case folding, tokenizing, stopword
removal, and stemming. Before the process of stemming
begins, the document must be preprocessed. In this study, text
processing consists of tokenization, case folding, filtering and
stemming [16].

D. Preprocessing

Preprocessing is to eliminate characters and words that are
not relevant to the document [17]. Omitting the information
will facilitate and improve word processing [18].
Preprocessing in text mining is expected to reduce the
processing time by eliminating unnecessary words or text
from texts or documents. [19]. At this stage, a combination of
four preprocessing methods that are commonly used includes:
tokenization, case folding, stop word removal, and stemming.

1) Case folding: The process of changing a capital letter

into lowercase letters in a document (a-z). In this study, the

case folding process is done by calling a function directly in

the PHP programming language.

2) Tokenizing: Tokenizing is the stage used to separate or

eliminate input strings based on each word from its

constituents or separate each word arranged in the document.

The omitted part can be numbers, characters or symbols, and

punctuation in addition to the letters of the alphabet [20].

3) Filtering: Remove words that have been listed in the

stopword or stoplist. Stopwords are words that often appear in

large amounts of text and are considered to have no

significance [21]. In this study, there is no words are deleted

because each word will be verified in the database.

4) Stemming: The stemming process in Indonesian is

more complicated than English because there are variations of

affixes that must be removed to get the base word [22]. The

structure of Indonesian morphology has a higher level of

complexity than English [23]. Besides Indonesian and

English, stemming can be used in Arabic, as in research [24].

Stemming is more efficient for Arabic retrieval than for

English [25]. Stemming is the process of determining the base

words of words that contain affixes. Nazief Adriani is one of

the most commonly used stemming algorithms. [26]. There is

also a pretty good porter algorithm in the process of stemming

[27]. Stemming is implemented in the appropriate affix. In

Indonesian, the same intonation can give different meanings

depending on the topic domain of the word or term. For

example, the Indonesian greeting "kemeja" with the same

intonation can be written as "ke meja" (go to the table) or

"kemeja" (a dress) [28].

IV. RESULT AND ANALYSIS

A. System Interface

Display system interface created using the PHP
programming language. Processed documents will be stored in
the system. Display on the head of the page for the title of the
application. In the middle, there is a document input form and
an upload button. If the upload button is clicked, it will
display the contents of the document. At the bottom, there are
algorithms and process buttons. If the process button is
clicked, it will display the word that has been highlighted and
interpreted as a word error. In addition, there is also a table
view of the results of stemming. The system interface display
can be seen in Fig. 4 and highlights the words in Fig. 5.

In addition to the page containing the word error highlight
in Fig. 5, there is also a table displaying the results of the
stemming process using Nazief and Adriani’s algorithm. The
words displayed are only words that have an affix and the
results of the stemming. But with the wrong word, the results
of stemming cannot be seen. The stemming result table can be
seen in Fig. 6.

Fig. 4. Interface of Indonesian Words Error Detection System.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 12, 2019

222 | P a g e

www.ijacsa.thesai.org

Fig. 5. Indonesian Words Error Highlight.

Fig. 6. The Interface of Stemming Result Table.

B. Document Testing

The documents to be tested in the word error detection
system contain sentences in Indonesian. The amount of
documents tested is six documents that can be seen in the
following Table I.

C. Test Result

The results of the word error detection system in
Indonesian using the Nazief Adriani algorithm are quite good.
In the six documents tested, 100% succeeded in detecting
word errors in the document, but some words that were
considered correct were also detected as errors. As seen in
document text1, the detection ability is 98.75%, complete data
on the test results are presented in Table II, and the graph can
be seen in Fig. 7.

Based on all the experimental results in Table II, it can be
concluded that the Nazief Adriani algorithm can analyze all
the wrong words up to (100%). However, there are still
deficiencies in analyzing the correct words. Based on the
results shown in Table II, it can be concluded that the average
accuracy of Nazief Adriani's algorithm in analyzing the
correct words is 97.464. The results of the analysis of Table II
are presented below in the graphical form.

TABLE. I. TEST DOCUMENT INFORMATION

Document

Name

Number of

Words
Description

text1.pdf 250 words Randomly copy articles on the internet.

text2.pdf 500 words
Randomly copy articles on the internet.
Including text1.pdf

text3.pdf 1000 words
Randomly copy articles on the internet.

Including text1 and text2.pdf

cerpen1.pdf 1384 words
Copied from compass stories titled

“Seragam” written by clippers

cerpen2.pdf 1592 words
Copied from compass stories, titled “Dua
Wajah Ibu” written by clippers

cerpen3.pdf 1630 words
Copied from compass stories, titled “Tangan-

Tangan Buntung" written by clippers

TABLE. II. WORD ERROR DETECTION SYSTEM

Document
Number of

Words

Number of Word

Highlight

No Type Words True False True False

1 text1.pdf 250 240 10 3 (98,75%)
10
(100%)

2 text2.pdf 500 480 20 12 (97,5%)
20

(100%)

3 text3.pdf 1000 960 40 23 (97,6%)
40
(100%)

4 cerpen1.pdf 1400 1384 16 33 (97,6%)
16

(100%)

5 cerpen2.pdf 1620 1592 28 84 (94, 72%)
28
(100%)

6 cerpen3.pdf 1650 1630 20 68 (95,87%)
20

(100%)

Average 97,464 % 100 %

Fig. 7. Chart of Word Error Detection System Result.

92

94

96

98

100

102

text1 text2 text3 cerpen1 cerpen2 cerpen3 Average

Word Error Detection System Result

TRUE FALSE

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 12, 2019

223 | P a g e

www.ijacsa.thesai.org

Nazief Adriani's algorithm has more complex steps and is
designed to minimize errors and lack of other stemming
algorithms in the process of analyzing correct words. Based on
the results of the study, it was found there were differences
between the studies conducted by Marsel Widjaja and Seng
Hansun (2015). That study implemented the porter stemmer
modified algorithm in the Indonesian word error detection
plugin application and was able to analyze all the wrong
words up to (100%). However, there are still deficiencies in
analyzing correct words with an average of 96.31%. Whereas
in this study, the Indonesian word error detection system using
Nazief Adriani algorithm can analyze all the wrong words up
to (100%). However, there are still deficiencies in analyzing
correct words with an average of 97,464%. Thus, it can be
concluded that the Nazief Adriri algorithm has an average
accuracy that is better than the modified porter stemmer
algorithm.

The results of the processing speed on the word error
detection system in Indonesian documents with the stemming
process using the Nazief Adriani stemmer algorithm is quite
good. In the six documents that were tested with three
attempts, the average time required to process one word is
smaller or equal to 0.030 seconds/word, the data on the
complete test results are presented in Tables III, IV, and V.

Table III explains the details of the processing speed in the
first experiment. In the text1.pdf document containing 250
words, it has a processing time of 6.8554 seconds with a
processing speed of 0.0274 seconds/word. In a text2.pdf
document containing 500 words, it has a processing time of
13.9129 seconds with a processing speed of 0.0278
seconds/word. In the text3.pdf document containing 1000
words has a processing time of 27.6677 seconds with a
processing speed of 0.0277 seconds/word. In the cerpen1.pdf
document containing 1400 words has a processing time of
40.4160 seconds with a processing speed of 0.0289
seconds/word. In the cerpen2.pdf document containing 1620
words has a processing time of 41.2138 seconds with a
processing speed of 0.0254 seconds/word. In the cerpen3.pdf
document containing 1650 words has a processing time of
47.3358 seconds with a processing speed of 0.0287
seconds/word.

Table IV explains the details of the processing speed in the
second experiment. In the text1.pdf document containing 250
words, it has a processing time of 6.8958 seconds with a
processing speed of 0.0276 seconds/word. In a text2.pdf
document containing 500 words, it has a processing time of
13.7238 seconds with a processing speed of 0.0274
seconds/word. In the text3.pdf document containing 1000
words has a processing time of 27.9247 seconds with a
processing speed of 0.0279 seconds/word. In the cerpen1.pdf
document containing 1400 words has a processing time of
41.3115 seconds with a processing speed of 0.0295
seconds/word. In the cerpen2.pdf document containing 1620
words has a processing time of 41.4399 seconds with a
processing speed of 0.0256 seconds/word. In the cerpen3.pdf
document containing 1650 words has a processing time of
46.9563 seconds with a processing speed of 0.0285
seconds/word.

Table V explains the details of the processing speed in the
third experiment. In the text1.pdf document containing 250
words, it has a processing time of 6.8409 seconds with a
processing speed of 0.0274 seconds/word. In a text2.pdf
document containing 500 words, it has a processing time of
13.8641 seconds with a processing speed of 0.0277
seconds/word. In the text3.pdf document containing 1000
words has a processing time of 27.7267 seconds with a
processing speed of 0.0277 seconds/word. In the cerpen1.pdf
document containing 1400 words has a processing time of
42.2806 seconds with a processing speed of 0.0302
seconds/word. In the cerpen2.pdf document containing 1620
words has a processing time of 41.2279 seconds with a
processing speed of 0.0254 seconds/word. In the cerpen3.pdf
document containing 1650 words has a processing time of
47.1392 seconds with a processing speed of 0.0286
seconds/word.

The average processing speed of all experiments can be
seen in Table VI and graphs in Fig. 8.

TABLE. III. PROCESSING SPEED OF TRIAL 1

No
Document Trial 1

Type Words Time(s) s/word

1 text1.pdf 250 6.8554 0.0274

2 text2.pdf 500 13.9129 0.0278

3 text3.pdf 1000 27.6677 0.0277

4 cerpen1.pdf 1400 40.4160 0.0289

5 cerpen2.pdf 1620 41.2138 0.0254

6 cerpen3.pdf 1650 47.3581 0.0287

TABLE. IV. PROCESSING SPEED OF TRIAL 2

No
Document Trial 2

Type Words Time(s) s/word

1 text1.pdf 250 6.8958 0.0276

2 text2.pdf 500 13.7238 0.0274

3 text3.pdf 1000 27.9247 0.0279

4 cerpen1.pdf 1400 41.3115 0.0295

5 cerpen2.pdf 1620 41.4399 0.0256

6 cerpen3.pdf 1650 46.9563 0.0285

TABLE. V. PROCESSING SPEED OF TRIAL 3

No
Document Trial 3

Type Words Time(s) s/word

1 text1.pdf 250 6.8409 0.0274

2 text2.pdf 500 13.8641 0.0277

3 text3.pdf 1000 27.7267 0.0277

4 cerpen1.pdf 1400 42.2806 0.0302

5 cerpen2.pdf 1620 41.2279 0.0254

6 cerpen3.pdf 1650 47.1392 0.0286

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 12, 2019

224 | P a g e

www.ijacsa.thesai.org

TABLE. VI. THE AVERAGE OF THREE TRIALS

No
Doc Avg

Type Words Time(s) s/word

1 text1.pdf 250 6.8640 0.0275

2 text2.pdf 500 13.8336 0.0277

3 text3.pdf 1,000 27.7730 0.0278

4 cerpen1.pdf 1,400 41.3360 0.0295

5 cerpen2.pdf 1,620 41.2939 0.0255

6 cerpen3.pdf 1,650 47.1512 0.0286

Fig. 8. Chart of Speed Test Process.

V. CONCLUSION

Indonesian words error detection system is good enough to
detect word errors. From the trials conducted, the Nazief
Adriani algorithm is 100% successful in detecting incorrect
words in the six documents prepared. But some words that
should be correct or non-word errors are detected as word
errors, so they are highlighted by the system. Thus, Nazief
Adriani’s algorithm has been successfully implemented in the
system and gives good results. In improving the accuracy of
Nazief Adriani's algorithm, algorithm modifications can be
made. Besides being modified, other algorithms can also be
added, such as porter stemmer, confix stripping (CS), or
enhanced confix stripping (ECS). The development of an
Indonesian word error detection system can be improved by
adding other features, such as automatic correction and correct
word suggestions.

REFERENCES

[1] S. Vinsensius B. Vega S., Bressan, “Indexing the Indonesian Web:
Language Identification and Miscellaneous Issues.” Poster Proceedings
of the tenth International World Wide Web Conference, pp. 46–47,
2001.

[2] S. Sunardi, A. Yudhana, and I. A. Mukaromah, “Plagiarism Detection
Implementation Using N-Gram and Jaccard Similarity Methods On
Winnowing Algorithm (English),” Transmisi, vol. 20, no. 3, p. 105,
2018.

[3] M. I. K. Islam, M. T. Habib, M. S. Rahman, M. R. Rahman, and F.
Ahmed, “A context-sensitive approach to find optimum language model

for automatic Bangla spelling correction,” Int. J. Adv. Comput. Sci.
Appl., vol. 9, no. 11, pp. 184–191, 2018.

[4] M. Widjaja and S. Hansun, “Implementation of porter’s modified
stemming algorithm in an Indonesian word error detection plugin
application,” Int. J. Technol., vol. 6, no. 2, pp. 139–150, 2015.

[5] J. Asian, H. E. Williams, and S. M. M. Tahaghoghi, “Stemming
Indonesian,” Conf. Res. Pract. Inf. Technol. Ser., vol. 38, no. January,
pp. 307–314, 2005.

[6] A. S. Rizki, A. Tjahyanto, and R. Trialih, “Comparison of stemming
algorithms on Indonesian text processing,” Telkomnika
(Telecommunication Comput. Electron. Control., vol. 17, no. 1, pp. 95–
102, 2019.

[7] T. Mardiana, T. B. Adji, and I. Hidayah, “Stemming influence on
similarity detection of abstract written in Indonesia,” Telkomnika
(Telecommunication Comput. Electron. Control., vol. 14, no. 1, pp.
219–227, 2016.

[8] A. F. Hidayatullah, C. I. Ratnasari, and S. Wisnugroho, “Analysis of
Stemming Influence on Indonesian Tweet Classification,” Telkomnika
(Telecommunication Comput. Electron. Control., vol. 14, no. 2, pp.
665–673, 2016.

[9] T. Winarti, D. Kerami, E. T. P. Lussiana, and S. A. Sudiro, “Improving
stemming algorithm using morphological rules,” Int. J. Adv. Sci. Eng.
Inf. Technol., vol. 7, no. 5, pp. 1758–1764, 2017.

[10] A. Rahmatulloh, N. I. Kurniati, A. Z. Asyikin, I. Darmawan, and J. D.
Witarsyah, “Comparison between the stemmer porter effect and nazief-
adriani on the performance of winnowing algorithms for measuring
plagiarism,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 9, no. 4, pp. 1124–
1128, 2019.

[11] H. L. Agnew, “Our Natural Language,” Orig. Czech Natl. Renasc., no.
1982, pp. 51–92, 2017.

[12] N. Yusuf, M. A. B. M. Yunus, and N. B. Wahid, “A comparative
analysis of web search query: Informational vs. navigational queries,”
Int. J. Adv. Sci. Eng. Inf. Technol., vol. 9, no. 1, pp. 136–141, 2019.

[13] G. Mediamer, - Adiwijaya, and S. Al Faraby, “Development of Rule-
Based Feature Extraction in Multi-label Text Classification,” Int. J. Adv.
Sci. Eng. Inf. Technol., vol. 9, no. 4, pp. 1460–1465, 2019.

[14] S. M. Isa, R. Suwandi, and Y. P. Andrean, “Optimizing the
hyperparameter of feature extraction and machine learning classification
algorithms,” Int. J. Adv. Comput. Sci. Appl., vol. 10, no. 3, pp. 69–76,
2019.

[15] W. C. F. Mariel, S. Mariyah, and S. Pramana, “Sentiment analysis: A
comparison of deep learning neural network algorithm with SVM and
naïve Bayes for Indonesian text,” J. Phys. Conf. Ser., vol. 971, no. 1, pp.
0–8, 2018.

[16] P. M. Prihatini, I. K. G. D. Putra, I. A. D. Giriantari, and M. Sudarma,
“Stemming Algorithm for Indonesian Digital News Text Processing,”
Int. J. Eng. Emerg. Technol., vol. 2, no. 2, pp. 1–7, 2017.

[17] A. Yudhana, Sunardi, and I. A. Mukaromah, “Implementation of
winnowing algorithm with dictionary English-Indonesia technique to
detect plagiarism,” Int. J. Adv. Comput. Sci. Appl., vol. 9, no. 5, pp.
183–189, 2018.

[18] H. Alani and S. Saad, “Schema matching for large-scale data based on
ontology clustering method,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 7,
no. 5, pp. 1790–1797, 2017.

[19] M. Javed and S. Kamal, “Normalization of unstructured and informal
text in sentiment analysis,” Int. J. Adv. Comput. Sci. Appl., vol. 9, no.
10, pp. 78–85, 2018.

[20] A. Fadlil, “Application of Student Questionnaire Retrieval System Using
Application of Information Retrieval for Student Opinion (English),” J.
Teknol. Inf. dan Ilmu Komput., vol. 6, no. 1, pp. 33–40, 2018.

[21] A. Yudhana, Sunardi, and A. Djalil, “Implementation of Pattern
Matching Algorithm for Portable Document Format,” Int. J. Adv.
Comput. Sci. Appl., vol. 8, no. 11, pp. 509–512, 2017.

[22] F. Z. Tala, “A Study of Stemming Effects on Information Retrieval in
Bahasa Indonesia,” M.Sc. Thesis, Append. D, vol. pp, pp. 39–46, 2003.

[23] E. Da Costa, H. Tjandrasa, and S. Djanali, “Text mining for pest and
disease identification on rice farming with interactive text messaging,”
Int. J. Electr. Comput. Eng., vol. 8, no. 3, pp. 1671–1683, 2018.

 0.023

 0.024

 0.025

 0.026

 0.027

 0.028

 0.029

 0.030

 0.031

text1
(250

word)

text2
(500

word)

text3
(1000
word)

cerpen1
(1400
word)

cerpen2
(1620
word)

cerpen3
(1650
word)

Average

Chart of Speed Test Process

Trial 1 Trial 2 Trial 3 Avg Time/word

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 12, 2019

225 | P a g e

www.ijacsa.thesai.org

[24] H. Omar, M. Dahab, and M. Kamal, “Stemmer Impact on Quranic
Mobile Information Retrieval Performance,” Int. J. Adv. Comput. Sci.
Appl., vol. 7, no. 12, pp. 135–139, 2016.

[25] A. Nwesri, “Effective Retrieval Techniques for Arabic Text,” 2008.

[26] A. Yudhana, A. D. Djayali, and Sunardi, “Plagiarism Detection System
for Scientific Papers Using Pattern Matching Algorithms (English),”
Jurti, pp. 178–187, 2017.

[27] S. Alnofaie, M. Dahab, and M. Kamal, “A Novel Information Retrieval
Approach using Query Expansion and Spectral-based,” Int. J. Adv.
Comput. Sci. Appl., vol. 7, no. 9, pp. 364–373, 2016.

[28] S. N. Hidayatullah and Suyanto, “Developing an adaptive language
model for Bahasa Indonesia,” Int. J. Adv. Comput. Sci. Appl., vol. 10,
no. 1, pp. 488–492, 2019.

