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Abstract—Wireless jamming attacks have recently been a
subject of several researches, due to the exposed nature of the
wireless medium. This paper studies the anti-jamming resistance
in the presence of several attackers. Two kind of jammers are
considered, smart jammers which have the ability to sense the le-
gitimate signal power and regular jammers which don’t have this
ability. An Anti Multi-Jamming based Power Control problem
modeled as a non-zero-sum Game is suggested to study how the
transmitter can adjust its signal power against several jamming
attacks. A closed-form expression of Nash Equilibrium is derived
when players actions are taken simultaneously. In addition, a
Stackelberg Equilibrium closed-form expression is derived when
the hierarchical behavior between the transmitter and jammers is
assumed. Simulation results show that the proposed scheme can
enhance the anti-jamming-resistance against several attackers.
Furthermore, this study proves that on the transmitter side, the
most dangerous jammer is considered to have the highest ratio
between channel gain and jamming cost. Finally, based on the
Q-Learning technique, the transmitter can learn autonomously
without knowing the patterns of attackers.

Keywords—Wireless communications; game theory; jamming
attacks; stackelberg game; nash game

I. INTRODUCTION

The massive use of wireless approaches has led to the
proliferation of a multitude of new services that are becoming
increasingly important for everybody. On the other hand, com-
munication latency and energy-efficiency in the next generation
networks [1], [2], [3], [4], being on the top of the increasing
number of security critical services [5], are the main challenges
that force telecommunication community to seek ways to
enhance the wireless networks performance and reduce the
risk of malicious attacks. Indeed, wireless communications
are highly susceptible to jamming problems [6], [7], [8], [9]
because of the exposed nature of the broadcast medium. This
is the case of a large number of wireless systems based on
Wireless Random Access (WRA) mechanism (for example,
the 802.11 and 802.16 standards [10], [11], [12]) such as
Aloha [13], Carrier Sense Multiple Access (CSMA) and their
corresponding.

Jamming in wireless networks is defined as a disruption
of existing wireless transmissions at various communication
layers. This kind of attacks usually aims the physical layer and
can be achieved by decreasing the Signal-to-Interference-plus-
Noise-Ratio (SINR) through the transmission of high power
noise at the right moment (time slot), frequency (sub-carriers)

and location (close to the transmitter or the receiver). Two
kind of jammers are considered, regular jammers that are not
able to sense the legitimate signal power and smart jammers
that operate in jamming when they sense a transmission on the
channel and has the ability to learn the ongoing signal powers,
hence, this kind of jammer can adjust its own transmission
power to lengthen its battery life. Initially, smart jammer
keeps monitoring wireless medium in order to determine the
operational frequency band on which both sides communicate.
Then, it transmits a signal using that frequency band in order
to reduce the SINR to a certain threshold. If the medium
is in an idle state, it remains in sleep and keeps sensing
the medium. Whenever a transmission fails, the transmitter
doubles the back-off period and tries again, continuing with
exponential back-off until the frame is successfully transmitted
or the maximum number of re-transmissions is reached; the
frame is then dropped and regenerated again. Consequently,
jamming attacks could increase communication latency, reduce
energy-efficiency and may even increase the risk of Denial-of-
Services (DoS).

While measurement methods are unable to address the real
scenarios and requirements due to wireless networks com-
plexity that gives rise to time consumption during simulation
process, Game Theory is an appropriate tool that would better
deal with the jamming problem. In order to investigate the
impact of the several jammers presence on the transmitter
behavior, this paper considers the battle between the transmitter
and several jammers within a single sub-carrier; the case of
multi sub-carriers will be addressed in future research. This
battle is modeled as an Anti Multi-Jamming based Power
Control game model (AMJPC), where the transmission power
is defined as a strategy of players. Since the battery life of
wireless devices is directly related to the transmission activity,
the players payoffs are assumed to be functions of the SINR
and the transmission costs. A closed-form expression of both
Nash Equilibrium (NE) and Stackelberg Equilibrium (SE) is
derived. Numerical results not only describe the impact of
channel gains on players utilities but also show that the jammer
with the highest ratio between channel gain and jamming cost
plays the role of an active player, whereas, the other ones
remain inactive ; this ratio is named: the Jamming Efficiency
Ratio (J ER). Consequently, the most dangerous jammer for
the transmitter is proved to have the highest J ER. Since
jamming patterns may be unknown during the battle, the worst
scenario will be considered (i.e. the transmitter has partial
information while the jammers have full information) so that
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the transmitter can act autonomously without knowing neither
the jamming patterns and parameters nor the above game
model.

The rest of the paper is organized as follows: Section II
discusses some related works. Section III presents the strategic
Game model. Section IV, analyzes the jamming problem
according to two scenarios: 1-The presence of several regular
jammers. 2-The presence of several smart jammers. Numerical
results are provided in Section V. Finally, Section VI concludes
the paper.

II. RELATED WORK

By using Game Theory formulations, previous researches
on anti-jamming methods have been proposed [14], [15]. In
[14], Altman et al. has employed a zero sum Game to study
jamming attack in wireless networks and has assumed that the
signal power can be chosen from a discrete set of power levels.
In [15], authors consider a non-zero Game where the transmis-
sion cost for both jammer and transmitter is introduced. They
proved the existence and uniqueness of NE. In [16], [17],
[18], [19], authors assume the presence of a smart jammer
and consider a hierarchical behavior between the transmitter
and the jammer. This anti-jamming scenario is modeled as a
Stackelberg Game. In [20], authors focus on a single jammer
which keeps track of the re-transmission attempts until the
packet is dropped. An anti-jamming Bayesian Stackelberg
Game with incomplete information is proposed in [21]. In all
previous works on anti-jamming, authors consider the battle
“one transmitter - one jammer" while little attention was paid
to the case of several jammers.

However, the same team in [22], extended the work in
[15] to the case with several jammers modeled under a zero-
sum Game. they studied the Nash Equilibrium in case of
regular jamming attacks. In [23], authors investigate the anti-
jamming problem in presence of several jammers with discrete
power strategies by proposing a hierarchical power control
algorithm (HPCA). This paper, assumes that the power level
set is continuous and proposes an AMJPC problem as a means
to countermeasure jamming attacks according to two scenarios:
1) the presence of several regular jammers, 2) the presence of
several smart jammers. Finally, the AMJPC model is validated
based on the Q-Learning technique developed in [20].

Fig. 1. Jamming Attacks

III. SYSTEM MODEL

Let’s consider a wireless network, in which a transmitter
node broadcasts legitimate signals to the receiver side. Assume
that the transmitter transmits its signal in the presence of
several jammers (Fig. 1), the legitimate user (the transmitter)
and jammers can freely control their signal powers so as to
maximize their payoffs.

Let P ≥ 0 and C > 0 denote the signal power and the
transmission cost of the transmitter, respectively.

Similarly, let Ji ≥ 0 and Ei > 0 denote the signal power
and the transmission cost of the jammer i, respectively. Hence,
the SINR is formulated as follows:

SINR =
αP

N +
∑
i

βiJi
(1)

where N denotes the background noise level, α > 0 and
βi > 0 are the fading channel gains of the transmitter and
the jammer i, respectively.

On the transmitter side, the aim is to maximize the SINR
with the minimum cost, hence, based on the SINR formulation,
the transmitter payoff denoted as U is given by:

U =
αP

N +
∑
i

βiJi
− CP (2)

However, on the jammer side, any gain of the transmitter
results in its own corresponding loss. In addition, any jamming
attempt from the jammer results in its own corresponding loss.
As result, the jammer i payoff denoted by Vi is formulated as
follows:

Vi = −
αP

N + βiJi +
∑
j 6=i

βjJj
− EiJi (3)

Let’s introduce a Jamming Efficiency Ratio (J ERi) in-
dicator that helps us to evaluate the efficiency of a jammer
Ji ; which is defined by the ratio between channel gain and
jamming cost, namely:

J ERi =
βi
Ei

(4)

Let’s consider a regular jammer and a smart jammer,
where the smart one can quickly learn the transmitter’s
transmission power and adjust its own one accordingly to
maximize its utility Vi, while the regular one doesn’t have
this intelligence. The aim is to determine the transmitter
transmission power that maximizes the utility function U and
to investigate the interaction between jammers at NE/SE.

Let’s now model this AMJPC scheme as a strategic Game
denoted as :
GN+1 = ({T ,J1, ...,JN}, {P, J1, ..., JN}, {U, V1, ..., VN}).
In this Game, both the transmitter (T ) and jammers
(J1, ...,JN ) are players. The strategies of these players are
their own transmission power {P, J1, ..., JN}. Each player
chooses its optimal signal power that maximizes its payoff.
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In addition, the energy of these wireless radios is assumed
to be limited. Therefore, players will not choose an over sized
power to emit a signal, because of the impact of the increasing
transmission cost on their payoffs.

IV. AMJPC EQUILIBRIUMS

Move on now to derive the NE and the SE in the
AMJPC Game. For simplicity, and without loss of gen-
erality, we assume the existence of two jammers. Con-
sequently, the utility functions in the Game G3 =
({T ,J1,J2}, {P, J1, J2}, {U, V 1, V 2}) are given by the fol-
lowing formulations:

U(P, J1, J2) =
αP

N +
2∑
i=1

βiJi

− CP (5)

V1(P, J1, J2) = −
αP

N +
2∑
i=1

βiJi

− E1J1 (6)

V2(P, J1, J2) = −
αP

N +
2∑
i=1

βiJi

− E2J2 (7)

A. Nash Game

Let’s assume the presence of two regular jammers which
are not eligible to sense the ongoing signal power.

By definition, the NE is a point where no player can
increase its utility function by unilaterally changing its strategy,
thus, this Equilibrium denoted by (PNE , JNE1 , JNE2 ) corre-
sponds to a desirable strategy of the players, namely:

PNE = argmax
P≥0

U(P, JNE1 , JNE2 )

JNE1 = argmax
J1≥0

V 1(PNE , J1, J
NE
2 )

JNE2 = argmax
J2≥0

V 2(PNE , JNE1 , J2)

(8)

Proposition 1: The unique NE strategy of the AMJPC
Game, denoted by (PNE , JNE1 , JNE2 ), respects the following
formulations:

PNE =

{
0 Q1
α
C2min(

1
JER2

, 1
JER1

) ow (9)

(JNE1 , JNE2 ) =



(0, 0) Q1

(α/C−Nβ1
, 0) Q2

(0, α/C−Nβ2
) Q3

(J ′, 1
β2
(α/C −N − β1J ′)),

where, 0 ≤ J ′ ≤ 1
β1
(α/C −N) ow

(10)
whereas the corresponding utility values are:

UNE = 0 (11)

(V NE1 , V NE2 ) =

(0, 0) Q1

( 1
JER1

(N − 2α/C),− 1
JER1

α
C Q2

(− 1
JER2

α
C ,

1
JER2

(N − 2α/C) Q3

( 1
JER1

(−α/C − β1J ′),
1

JER2
(N − 2α/C + β1J

′)),

where, 0 ≤ J ′ ≤ 1
β1
(α/C −N) ow

(12)

the conditions are given by:

• Q1 : αC ≤ N
• Q2 : αC > N,J ER2 < J ER1

• Q3 : αC > N,J ER2 > J ER1

It turns out from Proposition 1 that, when the condition Q1

is not satisfied (Eq. (9)), the attack is lunched by the jammer
that has the highest J ER value, while the other one is inactive.
Furthermore, if the two jammers share the same J ER, then
the cumulative attack is initiating by the two jammers so as
to carry out a single attack seeming to come from the jammer
that has the highest J ER value (i.e., both jammers cooperate
with each other).

B. Stackelberg Game

Let’s consider two smart jammers that have the intelligence
to rapidly learn the transmitter signal power and adjust ac-
cordingly their owns. Based on the fact that the jammers take
action if and only if the channel is sensed to be busy, SE is the
appropriate strategy against these smart jamming behaviors.
Thus, this subsection focuses in deriving the AMJPC SE in
which the transmitter is the leader and the jammers represent
the set of followers. In this Stackleberg Game, the follower’s
Game is played after the leader Game, and its outcome depends
on the action of the leader. The leader fixes its optimal strategy
based on the reaction of the followers and lets them optimize
their own utility according to the leader strategy.

1) Jammers’s Optimal Strategy: Taking into account the
transmitter’s strategy, the jammers’s optimal strategy is com-
puted by solving the following maximization problem:

max
J1≥0

V1(P, J1, J2); ∀P ≥ 0,∀J2 ≥ 0 (13)

max
J2≥0

V2(P, J1, J2); ∀P ≥ 0,∀J1 ≥ 0 (14)

Proposition 2: Let P be the ongoing signal power of the
transmitter, then, the corresponding optimal strategy Ĵ =
(Ĵ1, Ĵ2) of the two jammers respects the following formula-
tion:

(Ĵ1, Ĵ2)(P ) =
(0, 0) C1

( 1
β1
(
√
αP.J ER1 −N), 0) C2

(0, 1
β2
(
√
αP.J ER2 −N)) C3

(J ′, 1
β2
(
√
αP.J ER2 −N − β1J ′)),

where, 0 ≤ J ′ ≤ 1
β1
(
√
αP.J ER1 −N) ow

(15)

whereas the corresponding utility value V (P ) = (V1, V2)(P )
of the two jammers is:
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V (P ) =

(−αPN ,−αPN ) C1

((N − 2
√
αP.J ER1)/J ER1,−

√
αP
JER1

) C2

(−
√

αP
JER2

, (N − 2
√
αP.J ER2)/J ER2) C3

(−(
√
αP.J ER1 + β1J

′)/J ER1,

(−2
√
αP.J ER2 +N + β1J

′
)/J ER2),

where, 0 ≤ J ′ ≤ 1
β1
(
√
αP.J ER1 −N) ow

(16)

the conditions are given by:

• C1 : αPN2 ≤ min( 1
JER1

, 1
JER2

)

• C2 : αPN2 >
1

JER1
,J ER1 > J ER2

• C3 : αPN2 >
1

JER2
,J ER1 < J ER2

2) Transmitter’s Optimal Strategy: The transmitter can
predict the jammer’s reaction based on Proposition 2, therefore,
the optimal transmitter’s strategy is computed by solving the
following maximization problem:

max
P≥0

U(P, Ĵ1(P ), Ĵ2(P )) (17)

Proposition 3: The optimal strategy of the transmitter is:

PSE =


0 R1
N2

α .max(J ER1,J ER2) R2
α

4C2 .max(J ER1,J ER2) ow
(18)

whereas the corresponding utility value USE =
U(PSE , J1(P

SE), J2(P
SE)) is:

USE =

 0 R1

(α− CN)Nα .max(J ER1,J ER2) R2
α
4C .max(J ER1,J ER2) ow

(19)
the conditions are given by:

• R1 : αC ≤ N

• R2 : N < α
C ≤ 2N

In conclusion, according to Eq. (18), the transmitter as a
leader selects its signal power in overall consideration of the
impact on both jammers’ reaction. If the transmission cost
of the transmitter is sufficiently high (i.e., the R1 condition
is satisfied), the transmitter’s optimal anti-reaction is to stop
the transmission activity; otherwise, the optimal one is when
the transmitter adjusts its strategy based on all channel gains,
channel noise, transmission cost and the jamming cost of both
jammers.

Corollary 1: The 3-tuple (PSE , Ĵ1(P
SE), Ĵ2(P

SE)) is
the SE of the AMJPC Game, where :

PSE =


0 R1
N2

α .max(J ER1,J ER2) R2
α

4C2 .max(J ER1,J ER2) ow
(20)

(JSE1 , JSE2 ) =
(0, 0) R1, R2

( 1
β1
( α2C −N), 0) R3,J ER1 > J ER2

(0, 1
β2
( α2C −N)) R3,J ER1 < J ER2

(J ′, 1
β2
( α2C −N − β1J

′)),

where, 0 ≤ J ′ ≤ 1
β1
( α2C −N) ow

(21)
whereas the corresponding utility values

USE =

 0 R1

(α− CN)Nα .max(J ER1,J ER2) R2
α
4C .max(J ER1,J ER2) ow

(22)
(V SE1 , V SE2 ) =

(0, 0) R1

(−N.max(J ER1,J ER2),
−N.max(J ER1,J ER2)) R2

((N − α
C )/J ER1,− α

2C.JER1
) R3,J ER1 > J ER2

(− α
2C.JER2

, (N − α
C )/J ER2) R3,J ER1 < J ER2

(− α
2C.JER1

− β1J ′/J ER1,

(N + β1J
′ − α

C )/J ER2)
where, 0 ≤ J ′ ≤ 1

β1
( α2C −N) ow

(23)

the conditions are given by:

• R1 : αC ≤ N

• R2 : N < α
C ≤ 2N

• R3 : αC > 2N

The above Corollary proves that, on the transmitter side,
the most threatening jammer is the one which has the highest
J ER. This result is due to the fact that this particular jammer
plays the role of an active player in the Game, whereas, the
other one remains in standby mode.

Corollary 2: Let the SINRSE and SINRNE be the
SINR of the transmitter at SE and NE respectively. Let PSE
and PNE be the transmitter signal power at SE and NE
respectively. For all α,C, βi, Ei and N we have the following
mathematical inequality:

USE ≥ UNE
Vi
SE ≥ ViNE i ∈ {1, 2}

SINRSE ≤ SINRNE
PSE ≤ PNE

(24)

Based on the Corollary 2, it’s clear that, the transmitter gains
in terms of power in the presence of smart jammers, whereas,
it gains in terms of SINR in the presence of regular jammers.

V. SIMULATION RESULTS

A. AMJPC Scheme’s Performance

Let’s move on now to evaluate jamming-resistance against
Multiple Jamming attacks (MJs). Note that the case of Single
Jamming attack (SJ) in [17],[18] and [19] can be deduced from
the proposed AMJPC Game model. The system variables used

www.ijacsa.thesai.org 39 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 2, 2019

0.2 0.4 0.6 0.8 1
−4

−3

−2

−1

0

1

α
 

 

U
se

 (MJs)

U
ne

 (MJs)

U
se

 (SJ)

U
ne

 (SJ)

V
1

se
 (MJs)

V
1

ne
 (MJs)

V
2

se
 (MJ)

V
2

ne
 (MJ)

Fig. 2. Utility Functions in both SE and NE with respect to α in the two cases: SJ
and MJs.
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to depict the numerical results are given by : C = E1 = E2 =
0.1, N = 2 and (α, β1, β2) ∈ [0.1, 1]3.

Fig. 2 describes the impact of parameter α on the players’
utilities for the following scenarios: 1)-The presence of SJ with
β1 = 0.5. 2)-The presence of MJs with β1 = 0.5 and β2 = 0.7.
In this figure, SE leads to higher utilities than NE does. Hence,
as α increases, the transmitter’s SE payoff is more improved
while the jammers’ SE payoff decreases. The intuitive reason is
that the larger α became, the better the transmitter channel gain
is. In addition, the jammers’ utility in the SE strategy is higher
than the one in NE strategy, because, in the SE strategy, the
smart jammers can quickly learn the legitimate signal power
before making a decision.

Many other observations can be made, for example, when
the fading channel gain of the transmitter is α = 1, its utility
in the presence of a SJ is 0.5 in SE strategy and 0 in NE
strategy, while in the presence of MJs, it is only 0.3571 in SE
strategy and 0 in NE strategy; (note that 0.3571 corresponds
to a SE utility in presence of SJ with β1 = 0.7). In addition,
on the jammers side, SE and NE utility in the MJs scheme
are, respectively, higher than SE and NE utility in the SJ
scheme. Furthermore, since J ER2 > J ER1, J2 acts as an
active jammer in the Game, whereas, the other one is inactive.
This behavior enhances the jamming performance especially
whenever jammers have a high cost or located far from the
receiver. Thus, the transmitter will consider only the presence
of the jammer that has the highest Jamming Efficiency Ratio.

In order to have a closer look on the impact of J ER on
the SINR of the transmitter, Fig. 3 depicts the transmitter’s
SINR in the SE with respect to J ER1 in the MJs scheme
for different J ER2 values. It’s easy to remark that, from the
transmitter viewpoint, the most dangerous jammer is the one
which has the highest J ER.
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Let’s move on now to investigate the impact of β1 on the
players’ utilities in the two following cases: SJ with β1 = 0.5,
and MJs with β1 = 0.5 and β2 = 0.7. As can be noticed from
Fig. 4, the SE leads to higher utilities for all players more
than NE does. In addition, as β1 increases, the transmitter’s
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SE payoff decreases while the jammers’ SE payoff increases,
this is due to the fact that the larger β1 became, the better
the channel gain of J1 is. On the other hand, this figure can
be split into two parts. Let’s denote the first part by Part.1
when β1 < 0.7 and the second by Part.2 when β1 ≥ 0.7.
In the Part.1, the NE and SE utilities of players for MJs are
fixed to 0.1786 for USE(MJs), 0.3571 for V SE1 (MJs), 0
for UNE(MJs) and 0.7143 for V NE1 (MJs). The NE and SE
utilities of the transmitter in the SJ case are higher than in
the MJs case; also, the NE and SE utilities of J1 in the SJ
case are lower than in the MJs case. This is due to the fact
that, as J ER2 < J ER1, J1 behaves like an inactive one. As
for, contrary to Part.1, Part.2 shows that J1 Influences the
utility of all players and acts as an active one. Note that in
Part.2, the utilities of all players in the MJs scheme coincide
with the utilities in SJ scheme.

Fig. 5 describes the impact of the transmitter’ transmission
cost on the players’ utilities in NE and SE, with β1 = 0.3, β2 =
0.6 and α = 0.5. Hence, as C increases, the transmitter’s
SE/NE utilities decrease while the jammers’ SE/NE utilities
increase. This phenomenon is due to the fact that the larger C
became, the more the transmitter has no interest in transmitting
the signal so as to conserve its battery life. Thereafter, the
larger C became, the more jammers have no interest in
jamming the communication. In addition, from a certain value
of C ( αN = 0.25), all players (transmitter and jammers) go into
standby mode with USE = UNE = 0, Vi

SE = Vi
NE = 0,

∀i ∈ {1, 2}.

Fig. 6 describes the impact of the transmitter’ transmission
cost on the transmitter’ SINR and transmission power in NE
and SE, with β1 = 0.3, β2 = 0.6 and α = 0.5. Hence,
as C increases, the SINRSE , SINRNE , PSE and PNE

decrease in order to economize the available transmitter power.
Thereafter, from a certain value of C ( αN = 0.25), the
transmitter becomes inactive (PSE = PNE = 0). In addition,
NE scheme leads to higher SINR and transmission power than
SE scheme does. This is due to the fact that, in the SE strategy,
the transmitter adjusts its transmission power according to the
reaction prediction of the jammers which can quickly learn the
legitimate signal power before making a decision. Moreover,
the communication is seriously more destroyed in SE strategy
than in NE strategy; Thus, the transmitter gains in terms of
power in SE scheme, whereas, it gains in terms of SINR in
the NE scheme.

B. AMJPC Model with an Incomplete Information

In order to have a closer look on the impact of an
incomplete knowledge about the dynamic environment, let’s
consider a scenario where the AMJPC strategy is selected
based on the Q-learning technique developed in [20].

Fig. 8 depicts the transmitter payoff received by the re-
ceiver, and Fig. 7 depicts the jammers payoffs, where the trans-
mitter selects its signal power based on the Q-learning method.
From the two figures, it’s clear that all players payoff converges
towards the solution proved in the closed form expressions of
the above model. This validates the proposed AMJPC scheme.
In addition, Fig. 8 proves that the transmitter is gradually
aware of the dynamic environment with the learning episodes
increasing, which indicates a well jamming-resistance. This is

due to the fact that the transmitter chooses a more optimal
signal power action after having a well knowledge about the
environment.
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Fig. 7. Jammers utility where the transmitter chooses its transmission power
based on Q-learning.
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Fig. 8. Transmitter utility where the transmission power is chosen based on
Q-learning.

VI. CONCLUSION

This paper proposed an Anti Multi-Jamming based Power
Control in the presence of several smart and regular jammers
from a Game theoretical point of view. It proved the existence
and uniqueness of NE and SE and provided analytic expres-
sions for the equilibrium strategies. Moreover. It turned out
that the jammer which has the highest Jamming Efficiency
Ratio plays the role of an active player in the Game, whereas,
the other one becomes standby. Thus, from the transmitter
viewpoint, the AMJPC Game is reduced to an anti-jamming
Game under a single jammer which has the highest J ER,
this jammer is considered as the only hazardous jammer for
the transmitter. Finally, by means of simulation results, the
transmitter can efficiently improve the jamming-resistance.
Furthermore, the transmitter gains in terms of power in the
presence of smart jammers, whereas, it gains in terms of
SINR in the presence of regular jammers. As a future scope,
the considered battle “one transmitter- several jammers" can
be extended to the battle “one transmitter-several aggressive
transmitters-several jammers".

APPENDIX

Proof of Proposition 1: Let i ∈ [1, 2].
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The first order partial derivative of the jammer i objective
function with respect to Ji is:

∂Vi
∂Ji

=
αβiP

(N + β1J1 + β2J2)2
− Ei; (25)

The second order partial derivatives of the jammer i
objective function is:

∂2Vi
∂J2

i

=
−αβi2P

(N + β1J1 + β2J2)3
; (26)

According to Eq. (26), Vi is strictly concave in Ji.

Assume that the transmitter has fixed its strategy, so the
transmitter is now an inactive player and it wishes knowing
which utility it can get under the most unfavorable circum-
stances. Therefore, by setting the Eq. (25) to 0 based on the
fact that Ji ≥ 0, the jammer’s optimal strategies Ĵ1 and Ĵ2
respect the following two equations :

Ĵ1 = max(0,
1

β1
(

√
αβ1P

E1
− (N + β2J2))),∀J2 ≥ 0. (27)

Ĵ2 = max(0,
1

β2
(

√
αβ2P

E2
− (N + β1J1))),∀J1 ≥ 0. (28)

Assume that Ĵ1Ĵ2 6= 0. From Eq. (27) and Eq. (28), so:
N + β1Ĵ1 + β2Ĵ2 =

√
αβ1P
E1

=
√

αβ2P
E2

, yielding E1

β1
= E2

β2
.

Thus:
E1

β1
6= E2

β2
=⇒ Ĵ1Ĵ2 = 0 (29)

To compute the NE let’s consider the following disjoint
cases:

• Q1 : αC ≤ N :
The derivative of Eq. (5) with respect to P is ∂U

∂P =
α

(N+β1J1+β2J2)
− C ≤ 0 .Thus PNE = 0. on

the other hand, ∂V1

∂J1
(0, J1, J2) = −E1 < 0 and

∂V2

∂J2
(0, J1, J2) = −E2 < 0 , then, JNE1 = JNE2 = 0.

• Q2 : αC > N :
◦ E1

β1
< E2

β2
:

Let JNE1 = α/C−N
β1

, as JNE2 = 0 from Eq.
(29), then, ∀P ≥ 0, U(P, JNE1 , JNE2 ) = 0. In
order to have JNE1 = α/C−N

β1
, we must have

P = αE1

C2β1
according to Eq. (27).

Thus, JNE2 = 0, JNE1 = 1
β1
(α/C − N) and

PNE = αE1

C2β1
.

Let now prove the uniqueness of this NE for
all three players. First, let’s assume that there
exist an other NE (T

′
, J

′

1, J
′

2) and let’s prove
that T

′
= TNE , J

′

1 = JNE1 and J
′

2 = JNE2 .
Let J

′

2 > 0, thus from Eq. (28) and (27)

we deduce that J
′

1 = 1
2β1

(
√

αβ1P
′

E1
−√

αβ2P
′

E2
) , since E1

β1
< E2

β2
, then J

′

1 > 0

contradicting to Eq. (29). Thus J
′

2 =
JNE2 = 0.

∗ Let J
′

1 > JNE1 , then ∂U
∂P < 0 yielding

T
′
= 0 , then J

′

1 = 0 from Eq. (25),
contradicting to the assumption that
J

′

1 > JNE1 > 0. Thus J
′

1 ≤ JNE1 .
∗ Let J

′

1 < JNE1 , then ∂U
∂P > 0 yielding

that the transmitter can increase its
utility by unilateral deviation, con-
tradicting to the NE concept. Thus
J

′

1 = JNE1 .
From Eq. (27): T

′
= TNE .

◦ E1

β1
> E2

β2
:

By symmetrical approach we deduce that
PNE = αE2

C2β2
, JNE1 = 0, JNE2 = 1

β2
(α/C −

N).
◦ E1

β1
= E2

β2
:

Let β1JNE1 + β2J
NE
2 = α/C − N , then,

∀P ≥ 0, U(P, JNE1 , JNE2 ) = 0. In order to
have β1JNE1 + β2J

NE
2 = α/C −N , we must

have P = αE1

C2β1
according to Eq. (27,28).

Thus, PNE = αE1

C2β1
and β1JNE1 + β2J

NE
2 =

α/C −N , with 0 ≤ JNEi ≤ 1
βi
(α/C −N).

Move on now to prove the uniqueness of the
NE. First, Let’s assume that there exist an
other NE (T

′
, J

′

1, J
′

2) and Let’s prove that
T

′
= TNE , β1J

′

1+β2J
′

2 = β1J
NE
1 +β2J

NE
2 .

Let β1J
′

1 + β2J
′

2 > β1J
NE
1 + β2J

NE
2 ,

then ∂U
∂P < 0 yielding T

′
= 0 , then

from Eq. (25) J
′

1 = J
′

2 = 0 , con-
tradicting to the assumption that β1J

′

1 +
β2J

′

2 > β1J
NE
1 + β2J

NE
2 > 0. Thus

β1J
′

1 + β2J
′

2 ≤ β1JNE1 + β2J
NE
2 .

Let β1J
′

1+β2J
′

2 < β1J
NE
1 +β2J

NE
2 , then

∂U
∂P > 0 yielding that the transmitter can
increase its utility by unilateral deviation,
contradicting to the NE concept. Thus
β1J

′

1 + β2J
′

2 = β1J
NE
1 + β2J

NE
2 .

From Eq. (27), T
′
= TNE .

Proof of Proposition 2: Consider Eq. (27) and Eq. (28).

In order to compute the optimal jamming power of both
jammer i with respect to P , let’s consider the following disjoint
cases:

• αP
N2 ≤ min(E1

β1
, E2

β2
):

From Eq. (27,28), Ĵ1 = Ĵ2 = 0.

• αP
N2 > min(E1

β1
, E2

β2
):

◦ E1

β1
< E2

β2
:

min(E1

β1
, E2

β2
) < αP

N2 ≤Max(E1

β1
, E2

β2
):

From Eq. (28), Ĵ2 = 0. by plugging the
Ĵ2 value into Eq. (27) we deduce Ĵ1 =
1
β1
(
√

αβ1P
E1
−N).

αP
N2 > max(E1

β1
, E2

β2
):

Let first prove that Ĵ1 6= 0.
Assume to the contrary that Ĵ1 = 0. By
plugging the value of Ĵ1 into Eq. (28),
we have Ĵ2 = 1

β2
(
√

αβ2P
E2
−N). Since
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E1

β1
< E2

β2
, thus αP

(N+β2Ĵ2)2
> E1

β1
, yielding

Ĵ1 > 0, contradicting to the assumption
that Ĵ1 = 0. Thus Ĵ1 6= 0.
From Eq. (29), Ĵ2 = 0.
Thus, Ĵ2 = 0 and Ĵ1 = 1

β1
(
√

αβ1P
E1
−N).

◦ E1

β1
> E2

β2
:

min(E1

β1
, E2

β2
) < αP

N2 ≤ max(E1

β1
, E2

β2
):

From Eq. (27), Ĵ1 = 0. by plugging the
Ĵ1 value into Eq. (28) we deduce Ĵ2 =
1
β2
(
√

αβ2P
E2
−N).

αP
N2 > max(E1

β1
, E2

β2
):

By symmetrical approach: Ĵ1 = 0 and
Ĵ2 = 1

β2
(
√

αβ2P
E2
−N).

◦ E1

β1
= E2

β2
:

In this case, Ĵ1 and Ĵ2 are The so-
lution of Eq. (27,28), if and only if :
N + β1Ĵ1 + β2Ĵ2 =

√
αβ1P
E1

=
√

αβ2P
E2

; with

0 ≤ Ĵ1 ≤ 1
β1
(
√

αβ1P
E1
−N) and 0 ≤ Ĵ2 ≤

1
β2
(
√

αβ2P
E2
−N) .

Proof of Proposition 3: Let G(P ) = U(P, Ĵ1(P ), Ĵ2(P )).
By plugging Proposition (2) result into Eq. (5), we have:

G(P ) ={
(α/N − C)P, αP

N2 ≤ max( β1

E1
, β2

E2
),√

α(max( β1

E1
, β2

E2
))P − CP, ow,

(30)

From Eq. 30, If P > P1 = N2

α .max(
β1

E1
, β2

E2
),

then ∂G
∂P = 1

2

√
α
P .max(

β1

E1
, β2

E2
) − C and ∂2G

∂P 2 =

−1
4

√
α.max( β1

E1
, β2

E2
).( 1

P )
3/2. Thus G is strictly concave in

P , and ∂G
∂P (P0 = α

4C2 .max(
β1

E1
, β2

E2
)) = 0.

In order to compute the optimal transmitter power given
the reaction of the two jammers, let’s consider the following
three disjoint cases:

• R1 : αC ≤ N : In this case, P0
P1 = ( α

2CN )2 ≤ 1/4, thus,
P0 < P1. As shown in Fig. 9 (R3), G(P ) achieves
its maximum when P = 0.

• R2 : N < α
C ≤ 2N : In this case, P0

P1 = ( α
2CN )2 ≤ 1

P0 ≤ P1. As shown in Fig. 9 (R2), G(P ) achieves
its maximum when P = P1.

• R3 : α
C > 2N : In this case, P0 > P1. As shown in

Fig. 9 (R1), G(P ) achieves its maximum when P =
P0.

Proof of Corollary 1: This result can be deduced from
Propositions (2,3).

Proof of Corollary 2: From Proposition 1 and Corollary
1, we consider the following disjoint cases :

• R1 : αC < N :
In this case:

P
P1

G(P)

R1

P1
P

G(P)

R2

G(P)

P1 P0
P

R3

Fig. 9. Assumption of G(P) with respect to P
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PSE = PNE , SINRSE = SINRNE , USE = UNE ,
Vi
SE = Vi

NE , ∀i ∈ {1, 2}.
• R2 : N ≤ α

C < 2N
USE − UNE =
( αC − N)NCα .max(J ER1,J ER2) ≥ 0, PSE −
PNE = 1

α (N
2 − ( αC )

2
).max(J ER1,J ER2) ≤ 0

and SINRSE − SINRNE = (N −
α
C ).max(J ER1,J ER2) ≤ 0.
Now, let consider this three disjoint cases:
◦ J ER1 > J ER2:

V1
SE − V1NE = 2( αC −N)/J ER1.

V2
SE − V2NE = ( αC −N)/J ER1.

◦ J ER1 < J ER2:
V1
SE − V1NE = ( αC −N)/J ER2.

V2
SE − V2NE = 2( αC −N)/J ER2.

◦ J ER1 = J ER2:
V1
SE − V1NE = ( αC + β1J

′ −N)/J ER1.
V2
SE − V2NE = (2( αC −N)− β1J ′)/J ER1.

where, 0 ≤ β1J ′ ≤ (α/C −N).

Thus ViSE − ViNE ≥ 0, ∀i ∈ {1, 2}.
• R3 : αC > 2N :

USE − UNE =
( α4C ).max(J ER1,J ER2) ≥ 0, PSE − PNE =
−3α
4C2 .max(J ER1,J ER2) ≤ 0 and SINRSE −
SINRNE = −α

2C .max(J ER1,J ER2) ≤ 0.
Now, let consider this three disjoint cases:
◦ J ER1 > J ER2:

V1
SE − V1NE = α

C /J ER1.
V2
SE − V2NE = α

2C /J ER1.
◦ J ER1 < J ER2:

V1
SE − V1NE = α

2C /J ER2.
V2
SE − V2NE = α

C /J ER2.
◦ J ER1 = J ER2:

V1
SE − V1NE = ( α2C +β1(J

′− J ′′))/J ER1.
V2
SE − V2NE = ( αC + β1(J

′′ − J ′))/J ER1.
where, 0 ≤ β1J

′ ≤ (α/C −N) and 0 ≤
β1J

′′ ≤ (α/2C −N).

Thus ViSE − ViNE ≥ 0, ∀i ∈ {1, 2}.
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