
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 12, 2019

Assessing Architectural Sustainability during
Software Evolution using Package-Modularization

Metrics

Mohsin Shaikh1∗, Dilshod Ibarhimov2, Baqir Zardari3
Westminster International University, Tashkent, Uzbekistan1,2

Quaid-e-Awam University of Engineering Science and Technology, Nawabshah, Pakistan1,3

Abstract—Sustainability of software architectures is largely
dependent on cost-effective evolution and modular architecture.
Careful modularization, characterizing proper design of complex
system is cognitive and challenging task for insuring improved
sustainability. Moreover, failure to modularize the software sys-
tems during its evolution phases often results in requiring extra
effort towards managing design deterioration and solving unfore-
seen inter-dependencies. In this paper, we present an empirical
perspective of package-level modularization metrics proposed by
Sarkar, Kak and Rama to characterize modularization quality
through packages. In particular, we explore impact of these
design based modularization metrics on other well known mod-
ularity metrics and software quality metrics. Our experimental
examination over open source java software systems illustrates
that package-level modularization metrics significantly correlate
with architectural sustainability measures and quality metrics of
software systems.

Keywords—Software architecture; software modularity; soft-
ware quality; packages

I. INTRODUCTION

In recent times, conventional conjectures of experimental
research and theory have been joined by computational and
data-intensive methodologies [1], [2]. These new research
mechanisms are driven by software systems that are maintained
to avoid complex functional hindrances and operated in dis-
tributed e-infrastructure. Integrating the hardware and software
components is receiving increasing attention for development
of sustainable computational systems. This leads us to under-
stand concept of sustainability which accord with perspective
of “capable of being endured or maintained”. Secord et al.
defines software sustainability related to development activities
aimed to evolve and modify with changing requirements [3].
However, they also argue that sustainability is influenced by
many other factors including the organization, developers, end-
users, architecture and design documentation.

Software architecture provides abstract picture of fine-
grained development details [4]. Architecture of software sys-
tems reflects implementation of major design decisions and
their governed methodology. Software architectures postulate
division of software into subsystems, components and other
functional parts. Software architectures bear an influential
importance in evaluating sustainable growth of software (i.e,
cost-effectiveness and long lasting) and reliability [5], [6].
Additionally, software architectures metrics help developers to
determine maintenance objectives, testing effort and overall

design decisions. Typically, during life span of software, it
undergoes many corrective and adaptive changes. Evolution
of software process takes place through continuous addition,
modification and re-organization of source code entities. As
these activities are reflected into source code, there can be
possible deterioration in software design and its architecture.

In this context, evaluating the sustainability of software
architecture for insuring proper maintenance and evolution
cost control becomes quite desirable. Architectural sustain-
ability is influenced by many aspects that includes design
decisions, evolutionary changes in the software, change-prone
requirement and modularization practices. Thus, architecture-
level metrics are required to quantify technical sustainability
facets of software systems. However, setting a single metric for
expressing software sustainability is difficult due to different
complications involved in software development life cycle,
such as, irrelevant requirement engineering, diverse technology
choices, re-factoring of source code and implicit knowledge
of software architect [7]. Sustainable architectures are mainly
dependent on feasible software deign to insure compatibility
with changing requirement.

Software modularization, object-oriented (OO) decompo-
sition in particular, is an approach to ease the development
and maintenance. In order to understand the OO software,
flexible design with well-connected constituent components
is highly demanded for accommodating future changes and
requirements. Often, software maintenance costs are higher
than its overall development budget [8]. Modularization es-
sentially follows divide and conquer strategy for managing
the complexity of large source code. Parnas et al. introduced
concept of information hiding, which became a fundamental
paradigm for modularizing the OO systems [9]. There has
been significant advancement to reverse engineer the software
systems for automatic extraction of its design depicting an
aggregate view. Some of notable techniques in this regard
are related to partitioning of software systems into subsys-
tems(clusters) and recovering the architecture into module-
view [10]. With increasing focus of building tools and method-
ologies for software maintenance, there has been significant
research over mechanism of partitioning the software into
subsystems taking into account source code abstractions like
classes and packages [11]. In particular, package organization
provides higher abstraction and easier way for comprehension,
complexity reduction and understanding of software systems.
However, due to frequent changes into software, decreasing

www.ijacsa.thesai.org 592 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 12, 2019

modularization quality is not an impossible occurrence.

Architectural sustainability can be obtained with imple-
mentation of best modularization practices during software de-
velopment. Some of notable proposed practices include acyclic
dependencies, layering organization,testability, encapsulation
and concern dispersion [12], [11]. Sarkar et al. have proposed
a new modularization metrics suite based on packages as
its functional components [13]. They have further devised
these modularization metrics into three categories, i.e., based
on inheritance or association, method invocation and best
programming practices. It is worth mentioning that Sarkar
et al.’s study provided experimental validation of proposed
architectural metrics to an extent. Further, they also introduced
comparative analysis on modularity achievement between hu-
man based development effort and randomized modularization.
However, there is still an opportunity to explore application
of these metrics in broad spectrum of software quality and
software sustainability, particularly during evolutionary phases
of software development. As a matter of fundamental per-
spective of modularization, decay of architectural strength is
often expected as the software longevity continues. Therefore,
evaluation of architectural metrics during software evolution
can provide comprehensive assessment of major sustainability
concerns and quality oriented features.

In this paper, we explored Sarkar et al.’s package-level
modularization metrics for automated optimization of module
structure and determine their correlation strength with the
metrics related to testing efforts, deficit produced in design
of software and overall maintainability. First, we describe the
theoretical framework to position our study into big picture
of software sustainability. Then, an integrated and empirical
approach is presented for evaluating various modularization
metrics and software quality attributes during the process
of software evolution. There are different determinants of
architectural erosion or degradation, but, packages become
important architectural subsystems in OO scenario [13]. Pre-
cisely, the ability of package components to manage and
handle dependencies among classes is quite significant among
OO design constituents. While characterizing software system,
structural perspective are conventionally analyzed by the class
level coupling and cohesion. It was indeed required to explore
high level architectural dimension to identify design violations
in subsequent releases of software systems. Hence, our moti-
vation to report exploratory study with different architectural
metrics becomes obvious with following intended contribu-
tions.

• Adding the evidence that package based modularization
metrics describing cohesion, coupling and programming
practices can be linked to modularization metrics of
different engineering domains.

• Evidence that technical aspects of sustainability pre-
scribed by package modularization metrics ultimately
help in understanding the composition of software sys-
tems.

• Establishing statistical soundness to study as many of
studied the modularization metrics show significant cor-
relation from reasonable sample size of data-sets.

Our findings show that Sarkar’s modularization metrics
bear significant association with already existing modularity

metrics. Additionally, significant statistical correlation was
also witnessed with metrics quantifying maintainability, design
deficit and testing effort. Consequently, these findings help to
evaluate software sustainability in terms of architecture. Also,
this research study can be utilized to assess the development
effort and help taking measures to minimize the design flaws.
This paper is organized in nine sections, starting from this
introduction. Theoretical Framework is explained in Section
2. Related work is briefly described in Section 3. Section 4
describes the information on architectural level metrics and
their summarized definitions. Section 5 illustrates the example
for package level metrics. Section 6 presents detailed empirical
study with analysis over obtained results. Different aspects
of discussion over results obtained and design of study are
illustrated in Section 7. Threats to validity are elaborated in
Section 8 followed by Conclusion as Section 9.

II. BACKGROUND

The Software Sustainability Institute relates sustainability1

with concepts of availability, extensibility and maintainability
of software. Despite numerous existing definitions of sustain-
ability, there is an ongoing research to achieve consensus for
the setting it’s scope within field of software engineering. Tak-
ing this direction, we attempt to study system’s maintainability
and integrity as factors affecting the software sustainability.

In today’s technologically motivated business world, evo-
lution and maintenance of software systems are key pro-
cesses carried out over the decades. Long lasting software
systems are inevitable for automating industrial devices, as
their longevity insures smoother and uninterrupted business
operations. In theoretical terminology, software sustainability
covers broad spectrum of measures needed to operate software
system for longer time, i.e., stability of its infrastructure,
adaptability to functional and environmental changes and inter-
interoperability in competitive business strategies.

To define the sustainability in the context of software
architecture, an explicit concept is required to confine its
notion towards technical concerns of sustainability. Therefore,
architectural sustainability of software primarily refers to long
living software system that is maintained cost-effectively and
evolved over its entire life cycle [14]. Thus, our intended con-
notation is to incorporate sense of cost-effective longevity and
endurance towards sustainability of software systems, covering
dimensions of maintainability, modifiablility and evolvability.

III. THE THEORETICAL FRAMEWORK

This framework aims to position our research into software
quality, describing architectural strength during it’s evolution-
ary period as key to software sustainability. Sustainability as
quality objective has been targeted by many computer and
management based systems [15]. There are various techniques
and concepts that have been defined to evaluate architec-
tural quality of software systems. Standard draft of quality
models, i.e., ISO/IEC 42030 and ISO/91262 for architecture
evaluation of software systems describe software, hardware,
human and systems components as its major constituents.

1http://www.software.ac.uk/about
2http:// www.iso.org

www.ijacsa.thesai.org 593 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 12, 2019

However, it is required to incorporate characteristics of sus-
tainability concerns with an existing model. Sustainability
analysis framework with empirical evaluation are beginning to
appear in research literature of software engineering [14]. Our
work discussed here, is an effort to evaluate sustainability at
architectural level and emphasize package view of architecture
as its determinant.

A. Dimensions of Sustainability

As discussed earlier, sustainability is defined as the “ca-
pacity to endure and preserve the function of a system over
an extend period of time”. Recently, researchers and prac-
titioners analyze the sustainability by its four dimensions,
i.e., economic, social, environmental and technical. Social
sustainability is concerned with application of software to help
communities. Environmental sustainability means protection
of natural resources using software based knowledge and
application. Technical sustainability seeks to improve longevity
and adequate evolution of software systems with changing
technological requirements. While evaluating sustainability
of software in holistic views a shown in Fig. 1, broader
context of inter-dependence among the dimensions should
also be considered. Economic sustainability aims at maintain-
ing the business aspects of software systems. Applicability
of sustainability analysis is shown through an example of
Health Watcher System (WHS) in Fig. 1. Health Watcher
System is a basically web-based information system for public
health monitoring and complaint registration. This example has
been frequently used to depict relevance functional and non-
functional requirements of software systems with sustainability
[16], [17]. Fig. 1 shows quality requirements of (WHS), sorted
by sustainability dimensions and relations among them. This
example was particularly selected to show how measurement
of a software architectural strength influences sustainability in
broader picture.

Sustainability portrays broad view of quality assured soft-
ware systems that is to be achieved by all dimensions. From de-
velopers point of view, understanding the relationships among
goals of all these dimensions is important to resolve conflicting
aspects. However, setting up all these dimensions into one
scope has been shortcoming in current software engineering
practice. In particular, sub-characteristics of theses dimensions
require quantitative evaluation and evidence of association
among each other. The problem, we address here is that
how architectural components influence technical sustainabil-
ity, thereby supporting other dimensions as well.

B. Software Sustainability and Software Architectures

As a basis of discussion about sustainability, architectural
evaluation method can provide potential mechanism for sus-
tainability measurement. Architecture is foundation of any
software system that expresses fundamental organization of
system’s components and relationships among them. It is de-
sign artifact or blue-print of developing software system [18].
Clements et al. argue that successful software development
and evolution is highly dependent on design decisions [19].
This position is further endorsed by Koziolek et al. who
describes quality induced software architecture as determinant
of sustainability. They further suggest that methods and metrics

should be integrated to evaluate architecture using scenario-
based analysis. However, their own analysis highlights the
limitations of existing method. A number of methods exist
which provide evaluation mechanisms of software architecture
using structured approach. The main focus in this regard
has been analysis of candidate architecture and identification
of potential risks involving non-functional requirements of
software design. However, significant difference of approach
and methodology is found in all these effort. Bowser et al. state
that architecture decision represented by design metrics can be
instrumental to achieve sustainability [20]. These architectural
decisions are characterized by decomposition quality, best
practices adherence, change scenario robustness and decision
traceability. However, explicit expert knowledge for computing
these metrics is challenge as acknowledged by them as well.
One of hurdles to this approach is that architecture-level
metrics are not yet integrated with evaluation approaches
of software architectures. Similarly, appropriate context of
applying any metric to evaluate implemented architecture is
underpinning concept. Therefore, architectural representation
of systems can be effective in understanding broader systems
concerns. Deriving suitable measures and metrics towards
architectural evaluations is key task.

Comprehension of architectural views of complex soft-
ware systems entails different perspectives. Clements et al.
describe three view types as most common and feasible
to represent software architecture: module view, Component-
and-Connector View and Allocation View [19]. Views mainly
represent different units of implementation for an architecture
that have composed software system. Module View determines
construction and decomposition of source code (e.g., clusters,
packages, files) at design level. Package view is an intu-
itive approximation of system’s architecture that represent the
system’s architectural modules. Package structure is reason-
ably assumed comprehensive approximation of architecture as
packages are created by developers of software system [21].
Therefore, package structure of java projects is studied as rep-
resentative of module view architecture in which each module
contains several classes and dependencies among them.

IV. RELATED WORK

Different approaches have been proposed in recent research
over modularity analysis of software design, which has ex-
plored many dimensions for characterizing the object oriented
systems on distinct criteria [22], [9], [14]. There exists lot
of work in the literature proposing metrics for OO software,
the majority of these works centered on characterizing a
single class as the criteria of high cohesion, low coupling and
structural organization [23], [24], [25]. Evaluation of software
architecture has emerged as an important software engineer-
ing practice which is evident from the efforts of designing
tools and computing mechanisms [26]. Such evaluations are
exercised to primarily to determine architectural strengths
of software systems. Below we briefly explain the works
which are closely related on their application for software
sustainability measures.

There is prior empirical evidence in several studies that
investigated the relationship between code dependency and
software quality [27], [28], [29]. D’ Ambrose et al. identified
the relationships between change coupling and defects and

www.ijacsa.thesai.org 594 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 12, 2019

Fig. 1. Four dimensions of Software Sustainablity

class level [27]. Martin introduced Common Closure Principle
(CCP) as a design principle about package cohesion, identify-
ing CCP as guideline for decomposition of architecture [27].
Mockus et al. found that subsystems modified by a change can
be predictor of fault, without defining exact structure(package,
cluster, file) of subsystem [28]. Nagappan et al. use change-
coupling effects to predict faults, however, source-code archi-
tecture is not publicly available[29]. In summary, majority
of these studies have focused on examining effects of file
level coupling on defects, while we approach architectural
level evaluation of source code. Moreover, our research is
an attempt to show that reverse engineered approximation
of system’s architecture at package level can be useful for
technical sustainability.

According to a systematic review, there are more than
40 architectural-level metrics based on several design prin-
ciples which assist sustainability evaluation of implemented
architectures [14]. It has been reported in the survey that
all these metrics are derived from certain design principles,
whereas input for computing these metrics varies, e.g., con-
cepts, module size design decisions. Lakos et al. proposed
metrics known as Cumulative Component Dependency (CCD),

which calculates summation of required dependencies in com-
ponent or module of software systems [30]. CCD metric is
numerical value describing strength of module coupling and
help in determining maintainability and testability. Martin
proposed several metrics, like, efferent and afferent coupling,
abstractness, instability, dependency cycles for package entities
of software systems [31]. Babar et al. carried out the survey
to organize architecture-level metrics into framework [32].
These effort targeted the designed architecture and their impact
on quality attributes, but, main focus was on differentiation
of evaluation methods rather than in-depth quantification or
analysis of software modularization and its evolution.

Sethi et al. provided an architectural evaluation method-
ology of software systems on the basis transforming UML
component diagram into design structure matrix (DSM) [33].
Evaluation criteria proposed in this work require significant
refinement of models and their diagrammatic representation
with high precision. This may produce trade-off for large
object oriented system and achieving high precision is not
always guaranteed. Similarly, there were certain other notable
efforts which had its prime focus to analyze architecture during
design phases, but, on critical note, all these efforts require

www.ijacsa.thesai.org 595 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 12, 2019

complex procedures of collecting and updating relevant data
or representing the software systems into graphs [34], [35].

With growing importance of evaluating software architec-
ture, there has been research urge to propose and re-define
the architecture-level metrics based on novel object oriented
design principles. Sarkar et al. put-forward the determination
methodology for evaluating well modularized system taking
into account size of components and architectural operations
[36]. However, proposed architectural measurement framework
does not provide any explicit goodness or fitness of met-
rics, thus it required more rigorous analysis for its practical
application. Therefore, Sarkar et al. extended architectural
level metrics definitions which received notable recognition
in research literature, specially for large object-oriented sys-
tems [12], [13]. To the best of our knowledge, Zhoa et
al. studied the capability of Sarkar’s package modularization
metrics to predict packge level fault-proneness that remains
relatively closer to our research direction [37]. Bouwers et
al. applied research method of metric-based evaluation for
software architectures which is also motivation of our study
[38]. In simmilar effort, Yu et al. has studied the correlation
between multiple package dependencies and evolution in cor-
respondence [39]. However, this study does not address the
impact of package’s co-evolution on software quality. Koziolek
et al. made remarkable effort for evaluating architectural sus-
tainability, but their study is restricted on architectural tracking
in temporary industrial experimental setup [7]. Our study, on
the other hand, investigates effects of package’s quality from an
architectural perspective. Hence, it paves the research direction
for application, assessment and evaluation of Sarkar’s metrics
in determining sustainability concerns and quality attributes of
software systems.

V. MODULARIZATION AND QUALITY METRICS

This section provides the description and summary of
investigated metrics and software quality metrics. Table I
summarizes the definitions of three categories of package-
level modularization metrics produced with specific methodol-
ogy of programming design, i.e., inheritance, association and
polymorphism, method invocation and programming practices.
Table II presents the summary of modularization metrics
studied by Lee et al.[40]. The main objective of their research
was to analyze and compare the various modularity metrics
that have been proposed in different domains. Table III
describes three quality metrics to evaluate software systems in
terms of maintenance, design flaws and testing. These metrics
are categorized as follows:

A. Inheritance and Association based Coupling Modulariza-
tion Metrics

Within object-oriented (OO) design paradigm, inheritance
and association are important dependence relationships be-
tween classes and packages in a software system. Inheritance is
formed when a class extends another class, while association
is formed when class uses (through attribute definition into
methods) another class. In addition to this, such dependencies
among the classes are often seen to be distributed in different
modules (Packages in Sarkar’s context of study). More specifi-
cally, if a class and its subclass exist in two different modules,
modification to concrete base class may trigger the change

in subclass. Such design phenomenon is known as fragile
base-class problem which becomes prominent in particular
when maintenance or ownership of packages is taking place
across different development teams. In order to insure easier
maintainability and re-usability of packages, minimization of
inheritance or association based dependencies can be one of
the best programming practices.

Sarkar et al. describe these metrics to measure the mod-
ularization quality of modules with respect to inter-module
dependencies. Furthermore, illustration of each metric is given
as under:

• IC(S): is a composite metric that measures the extent to
which inheritance-based dependencies among and within
the packages are minimized. Whereas IC1 measures
extent to which a package extend other packages using
inheritance relationship, IC2 measures the extent to which
classes of a package are extended by classes in other
package and IC3 measures the number of classes in a
package that are derived in any of the other packages.

• AC(S): is a composite metric that measures the extent to
which association-based dependencies among and within
the packages are minimized. Whereas AC1 measures
extent to package uses other packages attribute and pa-
rameter in method definition, AC2 measures the extent
to which classes of one package are used either as an
attribute and parameter in method definition by classes
in other packages and AC3 measures the extent to which
number of classes in a package that are used either as an
attribute or parameter in method definition into any of the
classes of other packages.

• BCFI(S): is a composite metric that measures the extent
to which polymorphic design of methods is restricted
to the defining packages. Whereas BCV Set(p) is set
of classes in the package that contains defined or non-
overridden inherited methods from their ancestor classes
of other packages and BCVMax(c) for class c measures
maximum base-class violation by methods involved in
base-class fragility problem.

B. Method Invocation based Coupling Modularization Metrics

Another suite of coupling metrics introduced by Sarkar et
al. is related to inter-module coupling created by invocation
of methods among the modules(packages in their study). In an
ideal programming scenario, application programming inter-
faces (APIs) of a module should be used as service providers
to other modules. This sort of design mechanism is established
through particular programming pattern of invoking methods
or calling methods in inter-module connections of software
systems. In a well engineered code, software systems should
adhere with principle of maximum segregation and similarity
of purpose to avoid any structural decay. However, such modu-
larization practices are violated at times, thus, their quantitative
evaluation shall explore more dimension of application.

• MII(S): It measures the extent to which all inter-
module interactions are carried out through APIs (des-
ignated methods for providing services to other mod-
ule) of module in entire software system. MII(P) is
ratio of ExtCallRel(i) and ExtCallRel(p). Whereas
ExtCallRel(i) is set that collects all external calls to API

www.ijacsa.thesai.org 596 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 12, 2019

TABLE I. DESCRIPTION OF SARKAR’S PACKAGE-LEVEL MODULARIZATION METRICS [13]

Metric Definition
Inheritance based Inter-Module Coupling(IC) IC(S) = 1

|P|
∑
p∈P

IC(p), IC(p) = min(IC1, IC2, IC3)

Association Induced Inter-Module Coupling(AC) AC(S) = 1
|P|

∑
p∈P

AC(p), AC(p) = min(AC1, AC2, AC3)

Base-Class Fragility (BCF) BCFI(S) = 1
|P|

∑
p∈P

BCFI(p), BCFI(p) = 1 − 1
BCV Set(p)

∑
c∈C(p)

BCVMax(c)

Module Interaction Index (MII) MII(S) = 1
|P|

∑
p∈P

MII(p), MII(p) =

∣∣∣⋃i∈I(p) ExtCallRel(i)∣∣∣
|ExtCallRel(p)|

non-API method closedness index (NC) NC(S) = 1
|P|

∑
p∈P

NC(p), NC(p) =
|Mna(p)|∣∣∣Mpub(p)−{⋃i∈I(p)M(i)

}∣∣∣
API Usage Index (APIU) APIU(S) = 1

|P|
∑
p∈P

APIU(p), APIU(p) =
APIUS(p)+APIUC(p)

2

State access violation(SAVI) SAV I(S) = 1
|P|

∑
p∈P

SAV I(p), SAV I(p) = 1
|C(p)|

∑
c∈C(p)

SAV I(c)

Population Pug-in Index (PPI) PPI(S) = 1
|P|

∑
p∈P

PPI(p), PPI(p) =

∣∣∣⋃m∈ImplExtn(p){ModuleClosure(m,p)}
∣∣∣

|M(p)|

Size Uniformity Index (CUm) CUm(S) = 1
|P|

∑
p∈P

µm(p)
µm(p)+σm(p)

Size Uniformity Index (CUl) CUl(S) = 1
|P|

∑
p∈P

µl(p)

µl(p)+σl(p)

Note: S represents entire software system, P denotes set of packages
C shows set of classes, M is set of methods, I is set of APIs
C(p) is set of classes in a package p and I(p) is set of API’s in package p.
Module and package are used interchangeably in Sarkar’s context of study.

methods of packge p, ExtCallRel(p) is set that collects
all external calls to public methods in package p.

• NC(S): It measures the extent to which all inter-module
interactions are carried out through Non-API methods
in entire software system. More precisely, NC(p) deter-
mines extent of coupling, a package p establishes through
invocation of methods which are explicitly declared as
non-abstract.

• APIU(S): It is an average of segregation measure
APIUS(p) and cohesiveness measure APIUC(p) of
packages in entire software system.

C. Metrics based on Best Modularization Practices

In addition to inter-module coupling, Sarkar et al. have
proposed third category of modularization metrics which can
essentially be applied for best programming practices to in-
sure enhanced software quality. These modularization mech-
anisms are based on measuring the extent to which inter-
module interactions can be minimized. State access violation
is phenomenon when communication among software design
components is frequently carried out through attribute access.
Similarly, third-party plug-ins are integrated within the soft-
ware systems for their functional and operational extension
which also require some design rule evaluation. Additionally,
common reuse of software components and their size impact
have been shaped into metrics form. These metrics are briefly
explained as under:

• SAVI(S): It measures the extent to which the attributes
defined in the classes in a package are not directly
accessed by other classes for entire software system.
SAV I(c) is computed using weighted average of dif-
ferent attribute access cases, i.e., inter/intra-classes and
inter/intra-moduels.

• PPI(S): It measures the extent to which the meth-
ods that are needed to define extension APIs ex-
ist in a plug-in package for entire software system.
ModuleClosure(m, p) is set of transitive closure of
abstract method implementation in a package p and M(p)
is set of methods in package p.

• CUm(S): It measures the extent to which classes in
packages of entire software system varies in their sizes
taking into account number of methods, whereas µm(p)
and σm(p) are average and standard deviation of package
class size in terms of number of methods .

• CUl(S): It measures the extent to which classes in
packages of entire software system varies in their sizes
taking into account lines of code, whereas µl(p) and σl(p)
are average and standard deviation of package classes size
in terms of lines of code.

D. Baseline Modularization Metrics

Below we summarize the definitions, notations used in
definitions and interpretation of these metrics in particular
context of study by Lee et al. [40]. They have conducted
an experimental evaluation of these metrics on evolutionary
software and reported correlation of different modularity met-
rics and their sensitivities towards particular modular factors.
Moreover, their study is another motivating factor to further
examine the modularization metrics proposed with different
design paradigms. We set this research work as baseline to
further investigate the applicability of modularization metrics
proposed by Sarkar et al. Their definitions with relevant
references are mentioned in Table II.

• Mnewm: This metric is well known approach for quanti-
fying modularity of social network represented in graphi-
cal structures. Recently, there has been extensive focus on

www.ijacsa.thesai.org 597 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 12, 2019

TABLE II. BASELINE MODULARIZATION METRICS STUDIED IN DIFFERENT DOMAINS

Reference Definition
Newman et al. [41] Mnewm = 1

2m

∑
i

∑
j

(
Aij −

kikj
2m

)
δ(gi, gj)

Mancoridis et al.[42] MQ =
k∑
i=1

2µi

2µi+
k∑
j=1

(εi,j+εj,i)

, Mbunch = MQ
k

Guo et al.[43] Mg&g =

M∑
k=1

mk∑
i=nk

mk∑
j=nk

Rij

(mk−nk+1)2
−
M∑
k=1

mk∑
i=nk

nk−1∑
j=1

Rij+
N∑

j=mk+1
Rij

(mk−nk+1)(N−mk+nk−1)

M

MacCormack et al. [44] Mrcc = 1 −
N∑
i=1

N∑
j=1

DependencyCost(i,j)

N2λ

application of this metric into studies pertaining different
scientific domains, specially, social network, metabolic
network, neural network and the World Wide Web. Com-
putation of metric is based on theoretical heuristic that
edges (links between nodes) within a module (commu-
nity) are greater than expected ones. Further, in the def-
inition, i and j are nodes, Aij represents edges between
nodes. m is the number of total edges and ki indicates
expected number of edges in node i. δ is a comparator
function that it outputs 1 where its two parameters are
same, 0 otherwise. gi, parameter of δ, represents the
module containing node i. This metric ranges between
1 as best value and 0 as worst value.

• Mbunch: This metric is normalized version of clustering
factor (MQ) introduced by Mancoridis et al. [42]. MQ
is the most frequently used method for evaluation of a
software modularity. µi is representation of intra-edges of
module i, while εi,j denotes inter-edges between modules
i and j in total number of modules k.

• Mg&g: This metric was formulated to measure the
modularity of complex mechanical products. However,
their application in software systems can be interesting
towards incorporating mechanical engineering principles
and software design theories. Basically, metric quantifies
modularity of physical entities using difference of inter
and intra edge densities. In the definition, M is number
of modules and N is number of mechanical components
(total software nodes in our context of study). The nu-
merator of the fraction consists of two part, the sum of
intra-edge density of modules and the sum of inter-edge
density of the modules. Symbols, i.e., nk and mk are the
indexes of first node and last node respectively in module
k. Rij denotes row and column in dependency between
node i and j (software nodes).

• Mrcc: This metric has its basic application in measuring
the modularity of evolving software systems. Computing
the Relative Clustered Cost of software systems is key
idea of this metric. In perspective of software architec-
tures, software systems having no dependencies shall bear
the value 0 and 1 in case of all inter-dependent nodes.
DependencyCost function returns a weighted dependency
between node i and j. N is the number total nodes, n
is the size of module, λ is a user defined parameter for
the metric. The weight varies along with the dependency
types. If a dependency between i and j is an intra-
dependency of a single module, the weight is nλ, where
n indicates the number of nodes in the module. On the
other hand, if it is an inter-dependency between separate
modules, the weight becomes Nλ to have considerable

penalty in terms of poor coupling.

E. Software Quality Metrics

All these quality metrics have been proposed to asses
the quality of software systems. Although, there are diverse
opinions for setting up any metric as standard for judging
the quality of software. Nevertheless, it can be an interesting
research direction, if their utility is realized with empirical evi-
dences. Further, they are described below with their definitions
in Table III.

• MI: HealStead Maintainability Index is composite met-
ric that incorporates number of traditional source code
metrics into single value that indicates relative maintain-
ability. The equation presented in Table III for MI is its
reformed version that considers aveV as Halstead Volume
per Module, aveV(g’) as extended cyclomatic complexity
per module and aveLOC as average lines of code per
module.

• QDI: Quality Deficit Index is a positive value aggre-
gating the detected design flaws (i.e., code smells and
architectural smells). In terms of computation, each flaw
carries a specific weight which accumulates to form a
score that determine extent of deficit in particular source
code entity(class, package or entire software system).

• TLOC: Test Lines of Code metric determines effort
required to test the software system. In this regard, TLOC
is a size measure that counts physical lines of code within
a test class or classes.

VI. AN ILLUSTRATING EXAMPLE

In this section, we use an example of simple architectural
design to illustrate the working mechanism of Sarkar’s metrics.
In order to ease the comprehension, example shows evalua-
tion of metrics for single package interactive modularization
scenario. To simplify the presentation, only architectural rep-
resentation of design for package p is described. Fig. 2 shows
system of 6 packages to demonstrate Sarkar’s metrics.

As it can be seen, package p is interacting with five
other packages p1, p2, ..., p5 using use, implement and extend
relationships through its classes and interfaces. From Fig. 2, we
can see that p has 3 incoming extend relationships, i.e., from
2 classes of package p2 and 1 class of package p1. Further,
package p has 1 outgoing extend and 1 outgoing implement
relationship from its 2 classes to package p5 and p2. It is
also visible that package p has 6 incoming use relationships
from 1 class of package p1, 3 classes of package p3, 1 class

www.ijacsa.thesai.org 598 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 12, 2019

TABLE III. DESCRIPTION OF QUALITY METRICS.

Reference Definition
Welkeret al. [45] MI1 = 171 − 5.2 × log(aveV) − 0.23 × aveV(g’)

−16.2 × log(aveLOC)

Marinescu et al. [26] QDI =

∑
all-flaw-instances

FISflawinstance

KLOC

Tahir et al.[46] TLOC =

n∑
i=1

Loc(Ci)

SLOC , Ci is test class

of package p4 and 1 class of package p5. Also, package p
has 1 outgoing use relationship towards package p2. Thus,
these extend, implement and use relationships form AC and IC
coupling for package p respectively. Whereas, only 1 concrete
method m10 is overridden outside the package p into package
p1 and p2 causing the fragility in base class C1 of package p
.

Fig. 2 also shows interaction among the packages through
invocation of public methods, abstract methods and implemen-
tation of abstract methods. For a package p, 3 abstract methods
(m1,m2 and m7) are called outside the package which form
S-API’s3 of package p. Package p has 2 public methods (m3
and m4) that are called outside the package p which account
non-API external calls for methods.

Fig. 2 further depicts access to attributes in intra-package
and inter-package dependency scenarios. Attributes of classes
C6 and C7 of package p are accessed into two packages: p4
and p5. Classes C2 and C3 of package p access attributes of
C6 and C7 using intra-package dependency. This information
of attribute access is utilized to evaluate the violation of state
access to package p. Package p also provides implementation
and calls through transitive closure of abstract methods (m23
and m52) declared outside the package p which serve as
extension plug-in to package p using classes C2 and C3.

VII. EXPERIMENTAL STUDY

In this section, we describe our experimental evaluation
of Sarkar’s modularization metrics over open source software
system. The measures described for architectural sustainability
are pertaining to structural design and source code of software
systems. Although, in larger picture there are certain additional
indirect measures also discussed in the literature, like, docu-
mentation quality, technology choices, employment of human
resources, volatile requirement, etc. [14]. However, our scope
of our study is towards software design centric metrics.

A. Study Design

Selection of appropriate metric for evaluating the software
product is a challenge. Therefore, we tend to adopt most
efficient and already utilized methodology in our research
with illustrative and insightful aspects [40]. To an examination
level, our goal is to better understand the effect and impact
of package level modularization metrics over different
dimensions of software systems. i.e., modularization metrics,

3Sarkar et al. described concept of abstract methods and their container
entities(abstract classes and interfaces) serving as Application Programming
Interfaces for a package. S-API refers to public abstract methods declared,
implemented within the package and invoked outside the package.

external quality attributes. In this regard following study
features are set as research questions for our experiment.

RQ1: Do Sarkar’s package modularization metrics cor-
relate with Baseline modularizaton metrics and impact the
software quality metrics?

RQ2: Do Sarkar’s package modularization metrics
provide any significant perspective for improving
architectural quality during software evolution?

These research questions are important to understand the
critical context of applying Sarkar’s metrics. Conventionally,
architectural quality of software systems is measured by certain
quality metric and their application is not frequently wit-
nessed in practice. Despite their availability comparison or
association with existing metrics is rarely performed. Thus
it is yet unclear to select particular architectural metrics to
quantify the modularization of software system, which leads
our motivation behind RQ1. Another objective of RQ1 is
to expand the application and usage of Sarkar’s metrics (
exclusively designed on the basis of OO paradigm) in other
dimensions of software quality assurance as restricting them to
only modularization metrics may result worthless. The research
context of RQ2 is to understand weather architectural facets of
evolving software systems can be better explained by package
modularization metrics proposed by Sarkar et al. This will help
both software architects and researchers to understand practical
value of applying of Sarkar’s metrics to evaluate architectural
longevity of evolutionary software systems.

B. Subject Systems

We selected 34 versions of three different open source
systems in our experiment. JHotDraw 4: a Java GUI framework
for technical and structured Graphics. Ant5: a Java library
and command-line tool whose mission is to drive processes
described in build files. Google-Web Toolkit(GWT)6: an open
source set of tools that allows web developers to create and
maintain complex JavaScript front-end applications in Java.
These systems have reasonable size, manageable degree of
complexity, diverse application domain and easily accessible
source code. Table IV provides descriptive information of
subject systems used in our study, versions involved and their
release period.

4http://www.jhotdraw.org/
5http://ant.apache.org/
6http://www.gwtproject.org/overview.html

www.ijacsa.thesai.org 599 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 12, 2019

C1

+m10()

C2

+m8()
+m11()

C3

+m9()

C11 C12

+m10()

C13

C22 C21

+m10()

C31 C32

C33

abstract class

C4

+abstract m1()
+abstract m2()

<<interface>>
i1

+m7() abstract class

C5

+abstract m6()

C41

+m41()

C6

+int a
+int b
-int d

+m3()
+m4()
+m52()

C7

 +int c

C51

+m51()

package P;
public class C3

{
 public void m9()
 {
 C7 obj2=new C7();
 obj2.c=obj2.c+2;
 obj2.m23();

 }
}

package P4;
import P.*;
public class C41

 {
 public void m41()
 {
 C6 obj1= new C6();
 obj1.a=obj1.a+5;
 obj1.b=obj1.b+3;
 obj1.m3();
 obj1.m4();
 }
}

package P5;
import P.*;
public class C51{
 public void m51()
 {
 C7 ob4=new C7();
 int b=2;
 ob4.c=b+2;
 }
}

package P;
public class C2

{
 public void m8()
 {
 C6 obj3=new C6();
 obj3.b=obj3.b+2;
 obj3.m52();

 }
}

<<interface>>
C23

+ m23()

abstract class

C52

+abstract m52()

C8

+m1()
+m2()

C9

+m7()

Use
relationship

Extend
relationship

Implement
relationship

 +m23()

Fig. 2. Simple design for Sarkar’s package level metrics

Structural information of subject systems in Table IV
provides valuable information. The first to fifth columns report
the systems name, versions involved in the study, revised
number of entities (Packages, Classes, Interfaces) from initial
to final release. The column sixth to nine, revision in number of
methods and their invocation on diverse design methodologies
are listed. It is evident that release versions experimented in
our study have been under development process of over 7
years at-least and considerable changes have taken place in
their structural components (Entities and dependencies among
them). Since all these open source software systems are fre-
quently utilized in research or industrial areas, it was expected
that some of changes their code base would be in correspon-
dence to architectural changes or modularization improvement.
Rationale for this expectation was that developers continuously
examine and improve structure of evolving software systems.

C. Data Processing

Our purpose of data processing is to compute defined
metrics and conduct statistical analysis. To compute Sarkar’s
metrics, TLOC and MI, we parsed source code of applications
from version archives database using Understand7: A com-
mercial static analysis tool. We developed our own java code
and Understand-Perl API scripts to derive all metric values.
To calculate QDI, we used evaluation version of open source
tool Infusion8: It parses the source code and provides an in-
depth assessment of architecture and design quality. Moreover,
the tool mainly detects code smells, architectural flaws and
reports quality score for software systems. After collecting
metrics information, data-sets for each subject system were

7https://scitools.com/
8https://www.intooitus.com/products/infusion

www.ijacsa.thesai.org 600 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 12, 2019

TABLE IV. STRUCTURAL INFORMATION OF SUBJECT SYSTEMS

System Versions Release Period Revised Revised Revised Revised Revised Revised Revised
packages classes interfaces methods S-API’s non-API calls API calls

JHotDraw (5.2-5.4, 2001-02-19 to 2010-08-01 11-62 168-997 23-60 1476-7334 157-291 101-961 127-228
6.0, 7.1-7.5)

Apache-Ant (1.5.2,1.5.4, 1.6.0-1.6.5 2003-08-13 to 2012-03-13 62-79 902-1659 48-98 6759-13488 143-222 131-241 128-226
, 1.7.0,1.71, 1.80-1.8.3)

GWT (1.3-1.7, 2006-5-17 to 2014-11-20 106-498 1655-12390 213-1823 71598-10192 132-272 151-256 230-931
2.0-2.5)

developed. On each data-set, statistical test of correlation is
used to obtain correlation coefficient values using R 9 tool.
The Spearman’s correlation test is particularly applied in our
experimental context due to non-parametric nature of data.
Additionally, we have made our data sets public on our project
site10 for replication and reproduction. Fig. 3 depicts visual
view of our data processing methodology.

Our method for examining the evolving modularity of
subject systems builds on source code parsing and extracting
the dependency information. Following are keys steps involved
in our method.

1) Select the versions to be analyzed and obtain their binary
distributions.

2) For each version, extract the dependency information
from the parsed code.

3) Compute the required metrics and develop the data-set
for each subject system.

4) Report graphical and statistical analysis.

D. Experimental Results

In this section, we report experimental results for modu-
larity correlation between Sarkar’s metrics and baseline mod-
ularization metrics described in Section 2. We have presented
correlation between Sarkar’s metrics and quality attributes.
Further, graphical representation is shown to understand be-
havior of each category of Sarkar’s modularization metrics in
different evolving versions of subjects systems.

1) RQ1: Do Sakar’s package modularization metrics cor-
relate with Baseline modularizaton metrics and impact the
software quality metrics?: To answer RQ1, we employed
statistical methodology of correlation test. We briefly describe
our results obtained after applying statistical test of Spearman’s
correlation. Also, we have tried to clarify theoretical and
analytical perspectives of values indicated in all the tables. In
order to best understand empirical relationship among the each
category of Sarkar et al’s modularization metrics and baseline
metrics, magnitude of statistical association of is shown at
significant level of 0.001 (indicated with ***), 0.01 (indicated
with **) and 0.05 (indicated with *) in Table V, VI and
VII. In particular, all the indicated values employ following
rationale.

• Positive and statistically significant correlation with Base-
line Modularization metrics is desired; meaning package
modularization metrics improves architectural quality of

9http://www.r-project.org/
10https://github.com/Analyzer2210cau/Package-Sustain

software system, while negative and statistically signifi-
cant correlation values are indication of deterioration in
architectural quality.

• Since QDI and TLOC are measures of quality deficit
and testing effort incurred over software system. There-
fore, statistically significant and positive correlation val-
ues with package modularization metrics indicate that
software system is subject to design restructuring or
may incur exhaustive testing overhead. In other words,
modularization of particular package design has not im-
proved enough to compensate architectural debt or cause
reduction in testing effort. This kind of occurrence in
software design can be cause of weak modularization that
eventually violate the design pattern rules.

• Similarly, MI describes strength of maintenance for soft-
ware, hence, positive and statistically significant corre-
lation of package modularization metrics with MI is an
evidence of quality enhancement.

• Negative and positive statistically insignificant correla-
tions are considered void of any impact in our scope of
study.

Aforementioned implications essentially form experimental
scope of our study to determine application of package mod-
ularization metrics for diverse objectives. It should be under-
standable that theoretical construct of each metric is different,
thus, correlation analysis with Baseline modularization metrics
and quality metrics would be distinctive.

Starting with Table V for Sarkar’s coupling modular-
ization metrics based on inheritance and association, some
of important observations for different software systems are
described: For JHotDraw, BCF is seen strongly correlated
with Mnewm and Mrcc. Whereas, AC has shown relatively
significant relationship with modularity metrics of Mbunch,
Mg&g and Mrcc. For Apache-Ant, strong association of corre-
lation is established only for IC with Mbunch, Mg&g and Mrcc.
Interestingly, Mnewm has shown weak statistical significance
with most of coupling metrics in all cases. While in case
of Google-Web ToolKit, AC and IC have produced notable
statistical relationship with modularity metrics. Such kind of
variations in modularity correlation can be result of particular
design paradigm of software systems where association based
dependencies are minimized as in case of JHotDraw or inheri-
tance based dependencies and fragile base classes are abundant
as in case of Apache-Ant. Results for quality attributes can
be elaborated with following specific findings: First, positive
significant correlation of BCF with QDI and TLOC employs
that fragility of base-class in software may cause design
deterioration and testing effort. Thus, less maintenance work
will be required as witnessed for correlation coefficients of
JHotDraw and Apache-Ant with MI. Second, in most cases,

www.ijacsa.thesai.org 601 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 12, 2019

Fig. 3. Data processing Methodology

TABLE V. CORRELATION COEFFICIENT OF COUPLING MODULARIZATION METRICS BASED ON INHERITANCE AND ASSOCIATION

Project Metric Baseline Modularization Metrics Quality Metrics

Mnewm Mbunch Mg&g Mrcc MI QDI TLOC

JHotDraw(9)
BCF 0.94∗∗∗ 0.77∗ 0.59 0.97∗∗∗ -0.86∗∗ 0.92∗∗∗ -0.95∗
IC 0.94∗∗∗ 0.66 0.24 0.84∗∗ -1.000∗∗∗ 0.99∗∗∗ -0.78∗
AC 0.53 0.72∗ 0.78∗ 0.70∗ -0.18 0.32 −0.65

Apache-ant(14)
BCF 0.41 0.20 0.24 0.60∗ -0.072 0.75∗∗ 0.64∗
IC 0.27 0.76∗∗ -0.79∗∗ -0.93∗∗∗ -0.52 -0.37 -0.94∗∗
AC 0.13 -0.54∗ −0.54 0.31 -0.51 0.52 −0.26

GWT(11)
BCF 0.26 0.32 0.12 -0.45 -0.19 −0.49 −0.085
IC 0.83∗∗ 0.80∗∗ 0.45 -0.90∗∗∗ 0.45 0.024 -0.80∗∗
AC -0.94∗∗ -0.90∗ −0.41 0.98∗∗ -0.58∗ 0.01 -0.87∗∗∗

IC and AC are negatively correlated to weak extent with MI
regardless of their statistical significance that means reducing
direct inheritance and association based inter-module coupling
shall have influence over maintainability.

Correlation coefficients for Sarkar’s coupling modular-
ization metrics based on method invocation are reported in
Table VI with following major observations. For JHotDraw,
only MII has developed significant relationship with Baseline
modularization metrics and quality attributes while APIU has
shown no as such statistically significance. For Apache-ant,
MII, NC and APIU are in negative correlation with Baseline
modularization and quality attributes. Such findings employ
that, during the development process, there has been frequent
inter-module method call traffic which has in turn decreased
the modularization, eventually quality attributes are adversely
affected. While in case of Google-Web ToolKit, MII has
depicted significant positive correlation with Mnewman, Mrcc

and significant negative correlation with Mbunch, however, NC
and APIU do not show similar pattern in the table except for
MI or TLOC. It can be inferred that either the cohesiveness
and segregation properties are not followed properly or non-
API public methods calls have caused excessive and unneces-
sary dependencies among the packages. Thus, there are wide
variations on this category of modularization metrics which
may not account for providing comprehensive view, but its
application is yet useful to asses particular software design
for inter-module method invocation. A closer examination
of these values suggests that inadequate architectural and
implementation changes can precipitate decrease in modularity.

Table VII shows correlation values of third category of
Sarkar et al.’s metrics. For JHotDraw, weak correlation of SAVI
with Mbunch and strong negative and positive correlation with
MI, QDI and TLOC should not be surprising due to violation
on accessing attributes rules. On the other hand, high trend of
correlation in all metrics for CUm and CUl is quite visible. For
Apache-Ant, all the category metrics have developed negative
correlation with most of baseline modularization metrics and
quality metrics, leading to conclude that there has been lack
of adopting best modularization practices. For Google-web-
ToolKit, statistically significant values are quite hard to realize
except for SAVI, meaning rare violation of state access could
be required.

In principle, modularization should reduce complexity
of system, allow efficient comprehension of its structural
paradigms and enable easier re-factoring process. As a matter
of fact, each software system follows certain specific domain
of design considering requirements and functional needs. Sim-
ilarly, as the software evolves, changes in its architecture
are quite obvious. All these parameters contribute toward
long life of software systems. Although, architectural metrics
proposed by Sarkar et al. are reported as important to evaluate
complementary areas of software sustainability, however, their
usage in practice (e.g., software industry) is not too wide.
Combining the results of Table V, VI and VII, we can
have substantial assessment of software architecture, but, it
would not be easy to make general conjecture for single
metric. Furthermore, some of metrics have conflicting traits
among the each other; as is the case of IC and APIU, hence

www.ijacsa.thesai.org 602 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 12, 2019

TABLE VI. CORRELATION COEFFICIENT OF COUPLING MODULARIZATION METRICS BASED ON METHOD INVOCATION

Project Metric Baseline Modularization Metrics Quality Metrics

Mnewm Mbunch Mg&g Mrcc MI QDI TLOC

JHotDraw(9)
MII 0.89∗∗ 0.75∗ 0.44 0.87∗∗ -0.87∗∗ 0.90∗∗∗ -0.88∗
NC -0.45 -0.23 0.01 -0.39 -0.61∗ -0.60∗ 0.52
APIU 0.47 0.31 0.20 0.43 -0.48 0.52 0.56

Apache-ant(14)
MII 0.22 -0.80∗∗∗ -0.82∗∗∗ -0.68∗∗ -0.69∗∗ 0.06 -0.76∗∗
NC 0.05 -0.84∗∗∗ -0.85∗∗∗ -0.78∗∗∗ -0.78∗∗ -0.18 -0.83∗∗∗
APIU -0.20 -0.72∗∗ -0.76∗∗ -0.90∗∗∗ -0.50∗ -0.46∗ -0.97∗∗∗

GWT(11)
MII 0.89∗∗ -0.75∗ 0.44 0.87∗∗ -0.85∗∗ 0.90∗∗∗ -0.92∗∗∗
NC -0.45 -0.23 -0.01 -0.39 0.61∗ -0.60∗ 0.90∗∗
APIU 0.47 0.31 0.20 0.43 -0.48 0.52 -0.79∗

TABLE VII. CORRELATION COEFFICIENT OF COUPLING MODULARIZATION METRICS BASED ON INHERITANCE AND ASSOCIATION

Project Metric Baseline Modularization Metrics Quality Metrics

Mnewm Mbunch Mg&g Mrcc MI QDI TLOC

JHotDraw(9)
SAV I 0.69∗ 0.38 0.02 0.63∗ -0.87∗∗ 0.87∗∗ -0.88∗∗
PPI -0.55 -0.61∗ -0.92∗∗ -0.80∗∗ 0.31 -0.44 0.34
CUm 0.75∗ 0.64∗ 0.50 0.87∗∗ -0.67∗ 0.77∗∗ -0.68∗
CUl 0.365 0.46 0.80∗∗ 0.64 −0.19 0.27 -0.72∗

Apache-ant(14)
SAV I 0.17 -0.93∗∗∗ -0.94∗∗∗ -0.72∗∗ -0.89∗∗∗ 0.25 -0.76∗∗
PPI 0.09 0.60∗ 0.63∗ 0.77∗∗ 0.40 0.52∗ 0.87∗∗∗
CUm 0.019 -0.84∗∗∗ -0.84∗∗∗ -0.65∗ -0.81∗∗∗ 0.39 -0.59∗
CUl -0.34 -0.50∗ -0.53∗ -0.76∗ -0.20 -0.37 -0.74∗∗

GWT(11)
SAV I 0.65∗ 0.68∗ 0.30 -0.66∗ -0.67∗ 0.23∗∗∗ -0.79∗∗
PPI 0.02 0.045 -016 -0.009 0.014 -0.022 0.009
CUm 0.19 -0.032 -0.001 -0.009 -0.53∗ -0.60∗ 0.33
CUl -049 -0.51 -0.36 0.65∗ -0.17 0.23 0.44

optimization of certain architectural features may raise unex-
pected sustainability vulnerabilities[7]. Despite these precise
analytical constraints, architectural metrics can help developers
to re-asses their design decision to insure modularization in
particular during software evolution process. For instance,
result of Table VII suggests that excessive state access viola-
tion should be avoided during development of Apache-antand
results of Table VI indicate that inter-module connections
through method invocations can be minimized to improve
modularization of Apache-ant. Overall, Our results show that
package level modularization metrics bear considerably sig-
nificant relationship with modularization metrics studied in
different engineering domains. Such findings can help the
software engineer to develop design plan to ensure optimized
source code architecture. Additionally, Sarkar’s modularization
metrics were also analyzed to reveal significant correlation
with different software quality metrics.

2) Do Sarkar’s package modularization metrics provide
any significant perspective for improving architectural quality
during software evolution? : Software usually undergoes a
continuous process of evolution driven by incremental de-
velopment processes and design improvement. Modularity of
software reflects different design considerations. Modularity
of software systems has been linked with growth of software
development community, code contribution and reduction of
design vulnerabilities. As a theoretical construct, modularity
also relates with other domain of research, including organiza-
tion mechanism, industrial economics and product refinement.
However, measuring modularity is crucial for maintenance of
complex and large software systems.

To analyze the architecture’s sustainability, we assessed the
evolution scenario of software systems formed with architec-

tural metrics. Each subject system was separately observed.
This kind of analysis towards evolution scenario of software
systems is helpful to judge the impact on its structural changes
and to identify points where architectural mitigation can be
incorporated during software development. To elicit the evo-
lutionary changes, each category of Sarkar et al.’s metrics is
exclusively represented in Fig. 4, 5, and 6.

Fig. 4 shows patterns of changes taking place in different
software systems against modularization values of Inheritance
and Association based coupling. In 14 versions of Apache-
ant, all the coupling based metrics show the constant pattern.
In 9 versions of JHotDraw, AC and IC seem to be improving
marginally, whereas, BCF has gradually improved to signifi-
cant extent. In 11 versions of Google-Web Toolkit, BCF and
IC has shown slight decline as the software evolves, while AC
has exhibited an improving trend. Our examination from such
graphical representation also tells that BCF remains as best
modularization among two other metrics, however, evolution
process is still followed by fluctuating modularization values
of IC.

Fig. 5 shows patterns of changes taking place in different
software systems against modularization values of method in-
vocation based coupling. It can be clearly seen that through out
all the evolutionary period of all software systems, only MII
has achieved an effective modularization while on the other
hand NC and APIU has shown negative and steady trends.
Such graphical representation can help us to understand that
inter-module method calls through Application programming
interfaces declared for each system should be maximized to
modularize the software system.

Fig. 6 shows visualization trends for modularization values

www.ijacsa.thesai.org 603 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 12, 2019

�

���

���

���

���

���

���

��	

��

���

�

���� ���� ���� ���� �	�� �	�� �	�� �	�� �	��

�
�
�
�
��
�
�	
�

��
�
�
�
��
�
�

��������

��� �� ��

(a) JHotDraw

�

���

���

���

���

���

���

��	

��

���

�

������ ������ ������ ������ ������ ������ ������ ������ ���	�� ���	�� ���
�� ���
�� ���
�� ���
��

�
�
�
�
��
�
�	
�

��
�
�
�
��
�
�
�

��������

��� �� ��

(b) Apache-ant

�

���

���

���

���

���

���

��	

��

���

�

����� ����� ����� ����� ����	 ���� ���� ���� ���� ���� ����

�
�
�
�
��
�
�	
�

��
�
�
�
��
�
�

��������

��� �� ��

(c) Google-Web-ToolKit

Fig. 4. Evolutionary changes against Coupling Based on Inheritance and Association

of best practices defined in category 3 of Sarkar’s metrics.
An important finding is; managing the size of software com-
ponents in terms of methods and lines of code improves the
modularization during its evolution process as shown by CUm
and Cul in all cases. Whereas, SAVI and PPI show low and
unstable values raising the vulnerabilities for sustainability.
Hence, development process should avoid extensive violation
for integrating third party plug-ins or state access to code base.

In summary, architectural decay or improvement is quite
dependent on the particular design phenomenon, the software
systems are developed for. Although, flexible architecture
allows addition of new functionality during evolution process;
however, it may come at the cost of certain sustainability con-
cerns and design deterioration as well. Trend of architectural
degradation can be result of design time violations, thereby
posing sustainability concerns. If these significant mismatches
against original design are identified earlier then maintenance
and design improvement strategy can be effectively deployed
to insure sustainability of software systems. Additionally, we
have noticed that certain architectural metrics bear common
modularization trends as well in software systems of diverse
nature and domain which can be useful to form opinion
for architectural-level metrics towards overall sustainability of
software systems.

VIII. DISCUSSION

The subject of software sustainability is emerging as bench-
mark to realize applications of software in social, economic,
operational and technical terms. Hence, relevant empirical
studies are required to explore the subject further. We presented
an experimental analysis over 34 versions of three different
open source java systems that includes research objectives,
design, data processing and experimental results. In this regard,
we reported statistical relationship of Sarkar’s modularization
metrics with existing validated modularity metrics studied in
different domains of engineering [40] and quality metrics.
Indeed, from theoretical standpoint, our study has diverse qual-
ity assurance focus but with major emphasis of architectural
sustainability. We do not rule out other parameters that may
have arguably better explanatory power; however, our effort
is to explore significance of package based modularization
metrics.

IX. THREATS TO VALIDITY

In this section, we describe the most important threats to
construct, internal and external validity.

Construct Validity

Accuracy of metrics calculation and rationale behind setting
up Baseline modularization and quality metrics are two major
factors which account for threats to construct validity. We

www.ijacsa.thesai.org 604 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 12, 2019

�

���

���

���

���

���

���

��	

��

���

�

���� ���� ���� ���� �	�� �	�� �	�� �	�� �	��

�
�
�
�
��
�
�	
�

��
�
�
�
��
�
�

��������

��� �� ����

(a) JHotDraw

�

���

���

���

���

���

���

��	

��

���

�

������ ������ ������ ������ ������ ������ ������ ������ ���	�� ���	�� ���
�� ���
�� ���
�� ���
��

�
�
�
�
��
�
�	
�

��
�
�
�
��
�
�

��������

��� �� ����

(b) Apache-ant

�

���

���

���

���

���

���

��	

��

���

�

����� ����� ����� ����� ����	 ���� ���� ���� ���� ���� ����

�
�
�
�
��
�
�	
�

��
�
�
�
��
�
�
�

��������

��� �� ����

(c) Google-Web-ToolKit

Fig. 5. Evolutionary changes against Coupling Based on Method invocation

employed our source code analysis procedure with incre-
mental testing to collect the Sarkar’s metrics reliably using
Understand tool which is already utilized in recent empirical
studies [37], [47]. Whereas Baseline modularization metrics
were computed by co-author using our own java based tool and
already recognized in research literature [40]. Therefore, the
construct validity of metrics computations can be considered
quite satisfactory. Although, independent variables (Sarkar’s
Package modularization metrics, Baseline modularization met-
rics and software quality metrics) are briefly described with
research focus and importance, still, it is required to further
insure their validity. For example, MI and MQ have widely
been used as software quality assessment metric [48], [49],
[50], but other metrics are novel contribution towards setting
up determinants of software sustainability.

Internal Validity

Threats to internal validity can arise from experimental
methodology of data analysis applied in our study. Conclusion
are drawn on the basis of correlation analysis. We have already
mentioned our motivation of using correlation to identify the
relationship among the quantities in aforementioned sections.
However, these results are not merely based on significance of
correlation obtained, but, it expands further through monitoring
of evolution scenarios. Moreover, calculating P-value for sta-
tistical significance in quantitative analysis of software metrics
is already utilized methodology [51], [38]. Therefore, sample
size and guidelines mentioned by Woh et al. [52] and Yin et al.

[53] counter these threats to internal validity to considerable
extent. But, there is need of further study and experimental
applications to acquire meaningful conclusion.

External Validity

Our study is based on several versions of open source java
systems. This may cause potential threat to external validity
due to choice of open source systems developed in partic-
ular language. Consequently, it is not possible to generalize
the conclusion and results. We experimented our study with
open source java system which have been frequently utilized
in research literature of empirical software engineering, i.e.,
Apache-Ant and JhotDraw. Admitting the fact that this may
raise bias over study as software systems of industrial range
have not been brought in experimental set up. Indeed, this
is an inherent problem in most of empirical software studies.
However, we believe that study of 34 versions can substantiate
to form at least formidable research opinion.

X. CONCLUSION

The modularity is an important aspect of software system
describing its overall architectural quality and strength. In
this paper, we investigated newly proposed modularization
metrics based on packages from different perspectives. Our
empirical study was mainly based on computation and analysis
of modularity metrics through statistical correlation methodol-
ogy. We presented an assessment for evolution scenarios of

www.ijacsa.thesai.org 605 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 12, 2019

�

���

���

���

���

���

���

��	

��

���

�

���� ���� ���� ���� �	�� �	�� �	�� �	�� �	��

�
�
�
�
��
�
�	
�

��
�
�
�
��
�
�

��������

��� ���� ��� ��	

(a) JHotDraw

�

���

���

���

���

���

���

��	

��

���

�

������ ������ ������ ������ ������ ������ ������ ������ ���	�� ���	�� ���
�� ���
�� ���
�� ���
��

�
�
�
�
��
�
�	
�

��
�
�
�
��
�
�

��������

��� ���� ��� ��	

(b) Apache-ant

�

���

���

���

���

���

���

��	

��

���

�

����� ����� ����� ����� ����	 ���� ���� ���� ���� ���� ����

�
�
�
�
��
�
�	
�

��
�
�
�
��
�
�
�

��������

��� ���� ��� ��	

(c) Google-Web-ToolKit

Fig. 6. Evolutionary changes against metrics based on Modularization practices

software systems using architectural level metrics. This study
can be important to avoid technical risk and develop a formal
perspective for managing architectural improvement efforts
invested during software development.

Tracking the rules of architectural compliance as the soft-
ware evolves, there were some unique findings and observation
to determine sustainability concerns of software system from
different dimensions. Statistical analysis reported on different
quality metrics and modularization metrics may help devel-
opers to regularly check architectural authenticity and form
the code reviews for future quality assurance activities. Due
to trade-off among the different architectural metrics, multiple
perception are described for software maintenance. In addition
to specific empirical view, our study also yielded interesting
propositions: First, optimizing of each architectural metrics
value is subject to design decisions; however, relative sustain-
ability improvement or decline can be monitored during con-
tinuous development process; Second, tracking architectural
level metrics and monitoring quality of software design can
be possible task when evolution phases of software system are
in progress; Third, undesired violations of architectural rules
can be controlled with proactive re-factoring or restructuring
decisions.

We adopted an integrated approach of evaluating software
systems for their sustainable architecture and evolution sce-
nario analysis. Sarkar et al. package modularization metrics
were statistically tested to check their compliance with existing

modularization metrics and their impact over different quality
metrics. In addition to this, tracking architectural metrics
during software evolution, we could determine ripple effects
of different design aspects. Although, there was no as evidence
to prioritize these architectural metrics in terms of their appli-
cation, but, their usage can be helpful to identify critical sensi-
tivities of software sustainability. In broader picture, approach
is an effort to explore different dimensions of architectural
sustainability.

ACKNOWLEDGMENT

The authors would like to thank Prof. Chan-Gun Lee,
Director, RTSE-Lab, Chung-ang University, Seoul, Korea and
Dr. Kiseong Lee, Post-doctoral researcher, RTSE-Lab, Chung-
ang University, Seoul, Korea for sharing the data of their
research work.

REFERENCES

[1] J. Mitchell, C. Laughton, and S. A. Harris, “Atomistic simulations reveal
bubbles, kinks and wrinkles in supercoiled dna,” Nucleic acids research,
p. gkq1312, 2011.

[2] S. R. Mounce, R. B. Mounce, and J. B. Boxall, “Novelty detection for
time series data analysis in water distribution systems using support
vector machines,” Journal of hydroinformatics, vol. 13, no. 4, pp. 672–
686, 2011.

[3] F. C. Maryland, “Measuring software sustainability,” 2003.

www.ijacsa.thesai.org 606 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 12, 2019

[4] P. Oreizy, M. M. Gorlick, R. N. Taylor, D. Heimbigner, G. Johnson,
N. Medvidovic, A. Quilici, D. S. Rosenblum, and A. L. Wolf, “An
architecture-based approach to self-adaptive software,” IEEE Intelligent
systems, no. 3, pp. 54–62, 1999.

[5] P. C. Clements, “Software architecture in practice,” Ph.D. dissertation,
Software Engineering Institute, 2002.

[6] R. N. Taylor, N. Medvidovic, and E. M. Dashofy, Software architecture:
foundations, theory, and practice. Wiley Publishing, 2009.

[7] H. Koziolek, D. Domis, T. Goldschmidt, and P. Vorst, “Measuring
architecture sustainability,” Software, IEEE, vol. 30, no. 6, pp. 54–62,
2013.

[8] W. Albattah and A. Melton, “Package cohesion classification,” in
Software Engineering and Service Science (ICSESS), 2014 5th IEEE
International Conference on. IEEE, 2014, pp. 1–8.

[9] D. L. Parnas, “On the criteria to be used in decomposing systems into
modules,” Communications of the ACM, vol. 15, no. 12, pp. 1053–1058,
1972.

[10] B. S. Mitchell and S. Mancoridis, “On the automatic modularization of
software systems using the bunch tool,” Software Engineering, IEEE
Transactions on, vol. 32, no. 3, pp. 193–208, 2006.

[11] H. Abdeen, S. Ducasse, and H. Sahraoui, “Modularization metrics: As-
sessing package organization in legacy large object-oriented software,”
in Reverse Engineering (WCRE), 2011 18th Working Conference on.
IEEE, 2011, pp. 394–398.

[12] S. Sarkar, G. M. Rama, and A. C. Kak, “Api-based and information-
theoretic metrics for measuring the quality of software modularization,”
Software Engineering, IEEE Transactions on, vol. 33, no. 1, pp. 14–32,
2007.

[13] S. Sarkar, A. C. Kak, and G. M. Rama, “Metrics for measuring
the quality of modularization of large-scale object-oriented software,”
Software Engineering, IEEE Transactions on, vol. 34, no. 5, pp. 700–
720, 2008.

[14] H. Koziolek, “Sustainability evaluation of software architectures: a sys-
tematic review,” in Proceedings of the joint ACM SIGSOFT conference–
QoSA and ACM SIGSOFT symposium–ISARCS on Quality of software
architectures–QoSA and architecting critical systems–ISARCS. ACM,
2011, pp. 3–12.

[15] P. Lago, S. A. Koçak, I. Crnkovic, and B. Penzenstadler, “Framing
sustainability as a property of software quality,” Communications of
the ACM, vol. 58, no. 10, pp. 70–78, 2015.

[16] C. G. von Wangenheim, A. von Wangenheim, F. McCaffery, J. C. R.
Hauck, and L. Buglione, “Tailoring software process capability/maturity
models for the health domain,” Health and Technology, vol. 3, no. 1,
pp. 11–28, 2013.

[17] D. Mairiza, D. Zowghi, and N. Nurmuliani, “An investigation into the
notion of non-functional requirements,” in Proceedings of the 2010
ACM Symposium on Applied Computing. ACM, 2010, pp. 311–317.

[18] M. Paulk, “Capability maturity model for software,” Encyclopedia of
Software Engineering, 1993.

[19] P. Clements, R. Kazman, and M. Klein, Evaluating software architec-
tures. ACM, 2003.

[20] S. Sehestedt, C.-H. Cheng, and E. Bouwers, “Towards quantitative
metrics for architecture models,” in Proceedings of the WICSA 2014
Companion Volume. ACM, 2014, p. 5.

[21] F. Beck and S. Diehl, “Evaluating the impact of software evolution
on software clustering,” in 2010 17th Working Conference on Reverse
Engineering. IEEE, 2010, pp. 99–108.

[22] R. Martin, “Oo design quality metrics-an analysis of dependencies,”
Proc. Workshop Pragmatic and Theoretical Directions in Object-
Oriented Software Metrics, 1994.

[23] J. Al Dallal and L. C. Briand, “An object-oriented high-level design-
based class cohesion metric,” Information and software technology,
vol. 52, no. 12, pp. 1346–1361, 2010.

[24] L. C. Briand, J. W. Daly, and J. Wüst, “A unified framework for
cohesion measurement in object-oriented systems,” Empirical Software
Engineering, vol. 3, no. 1, pp. 65–117, 1998.

[25] J. M. Bieman and B.-K. Kang, “Cohesion and reuse in an object-
oriented system,” in ACM SIGSOFT Software Engineering Notes,
vol. 20, no. SI. ACM, 1995, pp. 259–262.

[26] R. Marinescu, “Assessing technical debt by identifying design flaws in
software systems,” IBM Journal of Research and Development, vol. 56,
no. 5, pp. 9–1, 2012.

[27] M. D’Ambros, M. Lanza, and R. Robbes, “On the relationship between
change coupling and software defects,” in Reverse Engineering, 2009.
WCRE’09. 16th Working Conference on. IEEE, 2009, pp. 135–144.

[28] A. Mockus and D. M. Weiss, “Predicting risk of software changes,”
Bell Labs Technical Journal, vol. 5, no. 2, pp. 169–180, 2000.

[29] N. Nagappan and T. Ball, “Use of relative code churn measures to
predict system defect density,” in Software Engineering, 2005. ICSE
2005. Proceedings. 27th International Conference on. IEEE, 2005,
pp. 284–292.

[30] J. Lakos, Large-scale C++ software design. Addison-Wesley Reading,
1996.

[31] R. C. Martin, Agile software development: principles, patterns, and
practices. Prentice Hall PTR, 2003.

[32] M. A. Babar, L. Zhu, and R. Jeffery, “A framework for classifying
and comparing software architecture evaluation methods,” in Software
Engineering Conference, 2004. Proceedings. 2004 Australian. IEEE,
2004, pp. 309–318.

[33] K. Sethi, Y. Cai, S. Huynh, A. Garcia, and C. Sant’Anna, “Assessing
design modularity and stability using analytical decision models,”
Drexel University, Philadelphia, PA, Technical Report DU-CS-08-03,
2008.

[34] A. Tang and J. Han, “Architecture rationalization: a methodology for
architecture verifiability, traceability and completeness,” in Engineering
of Computer-Based Systems, 2005. ECBS’05. 12th IEEE International
Conference and Workshops on the. IEEE, 2005, pp. 135–144.

[35] E. Bouwers and A. Van Deursen, “A lightweight sanity check for
implemented architectures,” Software, IEEE, vol. 27, no. 4, pp. 44–50,
2010.

[36] C. Sant’Anna, E. Figueiredo, A. Garcia, and C. Lucena, “On the
modularity assessment of software architectures: Do my architectural
concerns count,” in Proc. International Workshop on Aspects in Archi-
tecture Descriptions (AARCH. 07), AOSD, vol. 7, 2007.

[37] Y. Zhao, Y. Yang, H. Lu, Y. Zhou, Q. Song, and B. Xu, “An empirical
analysis of package-modularization metrics: Implications for software
fault-proneness,” Information and Software Technology, vol. 57, pp.
186–203, 2015.

[38] E. M. Bouwers, Metric-based Evaluation of Implemented Software
Architectures. TU Delft, Delft University of Technology, 2013.

[39] L. Yu, A. Mishra, and S. Ramaswamy, “Component co-evolution and
component dependency: speculations and verifications,” IET software,
vol. 4, no. 4, pp. 252–267, 2010.

[40] K.-S. Lee and C.-G. Lee, “Comparative analysis of modularity met-
rics for evaluating evolutionary software,” IEICE TRANSACTIONS on
Information and Systems, vol. 98, no. 2, pp. 439–443, 2015.

[41] M. E. Newman, “Modularity and community structure in networks,”
Proceedings of the National Academy of Sciences, vol. 103, no. 23, pp.
8577–8582, 2006.

[42] S. Mancoridis, B. S. Mitchell, Y. Chen, and E. R. Gansner, “Bunch: A
clustering tool for the recovery and maintenance of software system
structures,” in Software Maintenance, 1999.(ICSM’99) Proceedings.
IEEE International Conference on. IEEE, 1999, pp. 50–59.

[43] F. Guo and J. K. Gershenson, “A comparison of modular product design
methods based on improvement and iteration,” in ASME 2004 Inter-
national Design Engineering Technical Conferences and Computers
and Information in Engineering Conference. American Society of
Mechanical Engineers, 2004, pp. 261–269.

[44] A. MacCormack, J. Rusnak, and C. Y. Baldwin, “Exploring the structure
of complex software designs: An empirical study of open source and
proprietary code,” Management Science, vol. 52, no. 7, pp. 1015–1030,
2006.

[45] K. D. Welker, “The software maintainability index revisited,” CrossTalk,
vol. 14, pp. 18–21, 2001.

[46] A. Tahir, S. G. MacDonell, and J. Buchan, “Understanding class-
level testability through dynamic analysis,” in Evaluation of Novel
Approaches to Software Engineering (ENASE), 2014 International
Conference on. IEEE, 2014, pp. 1–10.

www.ijacsa.thesai.org 607 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 12, 2019

[47] Y. Zhao, Y. Yang, H. Lu, J. Liu, H. Leung, Y. Wu, Y. Zhou, and
B. Xu, “Understanding the value of considering client usage context in
package cohesion for fault-proneness prediction,” Automated Software
Engineering, pp. 1–61, 2016.

[48] M. Harman, S. A. Mansouri, and Y. Zhang, “Search-based software
engineering: Trends, techniques and applications,” ACM Computing
Surveys (CSUR), vol. 45, no. 1, p. 11, 2012.

[49] A. Arcuri and L. Briand, “A hitchhiker’s guide to statistical tests for
assessing randomized algorithms in software engineering,” Software
Testing, Verification and Reliability, vol. 24, no. 3, pp. 219–250, 2014.

[50] G. Bavota, M. Gethers, R. Oliveto, D. Poshyvanyk, and A. d. Lucia,
“Improving software modularization via automated analysis of latent
topics and dependencies,” ACM Transactions on Software Engineering
and Methodology (TOSEM), vol. 23, no. 1, p. 4, 2014.

[51] H. Abdeen, H. Sahraoui, O. Shata, N. Anquetil, and S. Ducasse,
“Towards automatically improving package structure while respecting
original design decisions,” in Reverse Engineering (WCRE), 2013 20th
Working Conference on. IEEE, 2013, pp. 212–221.

[52] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in software engineering. Springer Science
& Business Media, 2012.

[53] R. K. Yin, Case study research: Design and methods. Sage publica-
tions, 2013.

www.ijacsa.thesai.org 608 | P a g e

	Introduction
	Background
	The Theoretical Framework
	Dimensions of Sustainability
	Software Sustainability and Software Architectures

	Related Work
	Modularization and Quality Metrics
	 Inheritance and Association based Coupling Modularization Metrics
	Method Invocation based Coupling Modularization Metrics
	Metrics based on Best Modularization Practices
	Baseline Modularization Metrics
	Software Quality Metrics

	An Illustrating Example
	Experimental Study
	Study Design
	Subject Systems
	Data Processing
	Experimental Results
	RQ1: Do Sakar's package modularization metrics correlate with Baseline modularizaton metrics and impact the software quality metrics?
	Do Sarkar's package modularization metrics provide any significant perspective for improving architectural quality during software evolution?

	Discussion
	Threats to Validity
	Conclusion
	References

