
(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 10, No. 2, 2019 

222 | P a g e  
www.ijacsa.thesai.org 

MINN: A Missing Data Imputation Technique for 

Analogy-based Effort Estimation 

Muhammad Arif Shah
1*

, Dayang N. A. Jawawi
2
, Mohd Adham Isa

3
, Karzan Wakil

4
, Muhammad Younas

5*
, Ahmed 

Mustafa
6
 

Department of Software Engineering, School of Computing, Faculty of Engineering 

Universiti Teknologi Malaysia, Johor Bahru, Malaysia1,2,3,5,6 

City University of Science and Information Technology, Peshawar, Pakistan1 

Research Center, Sulaimani Polytechnic University, Sulaimani 46001, Kurdistan Region, Iraq4 

Department of Computer Science, Government College University Faisalabad, Pakistan5 

 

 
Abstract—Success and failure of a complex software project 

are strongly associated with the accurate estimation of 

development effort. There are numerous estimation models 

developed but the most widely used among those is Analogy-

Based Estimation (ABE). ABE model follows human nature as it 

estimates the future project’s effort by making analogies with the 

past project's data. Since ABE relies on the historical datasets, 

the quality of the datasets affects the accuracy of estimation. 

Most of the software engineering datasets have missing values. 

The researchers either delete the projects containing missing 

values or avoid treating the missing values which reduce the ABE 

performance. In this study, Numeric Cleansing (NC), K-Nearest 

Neighbor Imputation (KNNI) and Median Imputation of the 

Nearest Neighbor (MINN) methods are used to impute the 

missing values in Desharnais and DesMiss datasets for ABE. 

MINN technique is introduced in this study. A comparison 

among these imputation methods is performed to identify the 

suitable missing data imputation method for ABE. The results 

suggested that MINN imputes more realistic values in the missing 

datasets as compared to values imputed through NC and KNNI. 

It was also found that the imputation treatment method helped in 

better prediction of the software development effort on ABE 
model. 

Keywords—Analogy-based estimation; effort estimation; 

missing data imputation; software development 

I. INTRODUCTION 

Software development effort estimation is an important 
and complex activity of project management. Be it planning, 
constructing or development, all aspects are affected by 
accurate effort estimation of software projects. There are 
various methods introduced for effort estimation by different 
researchers, but none could be called as the best method due to 
its dependency on various factors such as project feature, the 
available information, and the technique used. The basic aim 
of all the methods is to accurately estimate the project effort. 
Larry Putnam, Barry Boehm, and Joe Aron can be considered 
the pioneers of software effort estimation methods [1]. Barry 
Bohem introduced COCOMO after IBM’s interactive 
productivity and quality (IPQ) and the manual rule of thumb 
of estimation [2]. Putnam Life Cycle Management (SLIM) 
and Software Estimation Model (SEER-SEM) adopted and 

used the principles of COCOMO. Albrecht and Gaffney [3], 
introduced Functional Point (FP) as one of the metrics for size 
estimation. Shepperd and Schofield [4], brought forward 
Analogy-Based Estimation (ABE) method which became very 
prominent due to its working based on human manners of 
problem-solving. Though ABE produced better results it still 
had to face some constraints such as lack of detailed 
information, with limited features, and unreal or unnecessary 
requirements. There are several studies which tried to 
overcome the issues of ABE through mathematical and 
statistical solutions [5-8]. Soft computing techniques are 
widely adopted in ABE by researchers to deal with the 
complicated nature of software projects and to understand the 
relationship between features [9-16]. 

This study focuses on the improvement of ABE through 
missing data imputation with a modified imputation technique. 
The deviation in some related studies is shown in Table 1. 

A. Estimation by Analogy (ABE) 

ABE or EBA was introduced as the non-algorithmic 
estimation method by Shepperd and Schofield [4]. It estimates 
the effort of a new project by comparing it with the historical 
projects. There are usually four parts of ABE,  

 Historical Projects 

 Similarity Function 

 Solution Function 

 Associated Retrieval Rule  

Each of which can be described as:  

 Collecting the data of previous projects to form a 
historical dataset. 

 Selecting the project’s appropriate features. 

 Retrieving the data of past project to find similarities 
with the target project. The weighted Manhattan 
Distance and Euclidean Distance are usually preferred 
at this stage. 

 To estimate the software development effort of the 
target project. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 10, No. 2, 2019 

223 | P a g e  
www.ijacsa.thesai.org 

TABLE I. DEVIATION IN SOME RELATED STUDIES 

Source 
Numeric 

Cleansing 
KNNI MINN ABE 

[17]     

[18]     

[19]     

This Study     

1)  Similarity Function: In ABE, to compare the features 

of two projects, a similarity function is used. Euclidean 

Similarity (ES) and Manhattan Similarity (MS) are the two 

prominent similarity functions used by ABE to find out the 

similarity between the target and the past projects Shepperd 

and Schofield [4]. The ES is shown in Equation (1). 

   (    )  
 

[√∑      (     
 
) 

      ]

            

   (    
 
 
)  

{

|     
 
|             

 
                       

                            
 
                      

 

                          
 
                       

 
  

      (1) 

Where Sim stands for similarity and Dis stands for 
distance, p and p' represent the projects to be compared, wi is 
the weight allocated to the features which can range between 0 
to 1. δ is used to retrieve a non-zero result. The fi and fi' 
represent the project features while n determines the number 
of features. 

There are many similarities between MS and ES, but MS 
calculates the absolute difference between features. MS 
function is shown in Equation (2), whereas the variable 
description is the same as in Equation (1). 

   (    )  
 

[∑      (    
 
 
)    

   ]
            

   (    
 
 
)  

{

|     
 
|             

 
                       

                            
 
                      

 

                          
 
                       

 
  

      (2) 

2) Solution Function: Once the K most similar projects 

are chosen, it becomes possible to predict or estimate the 

effort of target project according to the selected attributes or 

features. The Closest Analogy [20], the median [21], the 

average and the inverse weighted mean of the most similar 

project are the most common solution functions [22]. The 

median refers to the median or effort for K>2 similar projects, 

the mean refers to the average of effort for K>1. In estimation, 

the portion of each project is adjusted by the inverse distance 

weighted mean by Equation (3). 

   ∑
   (    )

∑    (    ) 
   

 
                      (3) 

Where the new project is depicted by p, pk shows the most 
similar project at kth, Cpk illustrates the value of effort of kth 
pk and the total number of the project is denoted by K. 

B. Missing Data Concept 

In software projects, the prediction may be inaccurate due 
to incomplete information collected in the initial stages of the 
project. There are usually more than one technique employed 
to estimate the effort to be applied to a software project 
development [23]. However, the missing data in the historical 
datasets raise an issue for employing the estimation technique 
as it affects the accuracy (Strike et al. 2001). The missing 
values in the dataset lead to inaccurate effort prediction 
(Sentas Angelis, 2006). This section elaborates the missing 
data mechanism (such as the ways missing data may be 
confronted in a dataset) and the missing data techniques (i.e., 
to deal with the missing data). 

1) Mechanisms of Missing Data:- Mechanisms of missing 

data or patterns of missing values are the assumption of the 

types and distribution missing of missing data [24]. This 

missingness mechanism identifies the imputation technique to 

be used [24]. Missing mechanisms helps to identify if the 

missingness has any impact on the key variable or not, and it 

determines the difficulty level of the missing data handling. 

Missing At Random (MAR), Missing Completely At Random 

(MCAR) and Missing Not At Random (MNAR) are the three 

mechanisms of missingness [25]. The three mechanisms can 

formally be presented as, a dataset being collected as B= (bi), 

1 ≤i ≤N, in which there is not unobserved value. The missing 

portion if considered to have unobserved values in B, the M= 

(mi) indicator is used for donating the observation outcome. 

When bi is unobserved, the outcome is zero “0” and in case of 

observed it returns “1”. It can be characterized by probability 

distribution (conditional) lf M for B, e.g. p(M | B, ψ), where 

the unknown parameters are represented by ψ. According to 

Song, et al. [24], in MCAR pattern of missingness the 

distribution of observed and missing values are not different, 

or it can be stated that in MCAR mechanism, missingness is 

independent of observed and missing values of B, e.g. p(M| B, 

ψ) = p(M, ψ). In MAR, the missingness pattern is not 

depended on missing values but dependent on the observed 

values. It has to be dependent on at least one of the variables 

as it does not follow the condition of MCAR. MNAR, which 

intends, the missing data is not dependent on any observed 

variable in the dataset, but it depends on the missing data 

itself. 

2) Techniques for Missing Data: According to Song, et al. 

[24], there are three methods to deal with the missing data. 

Missing Data Ignoring, Missing Data Toleration, and Missing 

Data Imputation. 

a) Missing Data Ignoring: In this technique, the 
missing data cases are deleted. Though this technique is 

widely employed due to its simplicity, it leads to biasness and 

does not utilize the dataset. Missing Data Ignoring can be 

recommended in the case of MCAR found in a dataset or with 

a low level of missing data [17, 24] 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 10, No. 2, 2019 

224 | P a g e  
www.ijacsa.thesai.org 

b) Missing Data Toleration: The strategy of this 

technique is based on the internal treatment where missing 

data in the dataset is tolerated and analysis is directly 

performed on the dataset. One such kind of toleration 

approach is to assign a NULL value to replace the missing 

piece of data [17, 18, 26]. 

c) Missing Data Imputation: There are various 

strategies employed for missing data imputation, in which the 

missing values found in the dataset are filled, which lets the 

complete dataset being analyzed. Out of the many imputation 

techniques, K Nearest Neighbor imputation (KNNI) is utilized 

in this study. KNNI is population imputation technique, which 

has successfully produced good results in software 

development effort estimation [18, 27]. This is quite a 
practical approach as it has no explicit assumptions for 

missing data mechanism. The complete cases of a dataset are 

considered as a donor for imputing the incomplete cases by 

this technique. KNNI replaces the values of incomplete cases 

of missing data with its aggregated values. The k nearest 

neighbors are determined by finding the distance between the 

complete cases and incomplete cases which measures the 

similarity between them. There have been used Manhattan 

Distance and Euclidean Distance to find nearest cases: 

Manhattan Distance: It measures the distance by finding 
the sum of absolute differences between case a and case b 
with n attributes by the following Equation (4). 

   (   )  ∑ |     |
 
                   (4) 

Euclidean Distance: It calculates the distance between 
point a and point b by n number of attributes following the 
Equation (5). 

   (   )  √∑ (     )
  

                  (5) 

Rest of the paper is organized as Section II presents the 
related studies with ABE and the missing data in software 
engineering datasets and ABE. Section III Includes the 
experimental procedure. Section IV explains the results of 
MINN, NC and KNNI on ABE. Discussion on the results is 
shown in Section V whereas Section VI concludes the study 
and discusses some future work. 

II. RELATED WORK 

ABE relies on past projects to estimate the effort of future 
projects; therefore, the quality of past project dataset makes a 
significant difference. In software engineering dataset there 
are usually some data missing which leads the ABE model for 
the wrong estimation. There are very few studies, focusing on 
missing data techniques and ABE together, however, missing 
data techniques have been studied on the software engineering 
datasets in general quite extensively. Idri, et al. [28] performed 
a systematic mapping study on missing data and software 
engineering datasets. It was found in their study that Missing 
Data Imputation method was used the most out of the three 
methods for dealing with missing data. Strike, et al. [29] 
studied missing data for regression-based estimation for all 
mechanisms of missingness and concluded that missing data 
imputation produces favourable outcomes in comparison with 
the other techniques of missing data. Cartwright, et al. [30] 

used Toleration technique of dealing with missing data for 
missing at random and missing not at random mechanisms. 
Twala and Cartwright [31] ensembled multiple imputation and 
KNN and concluded that their proposed approach improved 
the prediction accuracy on industrial software engineering 
datasets. Sentas and Angelis [32] used Expectation 
Maximization Regression based Imputation, and Multi-
Logistic Regression-based imputation (MLR) methods and 
claimed that MLR shows higher accuracy than the other 
methods. Li, et al. [26] concentrated on Toleration technique 
for dealing with missing data on Missing Completely At 
Random to validate AQUA an ABE technique used for 
estimation. Song, et al. [24] studied KNN and Toleration 
techniques for all mechanisms of missingness and found that 
the missingness mechanism affects the performance of KNN 
and toleration. They showed that missing data has a very 
negative impact on estimation if the missingness is more than 
40%. Idri, et al. [18] conducted a study to evaluate the impact 
of different missing data techniques on ABE using KNN. 
Huang, et al. [17] performed an empirical study on cross-
validation of KNN imputation for software quality dataset, 
though the study compared KNN imputation and Mean 
imputation, it was specifically on software quality dataset, 
they did not focus on estimation or ABE. The related studies 
indicate the importance of imputing the missing data in past 
projects, especially for ABE. This motivates the research 
community to further work on improving the imputation 
techniques for better predicting the software development 
effort by ABE model. 

III. EXPERIMENTAL DESIGN 

This estimation process lets ABE estimate the effort to be 
applied to a target project by making analogies with the 
historical projects for datasets with imputed missing values. In 
this study, there are three techniques used to impute the 
missing values in the historical projects. However, it focuses 
to find the effects of missing data imputation on ABE, and to 
compare the introduced imputation technique, Median 
Imputation of the Nearest Neighbor (MINN) with the Numeric 
Cleansing (NC) and KNNI to identify suitable imputation 
technique for ABE. The experimental procedure is divided 
into three steps for finding the best estimate. Such as Step 1: 
Imputing missing values in the dataset by the three imputation 
techniques (MINN, NC and KNNI) one by one, Step 2: 
estimating the effort through ABE by making analogies, 
Step 3: evaluating the estimation performance by MMRE and 
PRED as shown in Fig. 1. 

In Step 1: The three techniques were interchangeably used 
to impute missing values in the datasets, so that performance 
of these techniques could be compared to identify the better 
imputation technique to be used with ABE for software 
development effort prediction. In Step 2, the algorithmic 
procedure of ABE was applied to the datasets with imputed 
values. The datasets (Desharnais and DeshMiss) with imputed 
values are infused in ABE initially, followed by the similarity 
function (Euclidian) to select the project’s features. After 
applying similarity function, the solution function (Inverse 
weighted mean as in Equation (3)) was used to find the related 
project and calculated the effort with associated retrieval rule. 
In Step 3, the estimation accuracy was tested to validate to 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 10, No. 2, 2019 

225 | P a g e  
www.ijacsa.thesai.org 

find out which imputation methods outperforms the other. 
MMRE and PRED were used as the performance evaluation 
metrics. 

A. Performance Accuracy Metrics 

There are several metrics to evaluate the performance of 
estimation methods, such as Relative Error (RE), Magnitude 
of Relative Error (MRE), and Mean Magnitude of Relative 
Error (MMRE). MMRE is the most frequently used out of the 
discussed performance metrics. In [33], MMRE is defined as: 

   (                )       )          (6) 

     |                | (      )         (7) 

     ∑                       (8) 

    ( )  
 

 
                     (9) 

In Equation (8) and (9), N represents the number of 
projects, A represents the projects with MRE >= X. The level 
of X is usually kept at 0.25 in software development effort 
estimation. The main aim of all the effort estimation models is 
to increase Percentage of Prediction (PRED) and decrease 

MMRE. PRED (X) is another extensively used prediction 
accuracy indicator. PRED (X) shows the estimates percentage 
within actual values of X percent. X is usually set to 0.25 
which makes it possible to reveal the number of estimate 
portion within 25% tolerance [4]. 

B. Dataset Description 

There are two datasets employed in this study Desharnais 
[34], and DeshMiss. Desharnais is one of the prominent 
datasets used for different studies of software engineering. 
This dataset contains the data of 80 software projects. The 
data of 4 out of the 80 projects is partially missing (e.g. the 
values of some of the features are missing). There are 9 
features in this dataset, the detail of which can be seen in 
Table 2. 

The feature (effort) is taken as the dependent feature 
whereas rest of the features are treated as independent features 

The TeamExp values of project number 38, 44 and the 
ManagerExp attribute values of project 38, 66 and 57 are 
missing in Desharnais dataset. The missing values of 
Desharnais dataset can be seen in Fig. 1. 

Data set with Missing 
Values

Analogy based Effort 
Estimation (ABE)

Imputation
(NC/KNNI/MINN)

Data set without 
Missing Values

MMRE

PRED

 Infusing the Data 
Set with Missing 

Values

Step 1: Curing 
missing Data

Step 2: Analogy 
based Effort 
Estimation 

Step 3: Evaluation

 

Fig. 1. MINN, Numeric Cleansing based and KNNI based Imputation and the Estimation Process. 

TABLE II. DESCRIPTION OF DESHARNAIS DATASET 

Feature Description  Min Max Mean Std Dev 

Effort Development Effort in person-hours 546 23940 4923.516 4646.751 

TeamExp Team Experience in Years 0 4 2.244 1.331 

ManagerExp Manager Experience in Years 0 7 2.803 1.47 

Length Length of Project in months 1 39 11.716 7.4 

Transections Number of Transactions 9 886 179.901 143.315 

Entities  Number of Entities 7 387 122.726 86.178 

PointsAdjust Number of Adjusted Function Points 73 1127 311.014 189.185 

Envergure Function Point Complexity Adjustment factor 5 52 27.014 10.851 

PointsNonAdjust 
Project Size Measured In Unadjusted Function Points. (Entities Plus Transactions) 

  
62 1116 295.765 197.937 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 10, No. 2, 2019 

226 | P a g e  
www.ijacsa.thesai.org 

Since the Desharnais dataset has a very low number of 
missing values, an artificial dataset was created similar to 
Desharnais with the name DeshMiss. In the DeshMiss dataset 
(Appendix A1), the number and type of features and projects 
are the same as of Desharnais but 7.22% (52 of the total 720) 
of the values are deleted with MNAR mechanism to validate 
the performance of both the imputation methods in the 
proposed estimation process used in this study. The artificial 
generation of such missing data has also been performed by 
studies such as Song, et al. [24], Strike, et al. [29] and Idri, et 
al. [18], Ali and Omer [35]. Further description of the 

DeshMiss dataset can be seen in Table 3. The Histogram and 
pattern of missing data for DeshMiss dataset can be seen in 
Fig. 2. 

Both the imputation methods in the proposed estimation 
process are used in this study. The artificial generation of such 
missing data has also been performed by studies such as Song, 
et al. [24], Strike, et al. [29] and Idri, et al. [18], Ali and Omer 
[35]. Further Description of the DeshMiss dataset can be seen 
in Table 3. The Histogram and pattern of missing data for 
DeshMiss dataset can be seen in Fig. 3. 

  

Fig. 2. Desharnais Dataset with Missing Values before Applying the Imputation Technique. 

TABLE III. DESCRIPTION OF DESHMISS DATASET 

Feature Description  Min Max Mean Std Dev 

Effort Development Effort in person-hours 546 23940 4924 4446.63 

TeamExp Team Experience in Years 0 4 2.282 1.338 

ManagerExp Manager Experience in Years 0 7 2.563 1.537 

Length Length of Project in months 1 36 10.811 6.188 

Transections Number of Transactions 9 886 183 146.79 

Entities  Number of Entities 7 387 123.213 85.046 

PointsAdjust Number of Adjusted Function Points 73 1127 311.125 187.717 

Envergure Complexity Adjustment factor of Function Points 5 52 26.817 10.847 

PointsNonAdjust 
Project Size Measured In Unadjusted Function Points. (Entities Plus Transactions) 

  
62 1116 200.447 182.676 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 10, No. 2, 2019 

227 | P a g e  
www.ijacsa.thesai.org 

 

Fig. 3. Histogram and Pattern of Missing Data for DeshMiss dataset. 

IV. EXPERIMENTAL RESULTS 

A. Median Imputation of the Nearest Neighbor (MINN) 

Median Imputation of the Nearest Neighbor (MINN), is a 
technique introduced in this study for imputing the missing 
values in software engineering datasets. MINN is the form 
works the same way as KNNI but with a slight modification. 
KNNI imputes the missing values based on the neighbors 
nearest to the value of concern. It works quite productively for 
MAR or MCAR missingness mechanism but in the case of 
MNAR, its performance is reduced [17]. The K value for 
KNN is usually set to 5 or less, in some cases, more than 5 
neighbors are chosen to perform imputation. If the 
missingness pattern or mechanism is MNAR e.g. a number of 
adjacent values are missing in multiple features, the KNNI 
imputes some unrealistic values which cause incorrect 
estimation. A flavor of KNNI also imputes values based on 
the mean of nearest neighbor but since the unrealistic 
imputation is continued it imputes slightly irrelevant values. In 
such a scenario MINN can be very useful, the adjacent 
missing values are taken in this technique and the median of 
these neighbors are imputed instead of the mean of all the 
values, or the random value of nearest neighbors. The 
procedure of MINN can be seen in Algorithm 1. 

Algorithm 1.  MINN Algorithm 

REQUIRE: Divide the dataset (D) into two sets. DM is the set with missing 

values (at least one feature missing). From a set (Dc) and Object O є DC will 

complete the feature information by the remaining features.  

 Step 1: Begin 

 Step 2: For each vector V in DM: 

i) Divide the instance vector into observed and missing parts 

as V=[V0:VM]  

ii) Calculate Dist(V0,O), the distance between V0 and O. Use 

only those features in O, which are observed in V 

iii) Select the K nearest instances vectors (KNN) to V 

iv) Replace the missing value using the MEDIAN of attributes  

 Step 3: End 

Step 3 of the proposed estimation process shown in Fig. 1, 
MMRE and PRED were calculated to evaluate the accuracy of 
estimation in term relative error. As a result, the effects of 
MINN on ABE while using Desharnais dataset, the MMRE, 
and PRED values were calculated as 0.1496 and 0.8 
respectively as shown in Table 4, and the effects of MINN on 
ABE while using DeshMiss dataset, the MMRE and PRED 
values were calculated as 0.0311 and .84 respectively, which 
can be seen in Table 4. The rate of success by PRED and 
MMRE value was significantly improved due to the relatively 
large number of missing data in the DeshMiss dataset. 

B. Numeric Cleansing 

Numeric cleaning or numeric cleansing is used as 
operations or filters in different tool for pre-processing the 
datasets; it also helps to cleanse the dataset with missing 
values. There are different strategies used by numeric 
cleansing to deal with the missing data such as using a 
placeholder, mean or any other values to replace the missing 
values or completely remove the column with missing values 
[36]. 

In this section, the numeric cleansing is performed on the 
datasets (Desharnais and DeshMiss) to increase the accuracy 
of predicting the development effort using ABE. Initially, in 
Step 1, the dataset with missing values is treated with numeric 
cleansing where the mean of the values is imputed in the 
dataset. 

The same procedure when applied on Desharnais it 
imputed the mean value of the same attribute. It imputed 
2.26582 in the TeamExp Column of project number 38 and 44 
where the data was missing. In the same way, 2.6666666 was 
imputed in the ManagerExp column of project number 38, 66, 
and 75 through numeric cleansing. Fig. 2 shows the 
Desharnais dataset with missing values and Fig. 4 shows the 
dataset with the imputed mean values through numeric 
cleansing. 

In Step 2, the analogy-based effort estimation is performed 
which is provided with the pre-processed (missing values 
imputed) Desharnais dataset. The ABE used ES to retrieve 
similar project based on attribute comparison. The solution 
function in ABE chose the most related project and calculated 
effort using the inverse distance weighted mean. In Step 3, the 
mean magnitude of relative error (MMRE) and PRED are 
calculated to evaluate the accuracy of estimation in term 
relative error. The complete estimation process where numeric 
cleansing was performed for imputation of the missing data is 
shown in Fig. 3. 

TABLE IV. EFFECTS OF MINN ON ABE FOR DESHARNAIS AND DESH MISS 

DATASETS 

Evaluation Metric Desharnais Dataset DeshMiss Dataset  

MMRE 0.1496 0.0311 

PRED (.25) 0.8 .84 

 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 10, No. 2, 2019 

228 | P a g e  
www.ijacsa.thesai.org 

  

Fig. 4. Desharnais Dataset with No Missing Values after Applying Numeric Cleansing. 

In Step 3 of the proposed estimation process, MMRE and 
PRED were calculated to evaluate the accuracy of estimation 
in term relative error. As a result, the effects of NC on ABE 
while using Desharnais dataset, the MMRE, and PRED values 
were calculated as 0.1518 and 0.8 respectively which is also 
shown in Table 5. 

As a result, the effects of NC on ABE while using 
DeshMiss dataset, the MMRE and PRED values were 
calculated as 0.0596 and 0.8 respectively which can be seen in 
Table 6. The rate of success by PRED for both the dataset 
remained the same but the MMRE value was significantly 
improved due to the relatively large number of missing data. 

C. K Nearest Neighbor Imputation (KNNI) 

The KNNI, as discussed in section 3.2.3 is used in place of 
Numerical Cleansing in Step 1 of the estimation process 
shown in Fig. 1, to impute the missing values in Desharnais 
(as shown in Fig. 2: dataset without imputed values). The 
KNNI imputed 2 in TeamExp column and 1 in ManagerExp 
column of the 38th project. It imputed 3 in TeamExp column 
of the 44th project. In 66th and 75th project 2 and 7 were 
imputed respectively in the ManagerExp column. The values 
imputed through KNNI shows the natural effect due to its 
dynamic nature, unlike NC which imputes static values for all 
the missing information. The default value of K was utilized 
which is 6. 

In Step 2, the analogy-based effort estimation is performed 
as it was performed for NC in section 5.2, which is provided 
with the pre-processed (missing values imputed) Desharnais 
and DeshMiss datasets one after another. The ABE used ES to 

retrieve a similar project based on attribute comparison. The 
solution function in ABE chose the most related project and 
calculated effort using the inverse distance weighted mean. In 
Step 3, the mean magnitude of relative error (MMRE) and 
PRED are calculated to evaluate the accuracy of estimation in 
term relative error. The complete estimation process where 
numeric cleansing was performed for imputation of the 
missing data is shown in Fig. 1. 

The Step 3 of proposed estimation process shown in Fig. 1, 
MMRE and PRED were calculated to evaluate the accuracy of 
estimation in term relative error. As a result, the effects of 
KNNI on ABE while using Desharnais dataset, the MMRE, 
and PRED values were calculated as 0.1503 and 0.8 
respectively as shown in Table 7. 

TABLE V. EFFECTS OF NUMERIC CLEANSING ON ABE FOR DESHARNAIS 

DATASET 

Evaluation Metric Numeric Cleansing 

MMRE 0.1518 

PRED (.25) 0.8 

TABLE VI. EFFECTS OF NUMERIC CLEANSING ON ABE FOR DESHMISS 

DATASET 

Evaluation Metric Numeric Cleansing 

MMRE 0.0596 

PRED (.25) 0.8 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 10, No. 2, 2019 

229 | P a g e  
www.ijacsa.thesai.org 

TABLE VII. EFFECTS OF KNNI ON ABE FOR DESHARNAIS DATASET 

Evaluation Metric KNNI 

MMRE 0.1503 

PRED (.25) 0.8 

As a result, the effects of KNNI on ABE while using 
DeshMiss dataset, the MMRE and PRED values were 
calculated as 0.0323 and .84 respectively, which can be seen 
in Table 8. The rate of success by PRED and MMRE value 
was significantly improved due to the relatively large number 
of missing data in the DeshMiss dataset. 

D. Effects of Numeric Cleansing, KNNI and MINN on ABE 

for Desharnais Dataset 

The value of MMRE was calculated as 0.1518 for Numeric 
Cleansing based ABE whereas 0.1596 for KNNI and 0.1496 
for MINN. The PRED (.25) was calculated as 0.8 for all three 
imputation techniques (Numeric cleansing, KNNI, MINN) 
based ABE, as shown in Table 9. The results are 
insignificantly improved due to the MCAR missingness 
mechanism. 

E. Effects of Numeric Cleansing, KNNI and MINN on ABE 

for DeshMiss Dataset 

The missing values in the DeshMiss dataset are high in 
number, unlike Desharnais dataset. The MMRE values were 
calculated for NC, KNNI, and MINN as 0.0596, 0.0323 and 
0.0311 respectively. Whereas, the PRED values for NC, KNN 
and MINN were calculated as 0.80, 0.84 and 0.84 
respectively, which shows a significant improvement. The 
results of MINN, KNNI, and NC no ABE for DeshMiss 
dataset are shown in Table 10. 

TABLE VIII. EFFECTS OF NUMERIC CLEANSING ON ABE FOR DESHMISS 

DATASET 

Evaluation Metric KNNI 

MMRE 0.0323 

PRED (.25) .84 

TABLE IX. EFFECTS OF NUMERIC CLEANSING, KNNI AND MINN ON ABE 

FOR DESHARNAIS DATASET 

Imputation  

Method 

Evaluation Metric 

Numeric 

Cleansing 
KNNI MINN 

MMRE 0.1518 0.1503 0.1496 

PRED (.25) 0.8 0.8 0.8 

TABLE X. EFFECTS OF NUMERIC CLEANSING, KNNI AND MINN ON ABE 

FOR DESHMISS DATASET 

Imputation 

Method 

Evaluation Metric 

Numeric 

Cleansing 
KNNI MINN 

MMRE 0.0596 0.0323 0.0311 

PRED (.25) .80 .84 .84 

V. DISCUSSION 

The experimental results showed that, imputing the 
missing data have a positive impact on the overall 
performance of ABE. Moreover, the MINN showed better 
results against NC and KNN in imputing the missing data 
which is verified by the proposed estimation process. Though 
the proposed approach shows insignificant improvement in the 
ABE performance on the Desharnais dataset, it is due to the 
very low number of missing values in it. Therefore, the impact 
of MINN, KNNI, and NC could not be much differentiated 
initially. However, when the proposed approach was applied 
to DeshMiss dataset which was artificially created with 7.22% 
of missing values following the MNAR missing data 
mechanism, the results showed significant improvement in the 
ABE estimation process. Since the DeshMiss dataset contains 
a considerable number of missing values, the impact of 
MINN, KNNI, and NC on the ABE estimation process can 
easily be highlighted. The NC technique imputes feature or 
attributes wise static values to replace all the missing values, 
whereas KNNI imputes dynamic values according to the 
neighboring values which shows the realistic values being 
imputed. 

This study focuses on the ABE model that follows human 
nature as it estimates the future project’s effort by making 
analogies with the past project's data. Since ABE relies on the 
historical datasets, the quality of the datasets affects the 
accuracy of estimation. Since, the majority of the software 
engineering datasets e.g., Desharnais, ISBSG etc., have 
missing values, there is the need for a better model to handle 
such scenarios. Consequently, the researchers either have to 
remove the projects containing missing values or avoid 
treating the missing values that reduce the ABE performance. 
To address this problem, this study is targeting MINN, 
Numeric Cleansing (NC) and K-Nearest Neighbor Imputation 
(KNNI) method to impute the missing values in Desharnais 
dataset for ABE. In this study, a comparison among these 
imputation methods is performed to identify the suitable 
missing data imputation method for ABE. The results 
suggested that MINN imputes more realistic values in the 
missing datasets as compared to values imputed through KNN 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 10, No. 2, 2019 

230 | P a g e  
www.ijacsa.thesai.org 

and NC. It was also found that the performance of ABE is 
reduced with deleted missing values and avoided missing 
values; the imputation treatment method helped in better 
prediction of the software development effort. 

The results suggested that imputing the missing values to 
complete the datasets has a positive impact on the 
performance of ABE. In the comparison of MINN, KNNI, and 
NC, it was found that, though, all three techniques improve 
the ABE performance, however, MINN significantly 
outperforms the results of NC when used with ABE for 
imputing the missing values in the DeshMiss dataset. The 
Desharnais dataset has a very low number of values missing, 
due to which, there could not be observed any significant 
difference among the three techniques when applied to 
Desharnais dataset. The dynamic nature of imputing values by 
MINN shows that it imputes more realistic values as 
compared to NC and slightly better than KNNI on small 
datasets. 

The concept of missing values is intended to further 
improve for enhancing the ABE process in the future. The 
impact of MINN should also be analyzed for large datasets 
because the dataset used in this study have data of 80 projects 
only. If MINN loses its performance on large dataset as is 
predicted, there could be proposed some novel imputation 
methods which may also deal with the large projects and with 
a large number of values missing. 

VI. CONCLUSION AND FUTURE WORK 

The successful management of a software project strongly 
depends upon the accuracy of software development effort 
estimation as it can substantially affect the planning and 
scheduling of a project. Analogy-based Estimation (ABE) has 
been widely adopted for effort estimation right from its 
genesis until recently. There have been many attempts made 
but to improve this estimation model from a different 
perspective but there are a very few studies which really 
focused on its vital part which is the data quality of the past 
datasets. It is very much necessary to have a complete dataset 
for making an analogy to predict the software development 
effort. There are usually values missing from the software 
engineering dataset of past projects. There are different 
treatment methods applied to deal with the missing values in 
these datasets. Imputing the missing data to replace the 
missing values is one of the prominent methods. There are 
different imputation methods used to impute missing values in 
the software engineering datasets. MINN K Nearest Neighbor 
Imputation (KNNI) and Numeric Cleansing are two of the 
imputation techniques. In this study, Numeric Cleansing (NC), 
K-Nearest Neighbor Imputation (KNNI) and Median 
Imputation of the Nearest Neighbor (MINN) methods are used 
to impute the missing values in Desharnais and DesMish 
datasets for ABE. MINN technique is introduced in this study. 
A comparison among these imputation methods is performed 
to identify the suitable missing data imputation method for 
ABE. The results suggested that MINN imputes more realistic 
values in the missing datasets as compared to values imputed 
through NC and KNNI. It was also found that the imputation 
treatment method helped in better prediction of the software 
development effort on ABE model. The impact of MINN 

should also be analyzed for large datasets because the dataset 
used in this study have the data of 80 projects only. If MINN 
loses its performance on large dataset as is predicted, there 
could be proposed some novel imputation methods which may 
also deal with the large projects and with a large number of 
values missing. 

APPENDIX A 

Table AI THE DESHMISS DATASET WITH MISSING VALUES 

P
r
o

je
c
tN

o
 

T
e
a

m
E

x
p

 

M
a

n
a

g
e
r
E

x
p

 

L
e
n

g
th

 

E
ff

o
r
t 

T
r
a

n
sa

c
ti

o
n

s 

E
n

ti
ti

e
s 

P
o

in
tA

d
ju

st
 

E
n

v
e
r
g

u
r
e
 

P
o

in
ts

N
o

n
A

d
ju

st
 

1 0 0 4 5635 197 124 321 33 315 

2 4 4 1 805 40 60 100 18 83 

3 0 0 5 3829 200 119 319 30 303 

4 0 0 4 2149 140 94 234 24 208 

5 0 0 4 2821 97 89 186 38 192 

6 2 1 9 2569 119 42 161 25  

7 1 2 13 3913 186 52  25  

8 3 1 12 7854 172 88  30  

9 3 4 4 2422 78 38  24  

10 4 1 21 4067 167 99  24  

11 2 1 17 9051 146 112 258   

12 1 1 3 2282 183 72 105   

13 3 4 8 4172 183 61 223  216 

14 4 4 9 4977 183 121 344  320 

15 3 2 8 1617 183 48 167 26 152 

16 4 3 8 3192 183 43 100 43 108 

17 4  14 3437 68 316 384 20 326 

18 3  14 4494 9 386 395 21 340 

19 4  5 840 58 34 92 29 86 

20 4  12 14973 318 269 587 34  

21 2  18 5180 88 170 258 34  

22 2  5 5775 306 132 438 37  

23 4 1 20 10577 304 78 382  397 

24 1 4 8 3983 89 200 289  283 

25 4 1 14 3164 86 230 316  310 

26 2 0 6 3542 71 235 306  312 

27 3 1 14 4277 148 324 472  491 

28 4 4 16 7252 116 170 286 27 263 

29 4 1 14 3948 175 277 452 37  

30 4 3 6 3927 79 128 207 27  

31 1 1 9 710 145 38  27  

32 4 4 9 2429 174 78  41  

33 1 1 5 6405 194 91  35  

34 2 2 3 651 126 49  38  



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 10, No. 2, 2019 

231 | P a g e  
www.ijacsa.thesai.org 

35 1 3 17 9135 137 119 256 34  

36 2 4 11 1435 289 88 377 28  

37   8 5922 260 144 404 24 360 

38 1 4 4 847 158 59 217 18 180 

39 3 3 16 8050 302 145 447 52 523 

40 1 1  4620 451 48 499 28 464 

41 2 4  2352 661 132 793 23 698 

42 1 1  2174 64 54 118 25 106 

43  4  19894 284 230 514 50 591 

44 2 1  6699 182 126 308 35 308 

45 2 3  14987 173 332 505 19 424 

46 2 2 9 4004 252 7 259 28 241 

47 4 3 11 12824 131 180 311 51 361 

48 2 3 8 2331 106 39 145 6 103 

49 3 3 9 5817 96 108 204 29 192 

50 2 3 7 2989 116 72 188 18 156 

51 3 3 6 3136 86 49 135 32 131 

52 2 3 17 14434 221 121 342 35 342 

53 1 1 12 2583 61 96 157 18 130 

54 1 3 12 3647 132 89 221 5 155 

55 3 7 13 8232 45 387 432 16 350 

56 1 1 12 3276 55 112 167 12 129 

57 1 4 8 2723 124 52 176 14 139 

58 3 3 5 3472 120 126 246 15 197 

59 1 2 6 1575 47 32 79 14 62 

60 1 1 12 2926 126 107 233 23 205 

61 3 2 6 1876 101 45 146 15 117 

62 1 1 5 2520 78 99 177 14 140 

63 4 7 13 1603 69 74 143 14 113 

64 1 3 8 3626 194 97 291 35 291 

65 2  10 6783 224 110 334 28 311 

66 2 4 15 11361 323 184 507 35 507 

67 1 3 10 1267 42 31 73 27 67 

68 1 2 5 2548 74 43 117 25 105 

69 3 4 10 1155 101 57 158 9 117 

70 0 4 6 546 97 42 139 6 99 

71 2 3 13 2275 134 77 211 13 165 

72 4 5 26 9100 482 227 709 26 645 

73 0 2 6 595 213 73 286 6 203 

74 0  22 3941 139 143 282 22 245 

75 2 3 24 13860 473 182 655 40 688 

76 4 4 12 1400 229 169 398 39 414 

77 4 3 12 2800 227 73 300 34 297 

78 4 4 24 9520 395 193 588 40 617 

79 4 3 12 5880 469 176 645 43 697 

80 4 4 36 23940 886 241 1127 34 1116 

REFERENCES 

[1] C. Jones, "Estimating Software Costs: Bringing Realism to Estimating, 

Osborne," ed: McGraw HIll), 2007. 

[2] B. Boehm, "Constructive cost model," Software Engineering 
Economics, 1981. 

[3] A. J. Albrecht and J. E. Gaffney, "Software function, source lines of 

code, and development effort prediction: a software science validation," 
IEEE transactions on software engineering, pp. 639-648, 1983. 

[4] M. Shepperd and C. Schofield, "Estimating software project effort using 

analogies," IEEE Transactions on software engineering, vol. 23, pp. 
736-743, 1997. 

[5] J. Li and G. Ruhe, "Analysis of attribute weighting heuristics for 
analogy-based software effort estimation method AQUA+," Empirical 

Software Engineering, vol. 13, pp. 63-96, 2008. 

[6] J. W. Keung and B. Kitchenham, "Optimising project feature weights 
for analogy-based software cost estimation using the mantel 

correlation," in Software Engineering Conference, 2007. APSEC 2007. 
14th Asia-Pacific, 2007, pp. 222-229. 

[7] J. Wen, S. Li, and L. Tang, "Improve analogy-based software effort 

estimation using principal components analysis and correlation 
weighting," in Software Engineering Conference, 2009. APSEC'09. 

Asia-Pacific, 2009, pp. 179-186. 

[8] A. Tosun, B. Turhan, and A. B. Bener, "Feature weighting heuristics for 
analogy-based effort estimation models," Expert Systems with 

Applications, vol. 36, pp. 10325-10333, 2009. 

[9] N.-H. Chiu and S.-J. Huang, "The adjusted analogy-based software 
effort estimation based on similarity distances," Journal of Systems and 

Software, vol. 80, pp. 628-640, 2007. 

[10] Y.-F. Li, M. Xie, and T. N. Goh, "A study of project selection and 
feature weighting for analogy based software cost estimation," Journal 

of Systems and Software, vol. 82, pp. 241-252, 2009. 

[11] J. Pahariya, V. Ravi, and M. Carr, "Software cost estimation using 

computational intelligence techniques," in Nature & Biologically 
Inspired Computing, 2009. NaBIC 2009. World Congress on, 2009, pp. 

849-854. 

[12] A. L. Oliveira, P. L. Braga, R. M. Lima, and M. L. Cornélio, "GA-based 
method for feature selection and parameters optimization for machine 

learning regression applied to software effort estimation," information 
and Software Technology, vol. 52, pp. 1155-1166, 2010. 

[13] V. K. Bardsiri, D. N. A. Jawawi, S. Z. M. Hashim, and E. Khatibi, 

"Increasing the accuracy of software development effort estimation 
using projects clustering," IET software, vol. 6, pp. 461-473, 2012. 

[14] V. K. Bardsiri, D. N. A. Jawawi, A. K. Bardsiri, and E. Khatibi, "LMES: 

A localized multi-estimator model to estimate software development 
effort," Engineering Applications of Artificial Intelligence, vol. 26, pp. 

2624-2640, 2013. 

[15] A. Idri, F. azzahra Amazal, and A. Abran, "Accuracy Comparison of 
Analogy‐Based Software Development Effort Estimation Techniques," 

International Journal of Intelligent Systems, vol. 31, pp. 128-152, 2016. 

[16] T. R. Benala and R. Mall, "DABE: Differential evolution in analogy-
based software development effort estimation," Swarm and Evolutionary 

Computation, vol. 38, pp. 158-172, 2018. 

[17] J. Huang, J. W. Keung, F. Sarro, Y.-F. Li, Y.-T. Yu, W. Chan, et al., 

"Cross-validation based K nearest neighbor imputation for software 
quality datasets: An empirical study," Journal of Systems and Software, 

vol. 132, pp. 226-252, 2017. 

[18] A. Idri, I. Abnane, and A. Abran, "Missing data techniques in analogy-
based software development effort estimation," Journal of Systems and 

Software, vol. 117, pp. 595-611, 2016. 

[19] I. Abnane and A. Idri, "Improved Analogy-Based Effort Estimation with 
Incomplete Mixed Data," in 2018 Federated Conference on Computer 

Science and Information Systems (FedCSIS), 2018, pp. 1015-1024. 

[20] F. Walkerden and R. Jeffery, "An empirical study of analogy-based 
software effort estimation," Empirical software engineering, vol. 4, pp. 

135-158, 1999. 

[21] L. Angelis and I. Stamelos, "A simulation tool for efficient analogy 
based cost estimation," Empirical software engineering, vol. 5, pp. 35-

68, 2000. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 10, No. 2, 2019 

232 | P a g e  
www.ijacsa.thesai.org 

[22] G. Kadoda, M. Cartwright, L. Chen, and M. Shepperd, "Experiences 

using case-based reasoning to predict software project effort," in 
Proceedings of the EASE 2000 conference, Keele, UK, 2000. 

[23] J. Magne and S. Grimstad, "Avoiding irrelevant and misleading 

information when estimating development effort," IEEE software, pp. 
78-83, 2008. 

[24] Q. Song, M. Shepperd, X. Chen, and J. Liu, "Can k-NN imputation 

improve the performance of C4. 5 with small software project datasets? 
A comparative evaluation," Journal of Systems and software, vol. 81, 

pp. 2361-2370, 2008. 

[25] R. J. Little and D. B. Rubin, "Bayes and multiple imputation," Statistical 
analysis with missing data, pp. 200-220, 2002. 

[26] J. Li, A. Al-Emran, and G. Ruhe, "Impact analysis of missing values on 

the prediction accuracy of analogy-based software effort estimation 
method AQUA," in Empirical Software Engineering and Measurement,  

2007. ESEM 2007. First International Symposium on, 2007, pp. 126-
135. 

[27] A. Mockus, "Missing data in software engineering," in Guide to 
advanced empirical software engineering, ed: Springer, 2008, pp. 185-

200. 

[28] A. Idri, I. Abnane, and A. Abran, "Systematic mapping study of missing 
values techniques in software engineering data," in Software 

Engineering, Artificial Intelligence, Networking and Parallel/Distributed 
Computing (SNPD), 2015 16th IEEE/ACIS International Conference on, 

2015, pp. 1-8. 

[29] K. Strike, K. El Emam, and N. Madhavji, "Software cost estimation with 

incomplete data," IEEE Transactions on Software Engineering, vol. 27, 
pp. 890-908, 2001. 

[30] M. H. Cartwright, M. J. Shepperd, and Q. Song, "Dealing with missing 

software project data," in Software Metrics Symposium, 2003. 
Proceedings. Ninth International, 2003, pp. 154-165. 

[31] B. Twala and M. Cartwright, "Ensemble imputation methods for missing 

software engineering data," in Software Metrics, 2005. 11th IEEE 
International Symposium, 2005, pp. 10 pp.-30. 

[32] P. Sentas and L. Angelis, "Categorical missing data imputation for 

software cost estimation by multinomial logistic regression," Journal of 
Systems and Software, vol. 79, pp. 404-414, 2006. 

[33] I. Myrtveit and E. Stensrud, "A controlled experiment to assess the 

benefits of estimating with analogy and regression models," IEEE 
transactions on software engineering, vol. 25, pp. 510-525, 1999. 

[34] J.-M. Desharnais, "Analyse statistique de la productivitie des projects 
informatique a partie de la technique des point des function," Masters 

Thesis University of Montreal, 1989. 

[35] N. A. Ali and Z. M. Omer, "Improving accuracy of missing data 
imputation in data mining," Kurdistan Journal of Applied Research, vol. 

2, pp. 66-73, 2017. 

[36] A. Fatima, N. Nazir, and M. G. Khan, "Data Cleaning In Data 
Warehouse: A Survey of Data Pre-processing Techniques and Tools," 

2017. 


