
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 2, 2019

Hypercube Graph Decomposition for Boolean
Simplification: An Optimization of Business Process

Verification

Mohamed NAOUM1, Outman EL HICHAMI2,
Mohammed AL ACHHAB3, Badr eddine EL MOHAJIR4

New Technology Trends Team, Science and Technology Center for Doctoral Studies,
Abdelmalek Essaâdi University,

Tetouan, Morocco

Abstract—This paper deals with the optimization of busi-
ness processes (BP) verification by simplifying their equivalent
algebraic expressions. Actual approaches of business processes
verification use formal methods such as automated theorem
proving and model checking to verify the accuracy of the business
process design. Those processes are abstracted to mathematical
models in order to make the verification task possible. However,
the structure of those mathematical models is usually a Boolean
expression of the business process variables and gateways. Thus
leading to a combinatorial explosion when the number of literals
is above a certain threshold. This work aims at optimizing
the verification task by managing the problem size. A novel
algorithm of Boolean simplification is proposed. It uses hypercube
graph decomposition to find the minimal equivalent formula of
a business process model given in its disjunctive normal form
(DNF). Moreover, the optimization method is totally automated
and can be applied to any business process having the same
formula due to the independence of the Boolean simplification
rules from the studied processes. This new approach has been
numerically validated by comparing its performance against the
state of the art method Quine-McCluskey (QM) through the
optimization of several processes with various types of branching.

Keywords—Business process verification; minimal disjunctive
normal form; Boolean reduction; hypercube graph; Karnaugh map;
Quine-McCluskey

I. INTRODUCTION

Business processes are key assets of any organization or
information system [1], [2]. They are the communication in-
terface and the medium of exchange between the organization
stakeholders [3].

BP describe the core business and govern the operation of
a system. Business Process Model and Notation (BPMN)
is the wide used standard for modeling BP in view of its
simplicity and usability [4], [5]. Nevertheless, BP may contain
structural flaws [5] due to poor design or human errors. Hence,
the verification task is a crucial step between the modeling
and the execution phases of any BP. The complexity of real-
life BP and the use of automated modeling tools often lead
to complex models called “spaghetti” process models [6], [7]
where manual verification is difficult to perform [8]. There-
fore, automated formal methods are used instead. Automatic
verification includes: Model Checking (MC) [5], [9] and
Automated Theorem Proving (ATP) [10], [11].

The MC approach uses software called model checker to
exhaustively check whether an abstraction equivalent structure
of the BP satisfies some properties expressed in temporal
logics. Simple Promela INterpreter (SPIN) is a widely used
model checker that verifies if a model writen in a C-like
modeling language called Process Meta LAnguage(Promela),
meets properties expressed as Linear Temporal Logic (LTL)
formulas [12], [13], [14]. Although this method has the advan-
tage of indicating the counter example violating the checked
propriety, it suffers from the state explosion problem [12] since
its complexity is too high and the number of states grows
exponentially.

The ATP (or automated deduction) is a subfield of math-
ematical logic dealing with automatic (or semi-automatic)
proving of mathematical theorems. The computer programs
allowing this task are called theorem provers [15].

First-order theorem proving is one of the most mature
subfields of ATP thanks to its expressivity that allows the
specification of arbitrary problems [16]. However, some state-
ments are undecidable [17] in the theory used to describe the
model. thereby, current research [18], [17], [19] deal with the
challenge of finding subclasses of first-order logic(FOL) that
are suitable and decidable in the mapping of such models.

Higher order logics are more expressive and can map wider
range of problems than FOL, but theorem proving for these
logics is not as developed as in the FOL[20].

Regardless the used approach to verify a BP, its logical
structure is deducted as a propositional logic formula written
in Disjunctive Normal Form (DNF) [2], [7]. The DNF can be
reduced to a minimal form in order for the manipulation and
practical implementation to become more efficient. Thus, an
optimization of the PB verification is achieved.

Since the simplification of Boolean expressions is exten-
sively used in the analysis and design of algorithms and logical
circuits, several methods were developed to perform this task:

− The algebraic manipulation of the Boolean expres-
sions aims at finding an equivalent expression by
applying the laws of Boolean algebra. However, for
such methods, there is no fixed algorithm to be used
to minimize a given expression. Thus, choosing which

www.ijacsa.thesai.org 467 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 2, 2019

Boolean theorems to apply is left to the expert’s
ability.

− The Karnaugh map which is a pictorial and straight-
forward method [21]. First, a grid of the truth table
of the function to minimize has to be drawn. The
minterms of this grid have to be arranged in Gray code
which makes each pair of adjacent cells different only
by the value of one variable.
The problem is then converted into finding rectangular
groups of adjacent cells containing ones, these groups
should have an area that is a power of two (i.e.,
1, 2, 4, 8 . . .). Consequently, unwanted variables
are eliminated. This method is easy to understand,
however it is a manual process which is not practical
when dealing with more than six variables [22].

− The tabulation method (also known as Quine Mc-
Cluskey algorithm) [23] is a useful minimization
algorithm when dealing with more than 4 variables.
It has a tabular form that makes it easy to implement
in computer programs. It consists of finding all prime
implicants of the function to minimize, and then tries
to find the necessary ones that cover the function.
Although this method is more practical than the previ-
ous ones, it is impaired by the redundancy during the
search of prime implicants. Moreover, the application
of Petrick’s method [24] in a second phase is required
to define essential prime implicants and resolve the
cyclic covering problem.

This article introduces a novel technique to optimize the
verification of a BP by simplifying its equivalent logical
formula written in the Disjunctive Normal Form (DNF).
This new simplification algorithm searches for the largest
hypercubes of lower dimensions (called elements) that are
enough to cover all vertices in a partial cube graph mapping
of the BP. A minimal equivalent DNF is then expressed as
a disjunction of the necessary hypercube abstractions in this
elements coverage.

The rest of this paper is structured as follows: Section
II describes how the BP is modeled in BPMN. Section III
presents the main Boolean algebra simplification rules as well
as the hypercube properties that are used in the developed
algorithm. Section IV explains in details the simplification
algorithm and goes throw the used speedup tweaks. Our
findings are presented and discussed in Section V. Finally, a
conclusion is given.

II. BUSINESS PROCESS MODELING AND NOTATION

The most used business process modeling standard is Busi-
ness Process Model and Notation (BPMN). It is a specification
of the Object Management Group (OMG) [25]. The modeling
is done by interconnecting standard graphical symbols grouped
in five categories:

The Swimlanes and Artifacts categories are used to group
objects into lanes and to provide additional descriptions. The
Data elements category is used to describe the flow of the
data through the process.

The main role of the three categories above is to increase
readability of the model without effecting its execution. There-

Fig. 1. Main flow objects and sections flows of BPMN 2.0.

fore the whole BP flow can be described with the remaining
two categories: Flow Objects and Connecting Objects [25].

The BPMN 2.0 specifies three Flow Objects: 1) Events,
2) Activities and 3) Gateways (see Fig. 1). These elements
are connected using Connecting Objects especially Sequence
flows.

The Event elements indicate the various incidents that
can occur during the process execution. Three main type of
events can be distinguished according to their trigger time: 1)
Start Events, 2) End Events, and 3) Intermediate Events. They
indicate the beginning or the end of a process or simply any
event that may arise in-between.

The Activity elements are used to indicate any performed
task in a process. Depending on the level of abstraction, an
Activity may be compound or atomic.

The Sequence flows are the arcs connecting related events
and activities. They define the chronological order of the
elements within a process. If the activation of a sequence flow
depends on some condition, then a Boolean variable is defined
above it. Thus the immediate successor element is activated
only if this condition is considered to be true.

The Gateway elements are used to indicate any diver-
gence or convergence in a Sequence Flow. Depending of
their behavior, the five types of Gateways are: Exclusive,
Inclusive, Parallel, Event-Based, and Complex. They determine
the branching, forking, merging, and joining of paths.

The graph composed of Flow objects and their Sequence
Flows connections describes the eventual executions of a BP.
Each path of the graph going from the start to the end events
indicates a single execution scenario. As an example, Fig. 2
shows a simplified payment/delivery BP.

Once the modeling of the BP is done, the designer must
choose which verification method to apply. The structure of
the BP model is then extracted as a mathematical expression
that depends on the used gateways and the sequence flows
branching. The next section will present the necessary elements

www.ijacsa.thesai.org 468 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 2, 2019

identify the
payment method

Process Credit
Card

Accept Cash or
Check

Credit Card

Check or Cash

Prepare package
for customer

Start event Sequence flow

Regular task

End event

Decision gateway

Fig. 2. An Example of a Simple payment/delivery BP.

used to map the logical structure of a BP and the main rules
used to simplify its equivalent formula.

III. BINARY REPRESENTATION AND REDUCTION RULES

A. Definitions

1) Boolean variable: A Boolean variable is a variable that
takes only one of the logical values: either 1 (meaning True)
or 0 (meaning False). The complement of a variable A is
denoted A and has the opposite value of A. A literal is either
the logic variable A or its complement A.

2) Minterm: A Minterm is a product (conjunction) of all
the variable literals. For instance, for three Boolean variables
A, B, and C the expressions ABC, A.B.C, and A ∧ B ∧ C
denote the same minterm. It means that C has the value 0 and
both A and B have the value 1. By assigning a power of 2
to each variable of a minterm Vn−1...V2V1V0 composed of n
variables Vi, the shorthand notation is md where d denotes
the decimal value of the binary expression Vn−1...V2V1V0)2.
For example, m6 is the short hand notation of ABC because
110)2 = 6.

3) Disjunctive Normal Form (DNF): A logical formula is
considered to be in Disjunctive Normal Form (DNF) if and
only if it is a disjunction (sum) of one or more conjunctions
(products) of one or more literals [26]. A DNF formula
is in full disjunctive normal form if each of its variables
appears exactly once in every conjunction (minterm). The only
propositional operators in DNF are and (denoted with . or ∧),
or (denoted with + or ∨), and not (denoted with ¬A or A).
The not operator can only be used as part of a literal, which
means that it can only precede a propositional variable. The
following formula of three variables A, B, and C is in DNF:

f = A B C + A B C + A B C + A B C (1)

It can be written in shorthand notation as follow:

f = m3 +m4 +m6 +m7 (2)

B. Boolean Algebra

1) Boolean algebra identities: In Boolean algebra, there
are four basic identities for addition (logical or) and four for
multiplication (logical and) that holds true for all possible
values of a Boolean statement variables. Table I gives a
summary of those identities:

2) Boolean algebra properties: In Boolean algebra, there
are three basic properties: commutative, associative, and dis-
tributive. Table II gives a summary of those properties:

TABLE I. BOOLEAN ALGEBRAIC IDENTITIES

Addition A ∨ 0 = A A ∨ 1 = 1 A ∨ A = A A ∨ A = 1

multiplication A ∧ 0 = 0 A ∧ 1 = A A ∧ A = A A ∧ A = 0

TABLE II. BOOLEAN ALGEBRA PROPERTIES

Addition (∨) Multiplication (∧)

A ∨ B = B ∨ A A ∧ B = B ∧ A

A ∨ (B ∨ C) = (A ∨ B) ∨ C A ∧ (B ∧ C) = (A ∧ B) ∧ C

A ∧ (B ∨ C) = (A ∧ B) ∨ (A ∧ C)

Fig. 3. Hasse diagram of the hypercube graph Q4

3) Boolean simplification rules: By using the identities
and properties of Boolean algebra, a Boolean statement can
be simplified by reducing the number of literals using the
following rules:

ABC +ABC = BC (3)

A+AB = A (4)

A+AB = A+B (5)

(A+B)(A+ C) = A+BC (6)

C. The Hypercube Graph Representation

A Boolean statement of n variables can be written in DNF
with at most 2n minterms of n literals. By creating a vertex
for each minterm mi and linking each two vertices when their
binary representations differ in a single digit (the Hamming
distance of their minterms is one), a hypercube graph (noted
n-cube or Qn) is created[27]. Fig. 3 gives a flat representation
of the hypercube graph Q4.

A hypercube graph of n vertices can be viewed as the
disjoint union of two hypercubes Qn−1 if an edge is added
from each vertex/minterm in one copy of Qn−1 to the corre-
sponding minterm/vertex of the other copy. As shown in Fig. 4,
the joining edges form a perfect matching between the blue
and black vertices.

www.ijacsa.thesai.org 469 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 2, 2019

Fig. 4. Construction of hypercube Qn from two Qn−1 hypercubes

In fact, every hypercube Qn of n > 0 is composed of
elements, or n-cubes of a lower dimension, on the (n-1)-
dimensional surface on the parent hypercube. The smallest
elements are the vertices (points). There is 2n of them.

In general, the number of m-cubes on the boundary of a
given n-cube is Em,n = 2n−m

(
n
m

)
where

(
n
m

)
= n!

m!(n−m)! is
the binomial coefficient.

A partial cube is an isometric subgraph of a hypercube.
The distance between any two vertices in the subgraph is the
same as the distance between those vertices in the hypercube.

Lemma III.1 Let Qn be a hypercube graph with n > 0
minterms mi where i ∈ [0, 2n[. Let f be a DNF formula
given by the disjunction of all Qn minterms. Then n variables
of f can be simplified. The abstracted equivalent formula is
easily obtained by identifying the common literals between
the minterm with maximum shorthand notation value (denoted
mmax) and the one with the minimum shorthand notation
value (denoted mmin). This abstraction is chosen to be called:
abstraction mmax with filter mmin.

Proof: For instance, if n = 1 then Q1 is composed of
two minterms m0 and m1 of one variable v0. By applying the
identity v0+ v0 = 1, an abstraction of the variable v0 is given
(abstraction m1 with the filter m0).

If n = 2 then Q2 is composed of four minterms
{m0,m1,m2,m3} each one is composed of two variables v0
and v1. By applying the same identity to two opposite sides
of Q2 an abstraction of the variables v0 and v1 is given (the
abstraction m3 with the filter m0). In fact:

f = m0 +m1 +m2 +m3 = v1.v0 ∨ v1.v0 ∨ v1.v0 ∨ v1.v0
f = v1.(v0 ∨ v0) ∨ v1.(v0 ∨ v0) = v1 ∨ v1 = 1

Let us assume that the lemma III.1 is correct for any
n > 0. Let Q1n and Q2n be two hypercubes that their
disjoint union form the hypercube Qn+1. Each minterm mx =
mVnVn−1...V2V1V0)2

in Q1n forms a perfect matching with
another minterm my = mVnVn−1...V2V1V0)2 in Q2n. mx and
my can be abstracted to mx because they differ by the value
of a single variable vn. In fact:

f = mx +my = VnVn−1...V2V1V0 ∨ VnVn−1...V2V1V0

f = (Vn ∨ Vn)Vn−1...V2V1V0 = Vn−1...V2V1V0 = mx

which gives an abstraction of the variable Vn. As a result,
the hypercube Qn+1 gives an abstraction of n + 1 variables:
n variables with the hypercube Q1n plus that of Vn.

m0

m4

m9

m8

m10 m12

m2

m5m3

m1

m6

m13 m14m11m7

m15

Fig. 5. Reduction of a full DNF of 4 variables to hypercubes Q2 and Q3

In the next section, an explanation of how the lemma III.1
can be used as a key stone to perform the simplication of any
formula written in DNF is given.

IV. SIMPLIFICATION ALGORITHM

In order to simplify a Boolean expression written in DNF,
its expression is represented as a partial cube PQn of the
hypercube graph Qn, with n the number of variables in the
DNF formula. The developed algorithm consists in finding the
largest elements (hypercubes) Qm, with m ≤ n, so that their
disjoint union covers all vertices of the partial cube PQn.
The fewer is the number of necessary hypercubes Qm, the
more abstract is the equivalent formula. As an example, the
following DNF formula can be considered:

f(A,B,C,D) = A B CD +A BCD +ABC D+

ABCD +ABCD +AB CD +ABCD+

ABC D +ABCD +ABCD (7)

This formula is represented as a partial cube PQ4 with
vertices m1, m3, m4,m5, m7, m9, m11, m12, m13, and
m15. Fig. 5 shows that the vertices of PQ4 (green and
yellow vertices) can be covered with the disjoint union of two
hypercubes Q3 and Q2.

Using lemma III.1, three variables A, B, and C can
be reduced with the hypercube Q3 composed of vertices
{m1,m3,m5,m7,m9,m11,m13,m15}. Thus Q3 is reduced to
m15 with the filter m1 which is equivalent to the expression D
since it is the only variable that remains with the same value
in all minterms of Q3 (we have mmax = m15 = m1111)2 and
mmin = m1 = m0001)2 the abstraction is −−−1)2).

The hypercube Q2, composed of {m4,m5,m12,m13},
gives an abstraction of tow variables A and D. Thus Q2 is
reduced to m13 with the filter m4 which is equivalent to
the expression BC (we have mmax = m13 = m1101)2 and
mmin = m4 = m0100)2 the abstraction is −10−)2).

www.ijacsa.thesai.org 470 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 2, 2019

identify S the set of x
active successors

pop into Y the farthest
successor of X

identify R the set of
required intermediate

vertices

are all R
minterms
active?

possible mapping
from X to Y

[Yes]

delete from Y all R
elements

update the best reduction
for each minterm in R

no possible reduction
from X to Y

[No]

pop into X the minterm
with maximum number of

set bits

[No]

is S
 empty ?

identify L the set of active
minterms

is L
 empty ?

No[Yes]

no further reduction
from X is possible

[Yes]

no further reduction is
possible

Fig. 6. Organogram of the proposed Boolean reduction algorithm

Finally, the disjunction of this two abstractions gives the
minimal formula :

(A,B,C,D) = D +BC. (8)

If a vertex of the partial cube is covered by multiple hyper-
cubes, the largest one has to be considered. That way, each
vertex is surely covered with the most abstract expression.

A simplified version of the reduction algorithm is sum-
marized in Fig. 6. The algorithm starts with identifying the
vertices of the partial cube PQ that maps all the minterms of
the formula to minimize. Then, it tries to find, for each vertex
mi of the PQ, the largest hypercube (or hypercubes if there
are many with the same size) that contains mi. Finally, the
algorithm gives priority to external vertices then holds only the
necessary hypercubes to cover them all. The abstraction given
by those hypercubes is the minimal equivalent expression of
the DNF to minimize.

In the next section, the performance of the proposed
algorithm will be compared with the Quine-McCluskey method
(QM).

All abstractions were performed using a Python implemen-
tation of the developed algorithm. They were then compared
to the an optimized Python implementation of the standard
Quine-McCluskey algorithm (This implementation is included
in the digital electronics simulation library BinPy).

The experiments were carried out on a conventional laptop
computer equipped with an Intel i5 processor and 8GB of
RAM.
For each dimension n, with n ≤ 4, all formulas were tested

since there is only 65812 possible ones (22
1

+22
2

+22
3

+22
4

=
65812). For n > 4, the formulas to minimize were chosen up
to x = 224.

For each test, the running times, for both methods, were
recorded starting from the feeding of the formula to minimize
until the reception of the minimal equivalent DNF. The integer
representing the input formula is then incremented for the next
test. Since the execution time can vary significantly depending
on the input size, we choose to plot the relative percent
difference of the two algorithms runtimes. Each scatter in
Fig. 7 represents the result of one test that is given by the
formula :

100 ∗ QM ′s runtime − Our algorithm′s runtime

minimum of both runtimes

A blue scatter indicates a result in favor of the proposed
algorithm while a red scatter indicates a result in favor of the
QM algorithm.

The plot was generated using the python data visualization
library Seaborn based on matplotlib.

V. RESULTS AND DISCUSSION

From Fig. 7 we can conclude that our algorithm has better
performances than the QM Method since it has better results
in 89.40% cases of the 224 conducted tests. Moreover, the
proposed algorithm is over 400% faster in 1380450 cases while
the QM method is over 400% faster only in 746 cases. Also
this percent difference can reach over 2000% in 3829 cases in
favor of the developed algorithm and in no case in favor of
the QM method.

One advantage of the new algorithm introduced in this
work, is that it follows a top-down approach: it searches first
for the largest hypercube that covers a minterm which means
that the algorithm does not waste time on smaller hypercubes
with less abstraction. In the counterpart, the Quine-McCluskey
algorithm follows a down-top approach: it tries to find all
prime implicants of size 2 then size 4 and so on, which means
that it wastes time on multiple partial prime implicants before
reaching the optimum formula.

A second advantage of the developed algorithm is that,
unlike for the tabular method, there is no need to use the
Pitrick’s method to solve the problem of cyclic covering. It
is simply solved by holding first the coverage of the external
vertices of the decomposition hypercubes.

Finally, another advantage is the use of binary operations
that are directly supported by the microprocessor; it applies a
simple binary and/or filters to find the successors of a given
vertex or to store the previous found coverage. For instance,
if there are six variables then there are 26 = 64 minterms,
instead of using a loop of 64 iterations, a single microprocessor
operation can be used to filter the active minterms in the partial
cube.

VI. CONCLUSION

Business Processes are indubitable tools for the modern
business planning, but those models can include structural
flaws that are hard to detect with manual verification, which
gives extreme importance to automatic verification. Formal

www.ijacsa.thesai.org 471 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 2, 2019

Fig. 7. Relative percent difference of the two algorithms’ runtimes.

methods verification algorithms suffer from the high complex-
ity since the problem they try to solve is NP-hard, hence the
necessity to reduce the problem size by minimizing the number
of literals.

In this paper, a novel technique of business processes
simplification has been presented. A simplification tool that
performs literals reduction using hypercube decomposition has
been built. Moreover, the simplification algorithm was entirely
automated which makes the optimization task accessible to
the regular BP designers. Promising subject of research can
be explored in further depth, such as how machine learning
algorithms could be used to accelerate the simplification al-
gorithm, how the algorithm can be modified to reduce the
spatial complexity, and finally, the possibility of adapting the
algorithm, view its characteristics, for quantum computing.

REFERENCES

[1] R. Heinrich, P. Merkle, J. Henss, and B. Paech, “Integrating business
process simulation and information system simulation for performance
prediction,” Softw Syst Mod, vol. 16, no. 1, pp. 257–277, 2017.

[2] D. Batory, “Feature models, grammars, and propositional formulas,” in
International Conference on Software Product Lines. Springer, 2005,
pp. 7–20.

[3] J. Stark, “Product lifecycle management,” in Product Lifecycle Man-
agement. Springer, 2015, vol. 1, pp. 1–29.

[4] H. Völzer, “An overview of bpmn 2.0 and its potential use,” in Inter-
national Workshop on Business Process Modeling Notation. Springer,
2010, pp. 14–15.

[5] W. M. P. Van Der Aalst, M. L. Rosa, and F. M. Santoro, “Business
process management - don’t forget to improve the process!” Bus Inform
Syst Eng, vol. 58, no. 1, pp. 1–6, 2016.

[6] V. Gruhn and R. Laue, “Complexity metrics for business process mod-
els,” in 9th international conference on business information systems
(BIS 2006), vol. 85. Citeseer, 2006, pp. 1–12.

[7] K. Batoulis, A. Meyer, E. Bazhenova, G. Decker, and M. Weske,
“Extracting decision logic from process models,” in International Con-
ference on Advanced Information Systems Engineering. Springer, 2015,
pp. 349–366.

[8] A. Förster, G. Engels, T. Schattkowsky, and R. V. D. Straeten, “Verifi-
cation of business process quality constraints based on visual process
patterns,” in First Joint IEEE/IFIP Symposium on Theoretical Aspects
of Software Engineering, TASE 2007, June 5-8, 2007, Shanghai, China.
IEEE Computer Society, 2007, pp. 197–208.

[9] A. Elgammal, O. Turetken, W.-J. van den Heuvel, and M. Papazoglou,
“Formalizing and appling compliance patterns for business process
compliance,” Softw Syst Model, vol. 15, no. 1, pp. 119–146, 2016.

[10] X. Tan, Y. Gu, and J. X. Huang, “An ontological account of flow-control
components in bpmn process models,” Big Data Inf Anal, vol. 2, no. 2,
pp. 177–189, 2017.

[11] S. Mallek, N. Daclin, V. Chapurlat, and B. Vallespir, “Enabling model
checking for collaborative process analysis: from bpmn to ‘network of
timed automata’,” Entrep Inf Syst - UK, vol. 9, no. 3, pp. 279–299,
2015.

[12] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith, “Progress on the
state explosion problem in model checking,” in Informatics. Springer,
2001, pp. 176–194.

[13] Y. Li, A. Deutsch, and V. Vianu, “A spin-based verifier for artifact
systems,” Comput Res Rep, vol. abs/1705.09427, 2017.

[14] C. Wolter, P. Miseldine, and C. Meinel, “Verification of business
process entailment constraints using spin,” in international symposium
on engineering secure software and systems. Springer, 2009, pp. 1–15.

[15] L. C. Paulson, Isabelle: A generic theorem prover, ser. Lecture Notes
in Computer Science. Springer Science & Business Media, 1994, vol.
828.

[16] G. Buday, “Logic in computer science: Modelling and reasoning about
systems by huth michael and ryan mark, isbn 0 521 54310 x.” J Funct
Program, vol. 18, no. 3, pp. 421–422, 2008.

[17] S. Halfon, P. Schnoebelen, and G. Zetzsche, “Decidability, complexity,
and expressiveness of first-order logic over the subword ordering,”
in Logic in Computer Science (LICS), 2017 32nd Annual ACM/IEEE
Symposium on. IEEE, 2017, pp. 1–12.

www.ijacsa.thesai.org 472 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 2, 2019

[18] M. Elberfeld, M. Grohe, and T. Tantau, “Where first-order and monadic
second-order logic coincide,” ACM Trans Comput Logic, vol. 17, no. 4,
p. 25, 2016.

[19] M. Lamotte-Schubert, “Automatic authorization analysis,” Ph.D. disser-
tation, Saarland University, Saarbrücken, Germany, 2015.

[20] A. Gawanmeh and A. Alomari, “Challenges in formal methods for
testing and verification of cloud computing systems,” Scalable Comput
Pract Exp, vol. 16, no. 3, pp. 321–332, 2015.

[21] M. Karnaugh, “The map method for synthesis of combinational logic
circuits,” T Am Inst Elec Eng 1, vol. 72, no. 5, pp. 593–599, 11 1953.

[22] T. K. Jain, D. S. Kushwaha, and A. K. Misra, “Optimization of
the quine-mccluskey method for the minimization of the boolean
expressions,” in Fourth International Conference on Autonomic and Au-
tonomous Systems, ICAS 2008, 16-21 March 2008, Gosier, Guadeloupe.
IEEE Computer Society, 2008, pp. 165–168.

[23] W. V. Quine, “The problem of simplifying truth functions,” Am Math
Mon, vol. 59, no. 8, pp. 521–531, 1952.

[24] S. R. Petrick, “A direct determination of the irredundant forms of a
boolean function from the set of prime implicants,” AFCRC-TR-56,
vol. 10, p. 110, 1956.

[25] J. Mendling and M. Weidlich, Eds., Business Process Model and
Notation - 4th International Workshop, BPMN 2012, Vienna, Austria,
September 12-13, 2012. Proceedings, ser. Lecture Notes in Business
Information Processing, vol. 125. Springer, 2012.

[26] J. Cohen, “Review of ”introduction to lattices and order by b. a. davey
and h. a. priestley”, cambridge university press,” ACM SIGACT News,
vol. 38, no. 1, pp. 17–23, 2007.

[27] Y. Saad and M. H. Schultz, “Topological properties of hypercubes,”
IEEE T Comput, vol. 37, no. 7, pp. 867–872, 1988.

www.ijacsa.thesai.org 473 | P a g e

	Introduction
	Business Process Modeling and Notation
	Binary Representation and Reduction Rules
	Definitions
	Boolean variable
	Minterm
	Disjunctive Normal Form (DNF)

	Boolean Algebra
	Boolean algebra identities
	Boolean algebra properties
	Boolean simplification rules

	The Hypercube Graph Representation

	Simplification Algorithm
	Results and Discussion
	Conclusion
	References

