
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 2, 2019

233 | P a g e

www.ijacsa.thesai.org

Automatic Structured Abstract for Research Papers

Supported by Tabular Format using NLP

Zainab Almugbel
1
, Nahla El Haggar

2
, Neda Bugshan

3

1,2,3
Computer Science Department

Community College, Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam, Saudi Arabia
2
Faculty of Computers and Information, Helwan University,Cairo, Egypt

Abstract—The abstract is an extensive summary of a scientific

paper that supports making a quick decision about reading it.

The employment of a structured abstract is useful to represent

the major components of the paper. This, in turn, enhances

extracting information about the study. Regardless of the

importance of the structured abstract, many computer science

research papers do not apply it. This may lead to weak abstracts.

This paper aims at implementing the natural language processing

(NLP) techniques and machine learning on conventional

abstracts to automatically generate structured abstracts that are

formatted using the IMRaD (Introduction, Methods, Results, and

Discussion) format which is considered as a predominant in

medical, scientific writing. The effectiveness of such sentence

classification, which is the capability of a method to produce an

expected outcome of classifying unstructured abstracts in

computer science research papers into IMRAD sections, depends

on both feature selection and classification algorithm. This can be

achieved via IMRaD Classifier by measuring the similarity of

sentences between the structured and the unstructured abstracts

of different research papers. After that, it can be classified the

sentences into one of the IMRaD format tags based on the

measured similarity value. Finally, the IMRaD Classifier is

evaluated by applying Naïve Bayes (NB) and Support Vector

Machine (SVM) classifiers on the same dataset. To conduct this

work, we use dataset contains 250 conventional Computer

Science abstracts for periods 2015 to 2018. This dataset is

collected from two main websites: DBLP and IOS Press content

library. In this paper, 200 xml based files are used for training,

and 50 xml based files are used for testing. Thus, the dataset is

4x250 files where each file contains a set of sentences that belong

to different abstracts but belong to the same IMRaD sections.

The experimental results show that Naïve Bayes (NB) can predict

better outcomes for each class (Introduction, method, results,

Discussion and Conclusion) than Support Vector Machine

(SVM). Furthermore, the performance of the classifier depends

on an appropriate number of the representative feature selected

from the text.

Keywords—Natural language processing (NLP); Naïve Bayes

(NB) classifier; SVM

I. INTRODUCTION

The abstract is crucial to state the aim and the content of
papers for authors. This is because it summarizes the scientific
paper's key concepts and findings. The components of the
abstract could be organized in a structured or an unstructured
format. If the unstructured format is used, the abstract is called
a conventional abstract. It is a set of sentences. The set briefly
describes the scientific paper without following any format.

This means the author may summarize the essential parts of the
research paper from his/her point of view without considering
any standards.

In contrast, the structured abstract follows a specific format
to describe the paper [1]. This paper proposes employing the
structured abstract based on IMRaD (Introduction, Methods,
Results, and Discussion) format [2,3] in computer science
research papers. The IMRaD format has many advantages for
the authors, editors, and reviewers. This includes organizing
ideas, remembering main elements, facilitating manuscripts
evaluation process, improving computerized literature
searching and enhancing the efficiency of finding specific
information without skimming the entire paper [4,5,6]. For
instance, researchers can make a quick decision about reading
a paper based on its structured abstract [7]. Despite the
advantages of the structured abstract, many computer science
researchers prefer writing un-structured abstracts in their
research papers. Therefore, this paper aims at applying the
natural language processing (NLP) techniques and machine
learning to automatically generate structured abstracts that are
formatted using the IMRaD (Introduction, Methods, Results,
and Discussion) format. This could indirectly contribute to
enhancing the quality of the abstracts because it assists in
identifying any missing IMRaD section. Moreover, this speeds
up the process of finding specific information about the paper,
such as methodologies or results, within the abstract. Thus,
having a high-quality searchable abstract could increase the
number of citations for the research paper.

The order of the paper as follows: Section 2 addresses a
summary of previous related work in both automate structuring
and similarity measurement. Section 3 presents what
methodologies are used in this paper for structuring the
conventional abstracts of the computer science research papers.
This includes the term preprocessing method, the feature
selection method, the training classifier, and cross-validation.
Section 4 discusses the results of this work. Finally, conclusion
and future work are stated in Section 5.

II. RELATED WORK

Fatiregun et al. [1] examines the comparative advantage of
structured abstracts over unstructured abstracts as documented
by various articles on the subject and makes a recommendation
for structuring abstracts in articles appearing in Nigerian
Journals.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 2, 2019

234 | P a g e

www.ijacsa.thesai.org

James Hartly et al. [8] illustrate the difference between
structured and unstructured abstract. Structured abstracts are
typically longer than traditional ones, but they are also judged
to be more informative and accessible. Authors and readers
also judge them to be more useful than traditional abstracts.
However, not all studies use “real-life” published examples
from different authors in their work, and more work needs to
be achieved in some cases.

Andrade [9] has provided recommendations on how to
write an efficient abstract on conventions in abstract writing as
well as on the advantages of structured abstracts.

G.H., Martín et al. [10] studies the similarity between
research journals taking advantage of the semi-structured
information that is usually available in the description of a
research paper: abstract and additional features like their
writers, keywords, and the journals in which they were
published. After determining the elements included for
similarity measurement, it uses the vector space model or by
language modelling techniques to measure it.

S. Jeong et al. [11] is also used structured abstracts of the
PubMed Central open access subset. It aims at developing an
ontology-based abstract authoring support tool. This tool
provides candidate lexical bundles organized according to
IMRaD format and thereby helps to complete sentences in
tabular format representation.

M. A. Morid et al. [12] uses two strategies feature-rich
classifier and sentence location to classify the clinically useful
sentences on PubMed abstracts. It shows that only results and
conclusion headings contain the desired information.

The most recent study pointed out by S. Nam et al. [3] has
explored the most useful linguistic features in MEDLINE
papers where the constructed feature set consist of a bag of
words, linguistic features, grammatical features, and structural
features. The sentence's classification was improved when the
feature set was evaluated on three datasets from the PubMed
Central Open Access Subset. Indeed, this feature set influences
the quality of classification.

III. METHODOLOGY

The methodology of the present investigation is introduced
in this paper. In the first and second subsections, the source of
data used to generate n-grams and the n-gram data preparation
process are presented respectively. In the third subsection,
classifier and a machine learning workbench utilized in the
current study are suggested, including how the results are
achieved and evaluated.

The proposed system, shown in Fig. 1 is divided into four
parts: Getting raw data, pre-processing data, training classifier
and cross-validation.

A. Dataset Preparation

In this paper, NLP is used to process the dataset in order to
use it to the classifiers. The data from the XML file is used to
create features and instances suitable for classification. To
generate a classification file, we build a python program, called
IMRaD Classifier, to extracts the features for each part of
IMRaD describe these processes of feature extraction. The

dataset contains 250 conventional abstracts that are first

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 2, 2019

235 | P a g e

www.ijacsa.thesai.org

randomly selected from Computer Science research papers.
Then, they are manually converted into structured abstracts.
These papers met the following criteria [4, 10]:

Domain: Computer Science research papers

Source: the XML description of these papers is collected
from two main websites: DBLP and IOS press content library
[13].

Abstract length: the research papers are selected if their
abstracts' word count is between 180 and 220.

Dataset: the following steps are used to assemble the
dataset in this paper:

First, XML-based files are downloaded from DBLP. They
contain the XML descriptors of the research papers, such as
titles and authors, except their abstracts.

Second, the conventional abstract of each paper is
transcribed manually from the IOS press content library into
the related XML-based file.

Third, the conventional abstracts are structured manually
using the (IMRaD) format (Introduction, Methods, Results, and
Discussion). The sentences of the conventional abstracts are
structured based on the descriptions of the IMRaD components
(IMRaD tags) [4, 5, 6] that can be explained as follows:

 Introduction tag (<introduction>) contains the
sentences that describe the research problem.

 Method tag (<method>) includes the sentences that
describe what methodology is used to solve the
research problem.

 Results tag (<results>) contains the sentences that
describe the findings with respect to the method used.

 Discussion and conclusion tag
(<discussion_conclusion >) contains the sentences that
describe the results, the met objectives, major findings,
and limitations.

Fig. 1. Proposed System.

In our work, the dataset has two main properties:

1) It is divided into two sets of data (ratio = 75:25). The

first dataset is used for the training set, and the other is used

for the testing set. Thus, 4x200 XML-based files of the dataset

are used for training, and 4x50 XML-based files are used for

testing.

2) The IMRaD tags (<introduction>, <method>,

<results>,<discussion_conclusion>) present the classes in the

xml-based files

The IMRaD Classifier calls algorithms one and two in
sequence. Both algorithm1 and algorithm2 are shown in Fig. 2
and Fig. 3. We will discuss them in details in the pre-
processing and the feature extraction subsections.

B. Pre-Processing

The preprocessing stage is clarified in Algorithm 1. It
starts with parsing the XML-based files to extract the
structured abstracts of the training set. Then, each abstract's
sentence is transcribed into a file based on its IMRaD XML-
tag. Thus, four files are created at the end of this stage:

1) IntroFile includes the sentences that belong to

<introduction>

2) MFile includes the sentences that belong to <method>

3) RFile includes the sentences that belong to <results>

4) DCFile includes the sentences that belong to

<discussion_conclusion>
The preprocessing stage used in the framework includes the

mostly used preprocessing tasks in NLP [14], which are:

 Tokenization: It is the process of dividing a sequence
of string into pieces called tokens. The sentences
converted into a list of terms by splitting into white
spaces and removing punctuation.

 POS Tagging: The grammatical feature (Part of
Speech) takes place to filter the available words in the
sentences based on their part of speech using NLTK
[15]. This helps to neglect the commonly used words
such as propositions and pronouns.

 N-gram Tagging: In order to classify texts, a set of
keywords that distinguish each class is required. In
this paper, this is achieved by using the n-gram concept
in which n-grams of different lengths are generated
from a tag set. This set of n-grams (where n is set to 1
and 2) is primarily the result of moving a window of n
characters along the text.

The word2vecort algorithm and nltk library are used to
generate unigrams (where n=1) and bigrams (where n=2). They
both applied to the four files mentioned in algorithm1 and to
the merged file that contains the whole training set.

After extracting unigrams and bigrams, their frequency
information is calculated for all related files. When the
classification experiments are conducted, all frequency lists
will be taken as inputs. By using n-grams, we do not need to
perform word segmentation [16].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 2, 2019

236 | P a g e

www.ijacsa.thesai.org

 The Bag of Words: Using machine learning methods
to classify texts requires encoding the text as a feature
vector. The most straightforward approach is to
represent the document by a bag-of-words feature
vector with the features being word occurrences.

C. Feature Extraction

In the feature extraction stage: the vector space model [17]
generally utilizes to represent text documents from the training
dataset as vectors of weighted features to classify it based on
the maximization of the weight.

D. Abstract Representation using Various Weights

The Vector Space Model (VSM) is an algebraic model that
represents text documents as vectors that makes use of the bag-
of-words approach (BOW). Consequently, the M×N document-
term matrix would be formed, where N is the number of
documents, and M is the number of unique terms. Every
unique term would be represented by a column, and each cell
(i, j) keeps the number of term i which are in document j.
Documents are described by word occurrences while
completely ignoring the relative position [18] and [19].

Abstract Aj is then represented as a weighted vector Aj =
(w1, w2, ··· , wN). Each weight reflects the importance of that
term in the abstract and/or in a given collection of IMRaD
heading (Introduction, Methods, Results, and Discussion). The
similarity between the two abstracts can then be assessed
simply by comparing their vectors. “Abstract by the term” is
constructed shown in Table 1, where Ti is n-gram, and each
abstract is represented by a score of weight “wij”.

wij = frequency of term Ti in abstract Aj, that is, TFij where:
Generally, “wij” has been any of the following:

∑
 (1)

Fig. 2. Algorithm1.

TABLE I. ABSTRACT BY TERM

Tag
Term

Class
T1 T2 TM

AbsIntro W11 W12 W1M C1

Absa W21 W22 W2M C2

AbsR W31 W32 … W3M C3

AbsDC W41 W42 W4M C4

AbsIMRaD WN1 WN2 WNM C

ni j is the number of occurrences of the considered term in
class ci in abstract Aj where {Aj: Ti ∈cj , cj∈ Aj } is the number
of where the term Ti appears. Algorithm 2 version 1 in Fig. 3
conserves the sequence of IMRaD heading and the sentence
position while classifying the sentences but Algorithm 2
version 2 does not.

E. Term Preprocessing within the Class

In the training set, each Term in dataset belongs to one
class ci. Here, ci ∈C, C = {c1, c2..., cn}, C is the class set
defined before classification.

Fig. 3. Algorithm 2 Version 1.

Algorithm1

1- Ask for the training set (set of XML-based files)

2- FOR each XMLFile in the training set

3- FOR each XMLTag in the XMLFile

4- IF XMLTag="introduction" THEN

5- Append IntroFile with XMLTag text

6- ELSE IF XMLTag="method" THEN

7- Append MFile with XMLTag text

8- ELSE IF XMLTag="resutls" THEN

9- Append RFile with XMLTag text

10- ELSE IF XMLTag=

 " discussion_conclusion"

11- THEN Append DCFile with XMLTag text

 END FOR

 END FOR

12- Apply tokenization then grammatical feature (POS)

to select terms from the four files (IntroFile, MFile,

RFile, DCFile)

13- Apply word2vector algorithm on the selected terms

to identify the keywords (unigrams) in each class

14- Apply the nltk library to determine the bigrams in

each class

Algorithm2 version 1

// Ti_ F merged file: Ti Frequency in the merged file

// Ti_FIntor: Ti Frequency in Introduction File

// Ti_FM: Ti Frequency in Method File

// Ti_FR: Ti Frequency in Result File

// Ti_FDC: Ti Frequency in Discussion and Conclusion File

// CA: conventional abstract

// SA:structured abstract

1-Create a merged file of the four mentioned files

2-Apply word2vector algorithm to find the similar terms in

each separated file and the merged file (a term and its

similarities are considered as one term if similarity value is

high)

3-Calculate the terms frequency in the merged file

4-Calculate the terms frequency in the four files separately

5-FOR EACH term Ti

6-Calculate the weight of Ti in each IMRaD heading :

a. Ti_Intor= Ti_FIntor / Ti_ F merged file

b. Ti_M= Ti_FM / Ti_ F merged file

c. Ti_R= Ti_FR / Ti_ F merged file
d. Ti_DC= Ti_FDC / Ti_ F merged file

7- Store Ti, its frequency, IMRAD heading (KB)

8- END FOR

9- Ask for the conventional abstract

10- FOR EACH sentence in CA

11- Retrieve the weights of its terms from KB

12- Sum its terms' weights for each specific

IMRaD heading

13-Classify the sentence based on its maximum total weight

14- END FOR

15- Return SA

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 2, 2019

237 | P a g e

www.ijacsa.thesai.org

“Abstract by the term” is constructed as shown in Table 1,
where Ti includes all the n-grams (where n=1,2) extracted in
the class ci and T is n-gram set in all classes selected by
Algorithm 3. However, the n-grams frequency in each class is
higher than 9,000 on an average. Most of them occur only one
or two times. Three kinds of weight “wij” are compared in this
paper:

∑
 (2)

∑
 (3)

∑
 (4)

We choose α = 0.5 as the threshold in order to keep features
as many as possible in each class.

F. Classification

Finally, once the feature is selected, it's the time to train the
classifier. Classification is one of the critical steps in all
machine learning’s tasks.

Classification is a method of identifying to which set or
category a new observation belongs, on the basis of a training
dataset including observations whose class is known. Since we
already have labelled all the instances, we only need to choose
supervised learning classifiers.

Whenever the data to be used for training a supervised
classifier is relatively little, the machine learning theory
recommends to use a classifier with high bias/low variance
(Naïve Bayes, SVM logistic regression, and decision trees)
[20]. Based on that we decided to use Naïve Bayes and SVM
in this research.

1) The naive bayes (NB): The Naive Bayes (NB) classifier

[21, 22], in machine learning, is a supervised learning

algorithm that uses a simple probability to determine the

maximum likelihood of the occurrence of a possible solution.

This algorithm is based on applying the Bayes’ Theorem with

the naive assumption of independence between every pair of

features [21]. This classifier is very popular because

classification using Naive Bayes algorithm is easy, quick and

efficient.

Assume a variable C indicates the class of an observation
O. The class of the observation O can be predicted using the
Naive Bayes rule; we need to calculate the highest posterior
probability of [23]:

 (|)
 () (|)

 ()
 (5)

In the NB classifier, using the assumption of features O1,
O2 On are conditionally independent on each other given the
class, we get [23]:

 (|)
 ()∏ (|)

 ()
 (6)

2) Support vector machine (SVM): Another common

method that is used to perform supervised learning using

different classifiers in order to predict possible future solutions

is Support Vector Machine (SVM).

Support Vector Machine (SVM) is a discriminative
classifier formally defined by a separating hyperplane. In other
words, the algorithm outputs an optimal hyperplane for given
training data which categorizes new examples. In spite of being
a complicated process, SVM is widely regarded as one of the
best text classification algorithms because of its effectiveness,
accuracy, efficiency, and versatility. For implementing SVM,
the training steps from 1 to 13 of the algorithm (1) are re-
applied to the dataset. Then, the dataset is represented in a
format that suits the inputs of LIBSVM [24]. The LIBSVM is
used to evaluate the results of the different classifiers.

IV. RESULTS AND DISCUSSION

We use dataset contains 250 conventional Computer
Science abstracts for periods 2015 to 2018. This dataset is
collected from two main websites: DBLP and IOS Press
content library. First, the XML based descriptors of research
papers are selected from DBLP to include papers with abstracts
of 180-220 words length. Second, the papers' conventional
abstracts are transcribed manually from IOS press content
library into the XML descriptors. Third, the conventional
abstract are converted into structured abstracts based on the
(IMRaD) format (Introduction, Methods, Results, and
Discussion). In this paper, 200 XML based files are used for
training, and 50 XML based files are used for testing. Thus, the
dataset is 4x250 files where each file contains a set of
sentences that belong to different abstracts but belong to the
same IMRaD section.

A. Natural Language Toolkit (NLTK)

NLTK [15] module is a huge toolkit, aimed at helping us
with the entire Natural Language Processing (NLP)
methodology. NLTK helped us with everything from splitting
sentences from paragraphs, splitting up words, recognizing the
part of speech of those words and then even with assisting the
machine in understanding what the text is all about. Python’s
package NLTK is one of the most important packages for this
paper. NLTK is a very suitable tool to work with while
working with natural language and machine.

B. Analysis

For the analysis of our research, we use the F1 measure
(FScore) which is a measure of a test's accuracy. It considers
the test's measurements: precision and recall to compute the
score.

The F1 score takes a value between 0 and 1, where 0 is the
worst possible score, and 1 is the top possible score. It is
calculated using the precision (p) and recall (r) measures,
defined as:

Precision is called the positive predictive value. It is the
percentage of correctly predicted positive data (TP) overall
predicted positive data.

 ()

 (7)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 2, 2019

238 | P a g e

www.ijacsa.thesai.org

Where TP is true positives number where the predicted
outcome matches the actual value as positive, and FP is the
false positives number or false alarms that occur when the
prediction indicates that the result is positive, but the real value
is negative. The computation of the classifier’s performance is
based on Precision [25].

The recall is the percentage of correctly predicted overall
positive data. The recall is the ratio given by:

 ()

 (8)

Where TP is the true positives number and FN is the
number of false negatives that occur when the predicted
solution is negative, but the actual value is positive.

The F score can be interpreted as a weighted harmonic
mean of the precision and recall, where it reaches its best value
at one and worst score at zero.

 (9)

For multi-classes, the F- scores are summarized over the
different categories using the Micro-averages and Macro-
averages of F-Scores:

 Micro F-Score = average in documents and classes.

 Macro F-Score = average of within-category F values.

C. Comparison of Text Representation Weights

All experiments were validated using 10-fold cross-
validation in which, the whole dataset is broken into ten equal
sized sets and classifier is trained on nine datasets and tested on
remaining dataset. This process is repeated ten times, and we
take a mean accuracy of all fold. 1-, 2-gram combination has
better performance than n-gram. Consequently, we set our
experiments by comparing three kinds of feature selection
methods by using 1-, 2-gram combination. That is, both 1-
grams and 2-grams in the dataset are extracted as terms. We
design three kinds of vector weights referred to in equation (2),
(3) and (4). During the test process, the algorithm (2) was
maintained to check if better results are possible. This includes
the following:

1) Changing the weight calculation formula for each term

. The formula in equation (4) gives better testing results than

equation (2) and (3). Therefore, it is chosen.

2) Checking if conserving the sequence of (IMRaD)

headings and the sentence position has to influence on the

results. Based on the results in Tables 2 and 3, this has no

significant influence on the performance of the algorithm as

shown by the result by Table 4.

D. Analysis of NB and SVM

In this paper, we perform experiments using Naive Bayes
(NB) and Support Vector Machine (SVM) classifiers. We use
the F-Score which combines recall and precision as in equation
(9) as shown in Fig. 5.

TABLE II. ALGORITHM 2 (V1) & ALGORITHM 3

Algo.2 (V1)

Precision Recall F-Score

Overall 0.420142 0.46389 0.41433

Intro 1 0.79739 0.88727

Method 1 0.28205 0.44

Results 1 0.02703 0.05263

Dis&Con 1 0.20755 0.34375

TABLE III. ALGORITHM 2 (V2) & ALGORITHM 3

Algo. 2 (V2)) & Algo.3

Precision Recall F-Score

Overall 0.42531 0.458333 0.432515

Intro 1 0.66667 0.8

Method 1 0.4359 0.60714

Results 1 0.02703 0.05263

Dis&Con 1 0.20755 0.34375

TABLE IV. ACCURACY COMPARISON BETWEEN ALGO.2 (V1, V2) &

ALGO.3

O
v

er
a
ll

A
c
c
u

ra
cy

 Algorithm2 Ver 1 with

Conserving IMRaD and

sentence position

Algorithm2 Ver 2 without

Conserving IMRaD and sentence

position

0.46 0.458

Machine learning classifiers Naïve Bayes (NB) and SVM
were trained and tested using the features created previously. A
confusion matrix (as shown in Tables 7 and 8) is giving a more
detailed description of the accuracy, and it is describing the
types of errors that are being made by a model. This confusion
matrix is often called a contingency table; accurate decisions
are formed along the diagonal, in which each column
represents prediction labels, and each row represent

Headings, or heads, are organizational devices that guide
the reader through your paper. There are two types: component
heads and text heads.

Fig. 4. Precision, Recall, FScore Comparison between Algo.2 (V1, V2) &

Algo.3.

0

0.2

0.4

0.6

0.8

1

1.2

Precision Recall Fscore Precision Recall Fscore

Algorithm 2(V1) & Algoithm3 Algorithm1(V2) & Algoithm2

Precision, Recall, Fscore for Algoithm2 (v1,v2) &

Algoithm3

Overall Introduction Method Results Discussion_conclusion

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 2, 2019

239 | P a g e

www.ijacsa.thesai.org

Fig. 5. Precision, Recall, FScore Comparison between NB &SVM.

Machine learning classifiers Naïve Bayes (NB) and SVM
were trained and tested using the features created previously. A
confusion matrix (as shown in Tables 7 and 8) is giving a more
detailed description of the accuracy, and it is describing the
types of errors that are being made by a model. This confusion
matrix is often called a contingency table; accurate decisions
are formed along the diagonal, in which each column
represents prediction labels, and each row represents actual
labels.

In Table 7, the confusion matrix shows the predictions
made by our model. It is a result of classification on the test set
using 9,000 1- and 2-grams. The rows correspond to the known
classes of the data, i.e. the labels in the data. The columns
correspond to the predictions produced by the model. The
diagonal elements show correct classifications number for each
class.

TABLE V. PRECISION, RECALL, F-SCORE FOR NB

Algorithm4 NB

Precision Recall F-Score

Overall 0.2402225 0.183333 0.171379

Intro 1 0.045752 0.0875

Method 1 0.410256 0.58182

Results 1 0.16216 0.27907

Dis&Con 1 0.09434 0.17241

TABLE VI. PRECISION, RECALL, F-SCORE FOR SVM

Algorithm4 NB

Precision Recall F-Score

Overall 0.0931439 0.305195 0.142728

Intro 1 1 1

Method 0 0 0

Results 0 0 0

Dis&Con 0 0 0

TABLE VII. NAÏVE BAYES PERFORMANCE (CONFUSION MATRIX)

 Intro Method Results Dis&Con

Intro 7 74 18 21

Method 12 48 13 17

Results 2 21 6 2

Dis&Con 4 33 1 5

Accuracy for NB = 0.18

Error rate = 1 – Accuracy = 0.81

TABLE VIII. SVM PERFORMANCE (CONFUSION MATRIX)

 Intro Method Results Dis&Con

Intro 47 0 0 0

Method 51 0 0 0

Results 23 0 0 0

Dis&Con 33 0 0 0

Accuracy for SVM = 0.31

Error rate = 1 – Accuracy = 0.69

TABLE IX. MACRO-F AND MICRO-F FOR NB AND SVM

 Precision Recall F-Score

Macro-Average NB 47 0 0

Macro-Average SVM 51 0 0

Micro-Average NB 23 0 0

Micro-Average SVM 33 0 0

Fig. 6. Comparison of Macro & Micro F-Score Results.

0

0.2

0.4

0.6

0.8

1

1.2

Precision Recall Fscore Precision Recall Fscore

Algorithm 4 NB Algorithm 4 SVM

 Precision, Recall, F-score for Algoithm4 NB&SVM

Overall Introduction Method Results Dis_con

Macro-

Average NB

Macro-

Average
SVM

Micro-

Average NB

Micro-

Average
SVM

F-Score 0.3750.1160.2620.305

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

F-Score

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 2, 2019

240 | P a g e

www.ijacsa.thesai.org

The accuracy of classification techniques is evaluated based
on the selected classifier algorithm like Naïve Bayes (NB) and
Support Vector Machine (SVM). The predictive accuracy
(Precision, Recall, FScore) of Naïve Bayes (NB) and SVM on
the testing sets which include 50 datasets are showed in
Tables 5 and 6. From Table 7, the Overall accuracy of
Precision, Recall and F-score for Naïve Bayes classifier is
24%, 18%, and 17% respectively. On the same way from
Table 8, we calculated the overall accuracy of Precision, Recall
and F-score for SVM which is 9%, 30%, and 14%. As we can
see, the accuracy of SVM is slightly higher than Naïve Bayes.

Moreover, the values to measure the performance of each
the classifiers (i.e. Precision, Recall, Fscore) are derived from
the confusion matrix presented in Tables 7 and 8. The
confusion matrix used to evaluate the performance of the four-
class classification problem. A macro-average results are
shown in Table 9 is computed the metric independently for
each class and then take the average (hence treating all classes
equally), whereas a micro-average results are aggregated the
contributions of all classes to compute the average metric. In a
multi-class classification setup, micro-average is preferable if
there might be a class imbalance (i.e. there are many more
examples of one class than of other classes). Fig. 6 depicts all
previous described results.

From the experiments above, we could find that Macro
Fscore and Micro Fscore give inconsistent results. As a
result, we could compare them for each classifier NB and
SVM. As shown in Fig. 4, SVM has better performance than
NB, which indicates that feature selection based on 1- and 2-
gram frequency in all classes is better than that depend on text
frequency (Keyword in absolute or relative classes).

V. CONCLUSION AND FUTURE WORK

In this paper, a new technique was suggested by using
Natural Language Processing (NLP) techniques and machine
learning to generate automatic structuring of unstructured
abstract according to IMRaD (Introduction, Methods, Results,
and Discussion) format. This approach has been applied to
short text for classification the unstructured abstracts then
measure the similarity between sentences unstructured and
structured abstracts that are found in the other research papers.
Finally, evaluate the extracting feature technique by applying
Naïve Bayes (NB) classifier sentences.

The results showed that text representation using TF weight
formula in all classes gives better testing results than TF weight
formula in keywords in related class and TF weight formula in
keywords in all class. Therefore, it is chosen.

The accuracy of classification techniques is evaluated based
on the selected classifier algorithm Naïve Bayes (NB) and
Support Vector Machine (SVM) where the accuracy of SVM =
0.31 is slightly higher than Naïve Bayes =0.18. The reason for
increasing the error rate may be caused by the existing
similarity between some classes. It would be better to construct
a multi-label classifier.

The performance of SVM calculated by Micro FScore
=0.305 has better performance than the performance of NB
where Micro FScore= 0.262. The reason for the decrease in
performance is the unbalanced class distributions. Our future
work will try to solve these problems. A promising direction
for future work is using Tf*idf weight to represent the text and
investigate the performance of feature selection methods on
different machine learning classifiers.

REFERENCES

[1] Fatiregun AA, Asuzu MC, "Structured and unstructured abstracts in
journal articles: a review".. 2003 Sep;10(3):197-200.

[2] James Hartley and Guillaume Cabanac. Thirteen ways to write an
abstract. Publications, 5(2):11, 2017.

[3] Sejin Nam, Sang-Kyun Kim, Hong-Gee Kim, Victoria Ngo, Nansu
Zong, et al. Structuralizing biomedical abstracts with discriminative
linguistic features. Computers in biology and medicine, 79:276285,
2016.

[4] Jianguo Wu. Improving the writing of research papers: Imrad and
beyond, 2011.

[5] Christian W Dawson. Projects in computing and information systems: a
student's guide. Pearson Education, 2005.

[6] [PN08] WC Peh and KH Ng. The basic structure and types of scientific
papers. Singapore medical journal, 49(7):522525, 2008.

[7] Grace Y Chung, "Sentence retrieval for abstracts of randomized
"controlled trials." Published online 2009 Feb 10. BMC Med Inform
Decis Mak

[8] James Hartley. Current findings from research on structured abstracts.
Journal of the Medical Library Association, 92(3):368, 2004.

[9] Andrade, C. (2011). How to write a good abstract for a scientific paper
or conference presentation. Indian Journal of Psychiatry, 53(2), 172–5.
doi:10.4103/0019-5545.82558

[10] Germán Hurtado Martín, Steven Schockaert, Chris Cornelis, and Helga
Naessens. Using semi-structured data for assessing research paper
similarity. Information Sciences, 221:245261, 2013.

[11] Senator Jeong, Sejin Nam, and Hyun-Young Park. An ontology-based
biomedical research paper authoring support tool. Science Editing,
1(1):37 42, 2014.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 2, 2019

241 | P a g e

www.ijacsa.thesai.org

[12] Mohammad Amin Morid, Siddhartha Jonnalagadda, Marcelo Fiszman,
Kalpana Raja, and Guilherme Del Fiol. Classification of clinically useful
sentences in Medline. In AMIA Annual Symposium Proceedings,
volume 2015. American Medical Informatics Association, 2015.

[13] https://content.iospress.com/& https://dblp.uni-trier.de/xml/

[14] Jurafsky D., & Martin J. H., (2000), An Introduction to Natural
Language Processing, Computational Linguistics, and Speech
Recognition, Prentice Hall Englewood Cliffs.

[15] Bird, Steven. "NLTK: the natural language toolkit." Proceedings of the
COLING/ACL on Interactive presentation sessions. Association for
Computational Linguistics, 2006.

[16] Xiaoyan Tang and Jing Cao "Automatic Genre Classification via N-
grams of Part-of-Speech Tags " Procedia - Social and Behavioral
Sciences 198 (2015) 474 – 478

[17] Salton G., Wong A., & Yang C. S., (1975), Vector Space Model for
Automatic Indexing, Communications of the ACM, vol. 18, pp. 613–
620.

[18] Daniel Jurafsky and James H. Martin. Speech and Language Processing:
An Introduction to Natural Language Processing, Computational
Linguistics and Speech Recognition. Prentice Hall, second edition, 2008.

[19] http://scikitlearn.org/stable/modules/feature_extraction.html

[20] Banko M. & Eric B., (2001), Scaling to Very Very Large Corpora for
Natural Language Disambiguation, ACL '01 Proceedings of the 39th
Annual Meeting on Association for Computational Linguistics,
Association for Computational Linguistics Stroudsburg, PA, USA, pp.
26-33.

[21] H. Zhang (2004). “The Optimality of Naive Bayes.” Retrieved from:
< http://scikitlearn.org/stable/modules/naive_bayes.html>

[22] Rish I., (2001), an Empirical Study of the Naive Bayes Classifier, IJCAI
2001 Workshop on Empirical Methods in Artificial Intelligence.

[23] Sonat T., & Musa M., (2013), Learning the Naïve Bayes Classifier with
Optimization Models, International Journal of Applied Mathematics and
Computer Science, vol. 23, no. 4, pp. 787–795.

[24] Hsu, C. W., Chang, C. C., & Lin, C. J. (2003). A practical guide to
support vector classification

[25] Sharma A, Dey S (2012) A document-level sentiment analysis approach
using artificial neural network and sentiment lexicons. ACM SIGAPP
Appl Comput Rev 12(4):67–75.

https://content.iospress.com/
https://dblp.uni-trier.de/xml/
http://scikitlearn.org/stable/modules/feature_extraction.html
http://scikitlearn.org/stable/modules/naive_bayes.html

