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Abstract—This paper tackles a Bayesian Decision Making
approach for unmanned aerial vehicle (UAV) mission that allows
UAV to quickly react to unexpected events under dynamic
environments. From online observations and the mission state-
ment, the proposed approach is designed by means of Dynamic
Bayesian Networks (DBN) arising from the safety or performance
failures analysis. After proposing a DBN model, a probabilistic
approach based on Multiple-Criteria Decision-Making (MCDM)
is then applied to find the best configuration reaching a balance
between performance and energy consumption, thus decide which
tasks will be implemented as SW and which as HW execution
units, regarding the mission requirement. The proposal UAV
mission decision-making is three-pronged, providing: (1) real
time image pre-processing of sensor observations; (2) temporal
and probabilistic approach based on Bayesian Networks to
continuously update the mission plan during the flight; and (3)
low-power hardware and software implementations for online
and real time embedded Decision Making using Xilinx System
on Programmable Chip (SoPC) platform. The proposed approach
is then validated with a practical case UAV mission planning using
the proposed dynamic decision-maker implemented on embedded
system based on a hybrid device.

Keywords—Bayesian Decision Making; Dynamic Bayesian Net-
works (DBN); Multiple-Criteria Decision-Making (MCDM); SoPC;
practical case

I. INTRODUCTION

Autonomous system, such as drone known as UAV, is a
robot system composed of several components (of hardware or
software), fly autonomously according to a pre-programmed
mission statement in unknown environment. Now-a-days,
UAVs are being more widely used in different applications
(military, aerospace reconnaissance, environmental and me-
teorological monitoring, aerial photography, and geophysi-
cal survey, etc.) achieving high performance and reliability
combined with reduced size, weight, power consumption and
cost. To execute successfully such missions, it was essential
that the vehicle able to select appropriate scenario planning
under consideration of the current state of the mission and
uncertain environmental conditions. In each mission, the UAVs
are generally set to perform a particular mission under sev-
eral requirements and environmental conditions (unexpected
obstacles, weather changes and sensor or hardware/software
component failures, etc.). For UAVs, sensors are generally
embedded on board, and consequently, the embedded systems
are constrained to face the hard real-time constraints imposed
by moving vehicle applications. In our work, we have focused
on combining sensors and algorithms to understand the vehicle
environment and to provide some autonomous processing

directly into the UAV and achieve the necessary processing
power to run the algorithms near the sensors.

These issues increase the demand for providing an online,
on-board scenario management system for UAV to produce
a response to uncertain environmental events and emergent
failures of sensors or software/ hardware components within
a specified time. Indeed, it has to provide the system the
capability to treat the real time data of uncertain or dynamic
elements which might represent a threat for the UAV’s mission
execution.

Aiming at solving the above problem, the focus of our
reasoning is to develop systems that behave differently in
different contexts which means they continue to change over
time, thus we need an approach capable to model such
dynamic systems. For this reason, we are interested in how
these systems that evolve over time using Bayesian Network
(BN) and particularly its extension DBN [5], [6] to model
the temporal evolution/influences of the variables of interest
between multiple time series in the same model according to
the mission statement. In fact, DBN used especially to relate
variables to each other over adjacent time steps in the presence
of uncertainty and anomalous observations.

Thanks to the proposed dynamic decision-making approach
as depicted in Fig. 1, we may identify successfully the al-
ternative decision that maximize the chance of achieving the
mission goal at time t+1 using several tasks as well as internal
and external constraints of UAV that can affect the mission
plan. During the flight, the UAV rely on several applications
required to meet mission constraints (path planning, motion
detection of aerial or ground targets, tracking, pose estima-
tion to follow a precomputed path, obstacle avoidance, etc.),
with computation demands that can vary during a mission.
However, the UAV always require accurate measurements and
information of the surrounding environment with respect to the
current scene. Translating such complex applications for real-
time implementation requires making specific choices so that
the design meets the constraints. Some of the main processing
requirements are speed of processing, accuracy of the results,
cost and time involved in the implementation. To tackle with
this problem, we are motivated to propose hardware recon-
figurable architectures for implementing real time processing
applications with stringent resource-consumption and runtime
constraints. In this case, it can be beneficial to take advantage
of the parallelism, low cost, and low power consumption
offered by digital integrated circuits Field-programmable gate
arrays (FPGAs) for implementing such reconfigurable systems
dedicated to complex image processing algorithms.
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Fig. 1. UAV Mission decision making approach.

The design and implementation of the proposed Mission
Decision Making approach can be divided into two main parts
software and hardware within a single FPGA device. The
software part is implemented on the dual-core ARM Cortex-
A9 based Processing System (PS). The hardware partition
is called the Programmable Logic (PL), which consists the
FPGA programmable logic blocks. With regard to the latter,
the different image processing applications is fully performed
in FPGA fabric, whereas the control and the reconfiguration
of the different functional blocks is managed by processes
running on the ARM processor.

In this paper, we specifically propose an embedded Mission
Decision Making by means of two contributions as illustrated
in Fig. 1. The first one is the introduction based new DBN
model is applied to schedule the information and to make
on-line decision and provide the new scenario plan in con-
strained time when immediately required during the flight.
Once the mission plan is updated, we then propose a new
MCDM model to generate a suitable HW/SW configuration
for the mission tasks regarding to performance constraints and
resource availability that will allow the development of real
time mission decision making module, on System-on-Chip
(SoC) using FPGA for deployment on a UAV under extreme
and uncertain environmental conditions.

The paper is organized as follows. Section 2 describes
the proposed UAV mission decision making approach based
on DBN. Section 3 explains how the MCDM deals with
the problem of co-design to decide on the most appropriate
HW/SW scheduling method and thus keep the embedded sys-
tem’s performance. Section 4 provides the hardware/software
(HW/SW) implementations and few performance results con-
cerning FPGA resource costs and execution times of the
proposed Dynamic Decision Making module in real case study.
Section 5 concludes the paper.

II. PREVIOUS RELATED WORK

We confine the related work to Decision-Making ap-
proaches based artificial intelligence algorithms in embed-
ded hardware and real-time architecture. Recently, many ap-
proaches of embedded Decision-Making are proposed in the
literature [1] [2]. We can broadly classify these techniques into
three categories: Multicriteria Decision Making [3], Artificial
Intelligence and Mathematical Programming techniques [4]. In
addition, current research tends to manage the uncertainty of
the surrounding environment and the system such as Bayesian
Networks introduced as stochastic/probabilistic models [7].

Thus, the development of embedded Decision Making
system aims to continuously manage the UAV mission and
propose the appropriate recovery action in the case of failure
scenarios. This system is able to adapt to the variations in
computation requirements during the UAV mission. Digital
signal processors (DSP) or FPGAs are used for hardware
implementation of such real-time systems. For this reason,
a lot of researchers are interested in optimising hardware
implementation for Decision-Making mechanism under the
constraints of memory or computation.

To implement Decision Making based probabilistic
(Bayesian) network onboard, some research has shown en-
couraging results with FPGA based reconfigurable hardware
[19] [18] [15] [16]. In [9], the authors proposed an FPGA
implementation based on a BN representation, that allows to
continuously monitor the embedded system under time and
resource constraints. For this purpose, they proposed off-line
framework integrating a high level synthesis tool to generate
the hardware version. In [15], the authors have suggested
an efficient FPGA hardware design of a BN block written
in Hardware Description Languages VHDL and used the
development software ALTERA QUARTUS II12 to synthesize
the design onto an Altera Cyclone IV EP4CE115 FPGA.
Whereas, an embedded processor performed the monitoring
of temporal sensor data using Linear Temporal Logic (LTL).
In [17], the authors have developed a purely software imple-
mentation of their proposed DBN approach through the use
of on-board software architecture called Anomaly resolution
and prognostic health management for autonomy (ARPHA).
This framework is developed to design and implement a
specific failure scenario from a set of specifications (diagnosis,
prognosis, and recovery) and provide as result an embedded
software implementation of a DBN without any hardware
alternative.

However, to the best of our knowledge, there is no prior
work on hardware implementation of Decision making based
on both DBN and MCDM with on-board vision processing on
reconfigurable platforms. Our work provides a novel approach
of combining DBN with utilizing MCDM techniques to choose
between an HW (FPGA) or SW implementation (embedded
processor) of the mission tasks.

III. DYNAMIC BAYESIAN NETWORKS FOR UAV MISSION
DECISION MAKING

A. Dynamic Bayesian Network Model

The goal of this work consists of developing an au-
tonomous on-board management system based on a set of
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algorithms that will be embedded on-board. In our approach,
we started by the model “glues together” proposed by [8] to
control the behavior of different hardware/software compo-
nents for a given task under uncertainty. By adding temporal
specification in this model, the proposed mission decision
making is a discrete time model of estimating the recovery
tasks at the time t + 1 based on the evidence obtained at the
time t. To avoid critical situations while maintaining safety
requirements, the proposed DBN is composed of two types
of nodes (Decision nodes, Sensor nodes, Data sources) as
depicted in the DBN hierarchy in Fig. 2 over two consecutive
time slices.

Decision Node Temporal ArcsStatic ArcsSensor Node

D_n(t)

S_n(M)S_n(1)S_n(0) .....

Video
BN
(HM)

D_n(t+1)

S_n(N)S_n(1)S_n(0) .....

Video
BN
(HM)

Time slice t Time slice t+dt

Data sources

Fig. 2. The proposed dynamic Bayesian network for the mission Decision
Making

1) Decision nodes (Dn) includes the list of the available
decision alternatives, in our case the list of possible
scenarios to update the mission plan, modeled explic-
itly as possible states of the decision node.

2) Sensor nodes (Sn) representing the data retrieved
from the system environment by means of software
applications. In practice, the outcome of each sensor
node (Observed node) is known certainty with two
possible states.

3) Data sources (Ds) indicating process measurements
by means of software or hardware sensors (in prac-
tice, we used imaging sensors and Health Manage-
ment HM of the system providing information about
the current state of the system environment).

Since the influence of decision nodes with sensor nodes
is instantaneous, a regular Bayesian network arc is used as
shown in Fig. 2. Considering two successive time slices in the
modeling, each node at ith time slice depend not only on its
parents node at the same time slice but also on its parents and
itself at previous time slices.

B. The Proposed UAV Mission

As previously mentioned, UAVs are considered as critical
systems operate in uncertain environments and have to face
unexpected obstacles, weather changes and sensor, hardware
or software failures. These constraints must be satisfied at
all instants during the flight in interaction with the proposed
decision maker, to impose the UAV to get to its final destina-
tion. At low altitude, we assume that the UAV always keeps
the same height level from initial location to the destination
location. The decision of re-planning a mission is taken by

evaluating the observations to obtain the state of the UAV
on every time t + 1, from its previous state at time t. To
move from a given initial position to a destination position,
we attempted to introduce independent solutions for obstacle
detection/avoidance, recognition and tracking of the desired
object as well as the pose estimation in order to guarantee
the accomplishment of detection and tracking mission goals
during the flight.

Before we begin our application, the sensor data are
aggregated from two cameras mounted in the front of the
UAV for simultaneous capturing images in different angles.
At any time, the camera can change its field of view θ to
detect the presence of ground and/or areal objects. Indeed,
the angle θ, which indicates the view angle between the
UAV and the observed object, can take two possible values
θ = {front,Bottom}. Based on the output of these solutions,
multiple decision alternatives (S0, S1, S2, S3, S4, S5, S6)
are proposed to achieve new functionality/applications and to
update the mission plan. For simplicity reasons, we suppose
that we can receive information from only two processing tasks
in each time t in addition to the HM data. After each time slice,
we apply the decision maker and the alternatives decisions are
sorted according to their priority (starting with urgent decision
P1 and so on).

1) Scenario S0: As shown in Fig. 3, the initial position of
the UAV is (x0; y0; z0) and the target position is (xd; yd; zd).
To move an UAV from the given initial position to the desti-
nation position, two independent image processing algorithms
are performed simultaneously:(1) motion detection algorithm
is applied in aerial images (captured by the front camera) to
detect aerial targets (AT) and (2) pose estimation algorithm is
applied in ground images (captured by the bottom camera) to
find coordinates of the UAV’s location and then verify that it
follows a precomputed path.

2) Scenario S1: For the second scenario S1, if there is
any obstacle detected in aerial image i before reaching its
final destination, we aim to detect obstacles that are dangerous
in the next aerial image i + 1 where none, one or more
aerial targets can be present. For this purpose, two independent
image processing algorithms are performed simultaneously as
shown in Fig. 4: (1) Region Labeling algorithm is applied in
aerial images to compute region sizes of the detected aerial
targets (AT) and then keep only the region with highest size
(in our case, it represents obstacles) and (2) motion detection
algorithm is applied to detect ground targets (GT).

3) Scenario S2: For the next scenario S2, whenever there
is any obstacle detected between images i and i+1, it is highly
required to know how far away the UAV is from the largest
object observed (i.e. the object of the biggest label). For this
purpose, distance measurement algorithm is applied using the
two acquired images as shown in Fig. 5.

4) Scenario S3: For the scenario S3, having found moving
objects in ground image i, a method for recognizing a target
object in image i + 1 is proposed. For this purpose, distance
measurement algorithm is applied using the two acquired
images as shown in Fig. 6: (1) object recognition algorithm is
applied to identify the nature of the detected object (GT) and
then check if it can be considered the best match of the target
object or not and (2) pose estimation algorithm is applied in
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Fig. 3. The different steps of the scenario S0
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Fig. 4. The different steps of the scenario S1

ground images to find coordinates of the UAV’s location and
then verify that it follow a precomputed path.

5) Scenario S4: For the next scenario S4, if the distance
between the UAV and the observed object (output of distance
measurement application) is greater than a threshold distance
before reaching its final destination, path planning algorithm
is applied in ground image to compute another shortest path
to the final destination as shown in Fig. 7

6) Scenario S5: For the next scenario S5, if the UAV
has found the target object in image i before reaching its

Apply decision maker
14 possibles decisionsP

Internal/external
failures detected
--> move to Su

Obstacle detected
1The nearest obstacleP

--> move to S4

Distance Measurement
1Task T6P

Distance Measurement
1Task T6P

Execute two parallel
processes

Front Camera Bottom Camera

No problem detected
--> move to S0
1Apply Task T1P

P1

P2

P3

Fig. 5. The different steps of the scenario S2
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0Task T3E
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Fig. 6. The different steps of the scenario S3

final destination, two independent image processing algorithms
are performed simultaneously as shown in Fig. 8: (1) motion
detection algorithm is applied in aerial images to detect aerial
targets (AT) and (2) video tracking application is then applied
for locating the recognized object over time in ground image
i+1 to ensure that the target object is not lost from the UAV’s
view.

7) Scenario S6: For the next scenario S6, if the detected
object is tracked successfully in moving background before
reaching its final destination, the UAV keep track of the target
object. For this purpose, two independent image processing
algorithms are performed simultaneously as shown in Fig. 9:(1)
motion detection algorithm is applied in aerial images to detect
aerial targets (AT) and (2) video tracking application is applied
for locating the recognized object over time in ground image
i+ 1 .

8) Scenario Su: For the scenario Su, if any anomalies or
failures state are detected during the mission execution, the
autonomous UAV need to perform the landing emergency task
in the closest safe area.
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C. DBN Model of the Case Study

For the case study, the proposed dynamic mission decision
maker based on DBN, by analyzing influence relations between
nodes is illustrated in Fig. 10. This model aims to describe the
proposal decision maker that is dynamically evolving over time
to update the mission planning and predict what should be the
next activity of the UAV following unforeseen circumstances
as time proceeds. According to the mission execution, based
on online and real time readings given by sensors, the decision
is taken whether or not to request intervention in case of
anomaly alerts such as internal software and/or hardware
failure, changes in the environment (weather, obstacles), or
communication problems.

For simplicity reasons, in the example presented, only two
sensors nodes can have influence on the same variable or on
another variable in the same time slice t with the aim of
detecting the anomalous or failed state of the mission plan.
In fact, each node in the DBN model can have a different
number of states.

Image Stabilization
wTask T1P

Apply decision maker
w4 possibles decisionsP

Internal/external
failures detected
99> move to Su

Reach the final destination
99> move to S0
wApply Task TfP

The target object
is not lost

99> move to S6

Execute two parallel
processes

Bottom Camera

Image Stabilization
wTask T1P

The target object is lost
99> move to S0
wApply Task T1P

P1

P2

P3

P4

Pose Estimation
wTask T3P

Object Tracking
wTaskT9P

Bottom Camera

Fig. 9. The different steps of the scenario S6

Fig. 10. The implementation of an example of the DBN model in software
GeNie.

Since the state of sensor nodes are observable (evidence
indicators), this simplify the construction of the DBN model
needed to implement the autonomous updating of the mission
tasks during the fight. Similarly to inference in a regular
Bayesian Network, the inference in a DBN starts by given the
evidence indicators for the current state and then calculates
the impact of observation of some of its nodes on the pos-
terior probability distribution (pdf) over other nodes as time
proceeds.

IV. MULTI-CRITERIA DECISION MAKING (MCDM) FOR
HW/SW PARTITIONING

To make on-line decision, the autonomous embedded
drones, in our case study, have on board management system to
allow execution of complex tasks (motion detection, tracking,
obstacle avoidance, pose estimation and so on), with compu-
tation demands that can vary during a mission. According
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to some failure scenarios that may arise during the flight,
as seen previously, the developed approach includes on-board
decision making module to select the future mission tasks.
The main objective of this section is to design a partitioning
decision module that considers different types requirements
to determine which task can be implemented either as a SW
or HW components. For this purpose, a comparison between
the hardware and software versions is established in the
presence of multiple criteria. Indeed, hardware or software task
allocation depends essentially on how quickly and how long
tasks must be done.

In [10], an extended BN model with influence diagrams is
proposed for optimal decision making depending in multiple
criteria within the MCDM framework, including decisions
alternatives. As illustrated in the BN hierarchy in Fig. 11, the
MCDM decision making module of the case study has the
following nodes:

Fig. 11. The implementation of an example of the MCDM Model

1) Input node (red node, evidence node): current sce-
nario state (Output of the decision making module).

2) Objective node (gray nodes, drawn as diamonds): to
achieve a balance between different types of criteria
cost area/energy consumption/speed-up/efficiency.

3) Decision node (Green node, drawn as rectangles):
including the set of possible decision alternatives Di
(representing the possible combination of hardware
and software : (1) pure HW/HW, (2) pure SW/SW,
(3) mixed HW/SW, (4) mixed SW/HW).

4) Criteria nodes (blue nodes, chance nodes): including
the set of decision criteria Cj such as cost area,
energy consumption, speed up and the efficiency.

5) Sub-criteria nodes (yellow nodes, chance nodes): in-
cluding a set of variables representing heterogeneous
architecture, temporal constraints, internal states of

the different sensors, environmental conditions, etc.
6) External factors nodes (white nodes, chance nodes):

including a set of variables representing the sensors
nodes (IMU, imaging sensors), FPGA platform, fly-
ing time (observed nodes).

In our case study, these nodes can have two states
(state0,state1). Once the network structure is designed, the
probabilities for each node are entered into the network in the
form of Conditional Probability Table (CPT). For the criteria
nodes, these probabilities are learned from the experimental
results. Given observations of some external factors, the CPT
entries are fixed on the basis of knowledge of interdependency
between nodes and their interactions. The utility function Uf
of each decision alternative UfDi (i from 0 to 3) is equal
to the sum of the products of the performance of decision
alternative Di, evaluated against the decision criterion Cj
with the weights of relative importance of the decision criteria
weight(j):

UfDi =
∑

j(
∑

k

∑
t weight(j) ∗ P (Cjk) ∗ P (Dit))

with k=(state0,state1), t=(state0,state1)

Once the overall utility scores are computed for all the
alternatives, the best one is the alternative which has the
highest score value and the decision alternative equal to the
Max(UfDi).

V. EXPERIMENTAL RESULTS

The experimental section is divided mainly into two parts.
First, we present the hardware (FPGA) and software (CPU)
implementations of the dynamic decision making module,
including the MCDM module for HW/SW Partitioning an
on-board heterogeneous architecture. Second, the proposed
approach has implemented, and tested using a real case study.

A. The Heterogeneous Architecture

Zynq Processing System (PS)

Memory
Interfaces

ARM A9 Cortex
dual Processor

HP
Port

Common
Peripherals

Accel1

GP
Port

AXI
DMA

A
X
I
In
te
rc
o
n
n
e
c
t

Programmable Logic (PL)

ACP
Port

Accel2
AXI
DMA

Fig. 12. Overview of the proposed hardware architecture

Our works aim at embedding the decision making module
in a mixed hardware and software architecture (CPU and
hardware cells) as the best way for low power consumption
and high computational performances. In order to do so, the
proposed design targets Xilinx Zynq XC7Z020 FPGA as the
main processing chip. As shown in Fig. 12, the architecture is
built around the ARM CortexA9 processor (Zynq processing
system PS). In order to speed up image processing applica-
tions, the use of computational HW accelerators components
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dedicated to some functions make the ARM CortexA9 proces-
sor available to adapt its functionality to perform other mission
tasks according to mission objectives before the take off or
even during the flight. As shown in Fig. 13, the ARM A9
Cortex dual processor can: (1) obtain the sensor data from
two USB webcams, (2) communicate with dedicated hardware
(HW) accelerators using the programmable logic through an
Advanced eXtensible Interface (AXI) bus and (3) display the
on a TV screen with the HDMI output.

Fig. 13. Setup used to validate the proposed UAV mission decision approach.

B. HW/SW Implementations of The Proposed Mission Deci-
sion Making

In this work, we propose an extended framework [9] that
can generate an FPGA bitstream from the BN specification.
In fact, the hardware implementation of BN inference on
synthesizable hardware as FPGAs can be divided into two main
phases:

(1) Off-line phase: Once a BN is built, the designer has
first to determine, some input BN specifications including
evidence indicators (sensor measurement) and network pa-
rameters. Based on these specification choices, the developed
tool generates the internal representation (Arithmetic circuit
(AC) form) and then generates the corresponding C/C++ code
(software version).Taken as input, the application written C or
C++ languages, Vivado HLS (High Level Synthesis) generates
low-level HDL description (Hardware version). The generated
HDL code can be instantiated on SoPC Xilinx platform using
high level design tools (Vivado) from Xilinx. Afterwards, the
HDL code can be verified. Here, if the design does not meet the
performance requirements, a first loop enables to re-configure
and re-generate the HDL code, regarding resources utilization,
speed up and energy consumption.

(2) Execution phase: during the execution of the program,
data given by the sensors (evidence indicators) are transferred
to the circuit and the developed BN module can be executed
and the failure scenario is selected by computing the proba-
bility distribution function (pdf) of each node.

In the first experiment, we decide to put the network pa-
rameters and the evidence parameters into off-chip memories,
with respect to real time processing, and then transmitted to
hardware accelerators via the GP AXI bus. After synthesis, the
resource requirement for the complete design (using the hard-
ware version) is reported in Table I. Those results demonstrate

TABLE I. ZYNQ XC7Z20-1CLG484 - LOGIC SLICES UTILIZATION

Slice Logic Utilization Used Available Utilization

Slice LUTs 32172 153200 21%

FF 7446 106400 19%

DSP48E 73 220 34%

BRAM (18k) 36 280 13%

that the mapping of of our application is efficient in terms of
resource usage.

In the second experiment, we use our design tool to evalu-
ate the performance of the decision making based Bayesian
Network module mapped onto the FPGA. In order to test
the performance of the FPGA implementation, we measured
the experimental times taken by the pure hardware and the
pure software implementations to process a single decision
making block. In the current implementation, the execution of
the decision making module, using its hardware version, took
42ms. Whereas, the execution of the decision making module
(using its software version) running as a program on the CPU
took 155ms. Summarizing the measurements presented above,
we obtain a speedup of 3.7 obtained when comparing the
software version with the hardware version at clock frequency
100MHz. However, the processing time obtained during the
experiments has shown a considerable shortening of time
and we can even improve these results by using high-level
transformations.

C. The Proposed Algorithms Applied in our Approach

Before we begin our application, the input for updating
the proposed dynamic decision maker comes from the various
sensors cameras placed in critical parts of the UAV. The
principle is to acquire a sequence of images while the cameras
(which will be embedded on UAV) is in motion. In our case,
the UAV acquires data from working environment (immediate
surroundings), in particular the data given by two cameras
putted in the front of the UAV. Thus, the estimate of the
decision can be updated based on the dataset collected up
to that point in time. To show the validity of the proposed
approach, we have conducted a set of experiments on real
image sequences with resolution 720x480 pixels captured with
two Logitech webcams. To achieve the mission goals, the algo-
rithms used in the work to verify the viability of our approach
include in particular image processing techniques such as:
motion detection based on mixture of Gaussian/Background
subtraction (Fig. 14), image stabilization [11]), pose esti-
mation [12] (Fig. 15), object recognition [14], object track-
ing [13]), region labeling and path planning. These applications
based image processing are already embedded on-board FPGA
in our autonomous UAV. Table II summarizes the different
algorithms used in our approach.

Furthermore, we apply a simple method to measure dis-
tance between the UAV and the aerial object. For this purpose,
we took two cameras slightly separated where the first one
must be fixed in the front of the UAV and the second one
must be at distance forward as shown in Fig. 16 to capture
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TABLE II. THE PROPOSED ALGORITHMS

Application Description

Region Labeling Thresholding+Aggregation+Assigning labels

Path Planning Breadth-First Search

Motion Detection Application based on mixture of Gaussian
Background subtraction

Pose estimation Harris+Matching+
3D movement estimation (RANSAC)

Image Stabilization Application inspired from [11]
Harris+Matching+2D Movement Estimation+

Motion Compensation
Object Recognition Bottom-up visual attention approach

Object tracking Dynamic Neural Fields (DNFs)

Fig. 14. FPGA motion detection implementation

the same image from two different camera angles at the same
time. Thus, the distance between the camera and the aerial
object d is given by:

d =
m

1− x1

x2

(1)

D. Case Study of the Proposed Approach

In this section, the goal is to validate our proposal on the
Zynq platform through a real UAV mission with no anomalous
or failed state detected. For example, we consider the following
experiment that address only two scenarios (S0, S1):

1) At time t0 = 0, the UAV starts moving in our
indoor environment (Fig. 17) and continues moving
in the same direction. The two cameras keep the same
field of view as the time proceed (front and bottom).
During this phase, the task is to detect any motion in
the acquired image.

2) At time t1 = 4s, the front camera detects movement
(aerial target). After motion detection, region labeling
application is applied to determine characteristics
(shape, size, position, etc.) of each connected group
and therefore to determine whether the detected mo-
tion is an object or just a noise.

Fig. 15. FPGA pose estimation implementation

CMOS Lens

focal f

dx2
x1

h"h'

Object

Q1

Q2

m

m
Object

d

Fig. 16. Distance measurement method

3) At next time t2 = 5s, no ground target is detected,
and returns no threat detected in the front of the UAV.

After generating the bitstream of the embedded applica-
tions, we start to boot Linux on the Zedboard from the SD
card divided into two partitions: (1) FAT32 partition including
boot.bin (boot image for the Zynq), system.bit (Bitstream file
of the custom IPs in the PL), application.elf, zynq fsbl.elf
(First Stage Boot Loader (FSBL)) (2) EXT4 partition including
the Linaro file system. For the software implementation on
ARM Cortex A9 dual core processor, the pose estimation
algorithm takes more than 252ms and the execution of the
motion detection algorithm based on background subtraction
took 78ms and finally the region labeling task takes around
42ms. Table III presents the synthesis results (synthesis under
time constraints) in term of FPGA resources utilization and
the processing time of each image processing application using
hardware accelerators generated by the HLS Vivado tool.

On the basis of the dynamic decision making model, the
moving vehicle pursues its goals by means of the developed

TABLE III. FPGA SYNTHESIS RESULTS

Application Pose Motion
estimation detection

Slice LUTs 9% 13%
FF 2% 7%

BRAM (18k) 31% 28%
Execution times (ms) 127 35
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Fig. 17. The indoor environment used to test the different applications
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Fig. 18. Example of application of our approach

scenarios according to its available data about the state of the
surrounding environment. Our mission decision making will
be reactive, that means it will look for new scenarios when
something happens according to its current knowledge. As
first step, the embedded mission decision making module (the
hardware accelerator) takes as evidences the output signals
provided by the software and hardware components of the
embedded applications. These evidences parameters are stored
inside the FPGA using on-chip memories and transmitted by
the ARM processor via general purpose (GP) AXI ports. Then,
as second step, the choice of a functionality implementation
(software version or hardware FPGA version) during the mis-
sion is driven by the the developed mission decision making
module.

Fig. 18 presents the results obtained for the mission de-
cision making over time with three applications of the case
study. From time t0 = 0s to t1 = 4s, no problem in the
mission is detected. Scenario S0 is the best possible scenario
in this case since the probability P(S0/evidence on sensors)
is equal to 0.9 and the maximum of the utility function is
attained for the decision alternative “SW/HW”, i.e., the motion
detection is implemented as a hardware accelerator on the
FPGA and the pose estimation software implementation on the
ARM processor. At time t1 = 4s, a moving object is detected.
Scenario S1 is the best possible scenario in this situation since
the probability P(S1/evidence on sensors) increases and the
maximum of the utility function is attained for the decision al-
ternative “HW/SW”, i.e., the motion detection is implemented
as a hardware accelerator on the FPGA and the region label-
ing software implementation on the ARM processor. These
obtained results showed the ability of the decision making
approach to choose the most suitable alternative scenario.

VI. CONCLUSION

In this paper, we have presented an approach to Decision
Making among alternative scenarios for UAV by using mixed
DBN for dynamic decision making and MCDM for HW/SW
partitioning according to the flying environment conditions as
well as the imposed constrains. Thus, the current scenario of
UAV can be modified to adapt its functionality to perform
different tasks depending on the objectives of the UAV mission.
Moreover, real time implementations (hardware and software)
of the embedded Decision Making module on FPGA board
are given in term of FPGA resource utilization and timing
performance. To evaluate the proposed approach, we have
demonstrated the implementation of real case study in hetero-
geneous architecture based on an hybrid device. In the current
work, we attempt to validate the complete mission through the
use of dynamic and partial reconfiguration at runtime to update
the Decision Making and the complete embedded system under
certainty. In future work, we may wish to focus on evaluating
the performance of our proposal in outdoor environments.
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