
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 2, 2019

Comparative Analysis of Network Libraries for
Offloading Efficiency in Mobile Cloud Environment

Farhan Sufyan1, Amit Banerjee2
Department of Computer Science,

South Asian University, New Delhi, India - 110021

Abstract—In the modern era, smartphones are increasingly
becoming an integral and essential part of our daily life.
Although the hardware capabilities of the smartphones (i.e.,
processing, memory, battery, and communication) are improving
every day, however, it is not enough to handle computation-
intensive applications, such as image processing, data analytics,
and encryption. To overcome these limitations, mobile cloud
computing (MCC) is introduced, which augments the capabilities
of smartphones and resources of the cloud to provide better
QoS performance to the user. The idea is to save resources
in the smartphones by offloading the computationally intensive
tasks to the cloud. In this context, researchers have proposed
several offloading frameworks, mainly addressing challenges of
why-what-when and where to offload. In this paper, however,
we explore another challenging issue of offloading, i.e., how-
to-offload. More specifically, we analyze different networking
libraries (HttpURLConnection, OkHttp, Volley, Retrofit) and study
their performance on various dynamic factors such as data size,
communication media, hardware and software of the smartphone.
Our objective is to explore if an application can use the same
networking library for all the smartphones and all purposes or
there is a need to make an adaptive decision based on the local
constraints. To understand this, we perform a comprehensive
analysis of the networking libraries on different Andriod smart-
phones in the real environment and found that there is a need
of adaptive network library selection because libraries perform
changes in different scenarios.

Keywords—Android; Mobile Cloud Computing (MCC); network
libraries; offloading; performance

I. INTRODUCTION

Over the last decade, we have seen unprecedented and
exponential growth in the popularity of smartphones and
smart devices. With increasing capability of the smart devices,
consumers are becoming more demanding, and the developers
are building more sophisticated applications with interesting
features and complexity [1]. In spite of significant progress,
smartphones are unable to accommodate user/application de-
mands, particularly for applications that require resource-
intensive processing, memory, and power. To solve the above
problem, the concept of computation offloading or simply
offloading is introduced in mobile cloud computing (MCC).
Offloading is an idea that has been around for a long time
and evolved from various paradigms of distributed computing.
The concept gained more attention with the popularity of
smart mobile devices and the demand for incorporating more
sophisticated applications on these well-connected devices.

Offloading augments the capabilities of smartphones and
the resources of the cloud to complement the requirements
of computation-intensive applications. The computational re-

Fig. 1. Offloading Perspectives

sources in the cloud can be provisioned on-demand to augment
more capabilities to smartphones. Smartphones can offload
large computations or computation intensive modules to the
cloud via its wireless communication network for execution
and retrieve the results [2]. The primary objective of offloading
is to reduce the task execution time and energy consumption
of smartphones. Offloading is also referred as cyber foraging
[3] or remote execution [4]. The challenges of offloading
includes the following decision problems: why, what, when,
and where to offload [5], Fig. 1. Researchers have proposed
several offloading frameworks and techniques to address theses
challenges. Broadly, an offloading decision is made by utilizing
the local information of the smartphones, namely, CPU and
memory utilization, code profiling, network speed and/or user
behavior. These parameters are fed into an optimization engine
to take optimal decision to achieve the offloading objectives
[6], [7], [8], [9]. The optimization decision can be either be
taken on mobile device [10], cloud [9] or both [11]. After the
offloading decision, smartphone can send heavy computation
[12] or network intensive tasks [13] to the cloud using a
network library, as shown in Fig. 2.

In this paper, we investigate another challenging issue
related to offloading, i.e., how-to-offload, particularly deals
with the decision of selecting network library for transferring
the computation or data from the smart devices to the cloud
and vice-versa [14], [15]. Recently, the how-to-offload problem
is also discussed in [16], where the author emphasis require-
ment of network library selection for realizing the offloading
potentials. More specifically, we intend to investigate, if an
application can use a particular network library in all smart-
phones or needs to select it dynamically, as shown in Fig. 3.
There are several network libraries available for exchanging
data in smartphones, such as HttpURLConnection, OkHttp,
Volley, and Retrofit. However, selecting a particular library
for an application is not straightforward, as it depends upon
various dynamic factors, including file size, communication
media, battery consumption, hardware and software of the
smartphone. In this paper, we aim to study various network

www.ijacsa.thesai.org 574 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 2, 2019

Fig. 2. Current Offloading Trend : Offloaded task or data is send to the cloud using any predefined network library.

offloading libraries that are currently supported by the Android
OS and understand their behavior for the above factors.

As discussed before, researchers have rigorously studied
the code profilers [17], network profilers [18], hardware and
software profilers [19] to propose models and frameworks
for addressing the why, what, when, and where challenges of
offloading. However, in this paper, we are trying to explore the
effect of the network libraries on offloading by analyzing the
existing technologies using real implementation. The idea is to
evaluate the effect of the network libraries on offloading. We
believe that how-to-offload is an important factor in offloading
that requires a more thorough investigation and careful evalu-
ation. Without loss of generality, we abstract the problem of
understanding the behavior of the libraries independent of any
application in terms of the following factors:

• Synchronous or Asynchronous Offloading: An
offloading operation can either be executed syn-
chronously or asynchronously dependent upon the re-
quirements of an application. Synchronous execution
means the execution in a series. For example, in a
chess game, a player makes the next move when the
opponent turn is over. Asynchronous execution means
to split the problem into multiple tasks and process
them independently. For example, discussion forums
where every user can post their views independent of
any other user.

• Data Size: Library performance also depends on the
amount of data an application needs to offload. For
some application, we need to transfer only a small
amount of data such as program files for execution.
On the other hand, some application may require
transferring large files such as video or images for
analysis. Hence, there is a need to decide which of
the above libraries is best suited for transferring a
particular data size.

• Network Medium: The performance of the library
also depends upon the communication media used for
transferring the data, such as Wi-Fi or 4G.

• Hardware/Software: The effect of hardware configu-
ration and operating system of the mobile devices on
these libraries.

To analyze the performance of the networking libraries,
we develop android applications for implementing these li-
braries. We consider a scenario, where a network library
needs to offload data to the cloud, either in synchronous or
asynchronous mode, via its underlay communication media.
Evaluation is done on a test-bed, involving different file
sizes, code execution, network medium and mobile devices of
various configuration. For this evaluation, we spawn a virtual
machine in Amazon Web Services (AWS) cloud to study and
analyze the behaviors of these libraries in a real environment.

The rest of the paper is structured as follows. Section
II provides the background of offloading frameworks and
techniques. The terminologies used in our paper are described
in Section III. In Section IV, we describe the overview of dif-
ferent networking libraries of Android OS and implementation
detail of analyzing how to offload aspect. Section V presents
the experimental setup used in the performance analysis of the
various networking libraries. The results obtained from the
performance evaluation are given in Section VI. In Section
VII, we discuss the results obtained from the performance
evaluation of offloading libraries in detail. Finally, we conclude
our paper and discuss future works in Section VIII.

II. RELATED WORK

In this section, we present a review of the proposed
offloading frameworks and techniques. In [9], authors present a
MAUI framework using a strategy based on code annotations
to determine the computation intensive methods that can be
offloaded. The main aim of this framework is to save the

www.ijacsa.thesai.org 575 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 2, 2019

Fig. 3. How to Offload: Adaptive network library selection depending upon the parameters like task execution, data size, network medium and H/W & S/W
of smartphones.

energy of mobile devices by analyzing the computation inten-
sive code using MAUI profiler which minimizes the burden
of program partitioning on the programmer. Authors evaluate
the MAUI’s energy consumption and performance benefits for
different applications.

Clone Cloud [12] is another prominent framework for
code offloading. In this model, a clone of the smartphone is
maintained in the cloud that is synchronized with the user’s
smartphone before offloading. The framework partitions the
application utilizing static and dynamic profiling to optimize
execution time and energy. In this article, authors have tested
their model for the different applications and shown a relative
improvement in execution speed and energy consumption of
the mobile devices.

In [7], authors present ThinkAir framework to perform on-
demand resource allocation. It exploits scalable resources of
cloud by dynamically creating, resuming, and destroying vir-
tual machines (VMs) whenever required for parallel execution
of offloaded code to reduce execution time. In this paper, the
authors analyze the execution time and battery consumption
of applications over different networks for evaluating the
framework.

In [20], authors propose ENDA, which is a three-tier
offloading architecture involving smartphones, cloudlets, and
cloud interacting among themselves to consider user mobility,
network performance, and server load to make efficient of-
floading decisions. Authors design a greedy search algorithm
to predict the user movement and select the energy efficient
Wi-Fi access point for offloading. The main focus of ENDA
is to generate optimal offloading decision by considering the
user mobility and unstable network quality.

[21] discuss the COSMOS framework to provide offloading
as-a-service to smart mobile devices. COSMOS acts as an
intermediary between cloud and smartphone for cost-effective
scheduling and allocation of the cloud resources, after re-

ceiving the offloading request from the mobile devices. The
framework enhances the speed of mobile computation while
at the same time reduce the cost of leasing cloud resources.

Authors in [22], puts forward a context-sensitive offloading
decision algorithm to decide the network medium and cloud
resource, including the resources of local mobile device cloud,
cloudlet, public cloud for offloading at runtime based on
the device context to improve the performance. In [23], an
offloading strategy Cuckoo is introduced by authors. The main
task of Cuckoo is to save battery life and minimize cost
using static and dynamic profiling. In this paper, authors
propose a skyline-based online resource scheduling to satisfy
the offloading demands.

In [18], authors present SIMDOM offloading framework
which translates the computation and resource intensive Single
Instruction, Multiple Data (SIMD) instructions in a cloud or
edge environments. The framework performs vector-to-vector
instruction mappings to translate the ARM SIMD intrinsic
instructions to x86 SIMD intrinsic instructions, so that mobile
platform application can easily be executed on heterogeneous
machines in a cloud or edge server without any modification.
Offloading decision is taken by an offload manager using
the values received from the application, energy, and network
profilers.

In [11], authors propose EMCO, which uses crowdsensing
to improve offloading decisions rather than profiling different
parameters of individual devices. EMCO utilizes crowd sensed
evidence traces as a novel mechanism for improving the
performance of offloading systems. In [17], authors present
MobiCOP, an offloading platform solution which is fully self-
contained in a library format. Any Android software can
integrate with MobiCOP without requiring extraneous third-
party tools. The authors focus on the real-life implementation
of the offloading solution irrespective of any customized OS
versions.

www.ijacsa.thesai.org 576 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 2, 2019

CloudSmartphone

File1

Response1

File2

Response2

File3

Response3

Fig. 4. Synchronous Computation/Data Transfer

Most papers discussed above evaluate the performance of
a framework by analyzing the total time required for executing
a task and battery consumption when offloading over the
different network medium. However, in this paper, we focus
on the network libraries that are often used for offloading
the computation tasks to the cloud. We intend to investigate
the need for adaptive network library selection procedure,
depending upon dynamic parameters like data size, execution
mode, communication media, hardware and software of the
mobiles devices.

III. TERMINOLOGIES

1) Data vs Code Offloading: The smartphones can either
offload code or data to the cloud. Sensors are the most
prominent source of data generation. The data generation rate
of the sensors can vary depending upon the requirements of
the application. However, most of the big data analytics and
machine learning programs are executed in the cloud, which
requires the user to transfer a large amount of data from its
smart devices to the cloud, also known as data offloading.

The data-intensive applications and sensors often store
huge amount of data in the cloud and downloading the data to
a local server for processing may not be efficient. A user needs
to send the program file or code from smart device to cloud
for performing the particular computation. After processing
data, the result is revert to the user. This strategy requires
only transferring a small amount of data, i.e., program code
and result from the server, also known as code offloading.
The problem of an efficient code offloading can be complex,
particularly if it involves multiple servers [24] or applications.

2) Synchronous vs Asynchronous Offloading: There are two
ways in which code/data can be offloaded for execution on
the cloud synchronously or asynchronously. The synchronous
transfer used in the applications that require serial execution
of a particular task. In other words, the tasks are executed
one after the other. In synchronous execution, the output
received from the executed code can is used as an input for
another program, i.e., the tasks can be dependent on each
other. Synchronous execution is also utilized in situations

CloudSmartphone

File1
File2
File3

Response1

Response2

File4

Response3
Response4

Fig. 5. Asynchronous Computation/Data Transfer

where the tasks are frequently accessing a shared memory
location [25]. A real-life example of synchronous execution
is communication over walkie-talkie where a person responds
when the other person’s message is finished. Another example,
a chess game, a player will make the next move when the
opponent turn is over. Fig. 4 shows the sequence diagram
of the synchronous transfer of files from a mobile device to
the cloud. Next file is started to upload when the successful
acknowledgment or result of the previous file is received from
the cloud.

Similarly, asynchronous offloading used in situations where
the task is independent of each other and don’t access shared
memory. In other words, the result of the offloaded task is
not required by other tasks for their execution. Asynchronous
execution split up the problem into multiple tasks and pro-
cess them independently [26], [27]. A real-life example of
asynchronous execution is discussion forums where every
user can post their views independent of any other user.
Another example is communication over mobile networks
where persons listen and respond when talking to the other
person simultaneously. Fig. 5 shows the sequence diagram of
the asynchronous transfer of files from a mobile device to
the cloud. Files are uploaded one after another consecutively
before receiving the response from the cloud server.

IV. OFFLOADING LIBRARIES

In this section, we provide a detailed discussion of four
different network libraries that are commonly used for ex-
changing data from the cloud.

A. HttpURLConnection

HttpURLConnection is an abstract class of JAVA extended
from the URLConnection class. Developers popularly use it for
exchanging data from the web servers. As the name suggests,
it works on HTTP protocol and contains additional HTTP
specific features. A single instance of HttpURLConnection
is used to make a single request from the HTTP server.
HttpURLConnection can be used only for the synchronous
networking calls; it does not support asynchronous calls.

www.ijacsa.thesai.org 577 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 2, 2019

Before the introduction of other networking libraries, it was
officially suggested by the Android developing team to use
HttpURLConnection [28] for the networking purposes.

To use the HttpURLConnection class for uploading
data from a client or smart-device to the server is
started by obtaining a new HttpURLConnection by calling
URL.openConnection() and casting the result to HttpURL-
Connection and configure the connection for output using
setDoOutput(true). If the size of the file or data is known
in advance we can call setFixedLengthStreamingMode(int) or
setChunkedStreamingMode(int) when it is not. Below we give
the abstract code to perform an upload using HttpURLCon-
nection class:

URL url = new URL(uploadServerUrl);
HttpURLConnection urlConnection =

(HttpURLConnection) url.openConnection();
try {
urlConnection.setDoOutput(true);
urlConnection.setChunkedStreamingMode(0);

OutputStream out = new
BufferedOutputStream
(urlConnection.getOutputStream());

writeStream(out);

InputStream in = new BufferedInputStream
(urlConnection.getInputStream());

readStream(in);
} finally {
urlConnection.disconnect();

}

Below is the abstract code for retrieving the result or file from
the server using HttpURLConnection class:

URL url = new URL(sourceFileUrl);
HttpURLConnection urlConnection =

(HttpURLConnection)
url.openConnection();

try {
InputStream in = new BufferedInputStream

(urlConnection.getInputStream());
readStream(in);

} finally {
urlConnection.disconnect();

}

B. OkHttp

OkHttp networking library is an open source project which
is introduced by Square [29]. OkHttp is an efficient HTTP
client which supports HTTP, HTTP 2.0 and SPDY protocols.
OkHttp multiplex several HTTP requests over one socket
connection. OkHttp is a powerful networking tool which does
not require any REST library and its also support both syn-
chronous and asynchronous networking calls. It also provides
the caching mechanism to cache the response from the server
to avoid repeated network request.

Below we give an abstract code to perform a file upload
synchronously and asynchronously. For synchronous network
call, create a call object using client and use the execute
method. The synchronous request should be executed on a
background thread; otherwise, it gives network error. For
asynchronous network call, execute method is replaced with
the enqueue method. There is no need for background thread
for making asynchronous network calls.

OkHttpClient client = new OkHttpClient();
RequestBody file_body = RequestBody.create

(MediaType.parse(content_type), file);
RequestBody request_body = new

MultipartBody.Builder()
.setType(MultipartBody.FORM)
.addFormDataPart ("name",

file_name, file_body)
.build();

Request request = new Request.Builder()
.url(ServerUrl)
.post(request_body)
.build();

// For Synchronous Calls
Response response =

client.newCall(request).execute();
// For Asynchronous Calls
client.newCall(request).enqueue(new

Callback() {
public void onFailure(Call

call,IOException e){
}
public void onResponse(Call call, final

Response response) throws IOException {
// do something wih the result

}
}

Similarly, files can be downloaded from the cloud in syn-
chronous and asynchronous manner using.

OkHttpClient client = new OkHttpClient();
Request request = new

Request.Builder().url(file_url).build();
// For Synchronous Calls
try {

Response response =
client.newCall(request).execute();

write(fileTodisk);
}catch (Exception e) {

e.printStackTrace();
}
// For Asynchronous Calls
try {

Response response =
client.newCall(request).enqueue(new
Callback() {

public void onFailure(Call
call,IOException e){

}
public void onResponse(Call call, final

Response response) throws IOException {
// do something wih the result

}

www.ijacsa.thesai.org 578 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 2, 2019

}

C. Volley

Volley is a HTTP networking library introduced by Google
in Google I/O 2013. Volley provides many powerful network-
ing tools out of the box for the users. Some of the prominent
features are multiple concurrent network request, automatic
scheduling, and prioritization of the network request, cancel-
lation of single or blocks of requests and provide effective
memory response caching. Volley is easy to code, and it
fetched data asynchronously from the network [30]. Here, we
give an abstract code of sending a file to the server using
Volley.

// Instantiate the RequestQueue
RequestQueue queue =

Volley.newRequestQueue(this);
String url ="http://www.serverip.com";

// Request a string response from the
provided URL.

MultiPartRequest request = new
SimpleMultiPartRequest(Request.Method.GET,
serverUrl,

new Response.Listener<String>() {
@Override
public void onResponse(String response) {
}

}, new Response.ErrorListener() {
@Override
public void onErrorResponse(VolleyError

error) {
}

});
//Add the request to the RequestQueue
request.addFile("name", file);
queue.add(request);

Below is the code for downloading a file from the server using
Volley:

RequestQueue queue = Volley.newRequestQueue();
InputStreamVolleyRequest request = new

InputStreamVolleyRequest(Request.Method.GET,
fileUrl, this,this, null);

queue.add(request);
@Override
public void onErrorResponse(VolleyError

error) {
}
@Override
public void onResponse(byte[] response) {

writeFileToDisk();
}

D. Retrofit

Retrofit is type-safe and one of the most popular HTTP
client for Android by Square. It is very easy to use and

convert the HTTP API into Java interface. It performs network
function using REST based web services. Retrofit support both
synchronous and asynchronous network request to the remote
web server. It also provides a caching mechanism for repeated
network request [31]. Retrofit converts HTTP API into Java
interface which helps to treat your network calls as simple Java
method calls. Below is the abstract code for uploading files to
the server in both synchronous and asynchronous manner:

MultipartBody.Part filePart =
MultipartBody.Part .createFormData("name",
file_name, RequestBody
.create(MediaType.parse("*/*"), file));

Retrofit.Builder builder = new
Retrofit.Builder()

.baseUrl(serverUrl);
Retrofit retrofit = builder.build();
Upload api = retrofit.create(Upload.class);
Call<ResponseBody> call=

api.uploadAttachment(filePart);
//For Synchronous Calls
call.execute();
//For Asynchronous Calls
call.enqueue(new Callback<ResponseBody>() {
@Override
public void onResponse(Call<ResponseBody>

call, Response<ResponseBody> response) {}
@Override
public void onFailure(Call<ResponseBody>

call, Throwable t) {}
}
//Interface for File Upload
interface Upload {

@Multipart
@POST("upload.php")
Call<ResponseBody> uploadAttachment(

@Part MultipartBody.Part filePart);
}

Below is the abstract code for downloading files from the
server in both synchronous and asynchronous manner:

Retrofit.Builder builder = new
Retrofit.Builder()

.baseUrl(serverUrl);
Retrofit retrofit = builder.build();
Download api =

retrofit.create(Download.class);
Call<ResponseBody> call =

api.downloadFile(fileURL);
//For Synchronous Calls
Response<ResponseBody> response =

call.execute();
writeFileToDisk();
//For Asynchronous Calls
call.enqueue(new Callback<ResponseBody>() {
@Override
public void onResponse(Call<ResponseBody>

call, Response<ResponseBody> response) {
writeFileToDisk(); }

@Override
public void onResponse(Call<ResponseBody>

call, Response<ResponseBody> response) {

www.ijacsa.thesai.org 579 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 2, 2019

TABLE I. AWS EC2 INSTANCE CONFIGURATION

EC2 Instances CPU Memory Memory
t2.micro 1 GHz 1 GB 8 GB

TABLE II. OFFLOADING LIBRARIES

S.No Synchronous Transfer Asynchronous Transfer
1 HttpUrlConnection Volley
2 OkHttp Synchronous OkHttp Asynchronous
3 Retrofit Synchronous Retrofit Asynchronous

writeFileToDisk(); }
//Interface for File Upload
public interface Download {

@GET
Call<ResponseBody> downloadFile(@Url

String url);
}

V. EXPERIMENTAL SETUP

To understand the performance, we develop an Android
application to implement different network libraries. We study
the behavior of the libraries under different parameters like
code execution, data size, wireless media, and mobile devices.
The evaluation is conducted on the WiFi and 4G networks,
using two smartphones of different hardware and software
configurations. The experiments evaluate the performance of
both synchronous and asynchronous libraries by sending the
files of different sizes to the cloud through WiFi and 4G
networks. For real evaluation, we spawn a virtual machine
or a Elastic Compute Cloud (EC2) instance in AWS cloud,
so that the behavior of these libraries is studied and analyzed
in a real environment. The configuration details of an (EC2)
instance is given in Table I. We place our virtual machine in
the US-West (Oregon) data center region. The virtual machine
is intentionally placed very far, to consider the worst case
scenario and evaluate the libraries under varied network traffic
conditions. We conduct the experiments for a week, at different
times during day and night. The performance of libraries is
analyzed regarding battery consumption and network delay
incurred due to the effect of various factors such as file size,
network media, hardware and software of the smartphones. The
libraries used for synchronous or asynchronous data transfer
from mobile device to the cloud are mentioned in Table II.

Depending upon the nature of the applications, we may
need to upload data of different size ranging from few bytes
to MB’s, in our paper we consider the files size ranging
from 200 bytes - 8 MB. In the following discussion, the
term “data” or “file” is used to represent both code and
data offloading, as discussed previously in Section III. Code
offloading requires sending files of small size, whereas data
offloading transfers a large amount of data for storage in the
cloud. While testing the libraries for particular file size, we
send multiple copies of the same file to the cloud to negate
the effect of the network on the performance of a library at a
particular instant. For synchronous transmission, we send the
files one-by-one after receiving the response from the server;
whereas for asynchronous transmission, we send the files in
parallel without waiting for the response from the cloud.

TABLE III. DEVICE CONFIGURATION

Name OS CPU RAM
Smartphone-1 Android v6.0.1 Quad-core 2.5 GHz Krait 400 3GB
Smartphone-2 Android v5.1 1.0 GHz quad core MediaTek 1GB

We perform the same experiments in different wireless
networks, i.e., WiFi and 4G. Moreover, we analyze the effect of
hardware and software of the smart devices on the performance
of libraries as there is a huge difference in the hardware
capabilities of different smart devices. The configurations of
the smartphones used in our evaluation are in Table III.
We evaluate all libraries on both mobiles at the same time
by executing the process of uploading and downloading on
different threads simultaneously. The overall result is averaged.

VI. PERFORMANCE EVALUATION

In the following section, we first introduce the parameters
used for the performance evaluation and later, we explain the
experimental results that are received after the analysis of the
network libraries.

• Total Delay: Total delay is the time required for
uploading/downloading files to and from a mobile
device to the AWS cloud. This includes the time
required for reading the file from secondary storage to
the internal buffer, transmission time and ACK time
from the cloud. This parameter is very crucial for time-
sensitive applications.

• Success rate: The success rate is calculated as a ratio
of the total successful acknowledgments received by
the total number of files sent. This parameter shows
the reliability of a library for an offloading application.

• Battery utilization: One of the major goals of of-
floading is to save the energy of mobile devices
by migrating heavy computation to the cloud. This
parameter evaluates the battery consumption of net-
working libraries in different circumstances.

A. Analyzing Total Delay

1) Upload Performance: Fig. 6 shows the upload timing
for different file sizes on WiFi network for both synchronous
and asynchronous transmissions. Among synchronous li-
braries, the HttpURL performs better than OkHttp and Retrofit
for small file sizes (< 80 kB). As shown in Fig. 6(a), the
difference in network delay between HttpURL and OkHttp/
Retrofit is around 100 − 300 ms. However, as the file size
increases (between 200 kB - 8 MB), the difference becomes
more prominent and reaches 3000 − 4000 ms, Fig. 6(b).
Although the time difference for small file size is not much,
if we have a large number of small files to offload or working
on time-sensitive applications, the overall difference is quite
significant.

For asynchronous transmission, the performance of Volley
is better for small file size in comparison to OkHttp and
Retrofit. The difference in the network delay between Volley
and the other two libraries is around 100 ms, Fig. 6(c).
However, it is not true in case of large files, the performance of
OkHttp and Retrofit improves as the file size increases (> 200

www.ijacsa.thesai.org 580 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 2, 2019

20
0B

50
0B

80
0B

20
kB

50
kB

80
kB

600

800

1,000

1,200

1,400

Ti
m

e
(m

s)

HttpURL

OkHttp

Retrofit

(a) Uploading Synchronous

20
0k

B

50
0k

B

80
0k

B

2M
B

5M
B

8M
B

0

1

2

3

4

·104

Ti
m

e
(m

s)

HttpURL

OkHttp

Retrofit

(b) Uploading Synchronous

20
0B

50
0B

80
0B

20
kB

50
kB

80
kB

100

200

300

Ti
m

e
(m

s)

Volley

OkHttp

Retrofit

(c) Uploading Asynchronous

20
0k

B

50
0k

B

80
0k

B

2M
B

5M
B

8M
B

0

0.2

0.4

0.6

0.8

1

1.2

·104

Ti
m

e
(m

s)

Volley

OkHttp

Retrofit

(d) Uploading Asynchronous

Fig. 6. Time delay comparison of networking libraries when uploading from smartphone-1 using WiFi.

20
0B

50
0B

80
0B

20
kB

50
kB

80
kB

400

600

800

Ti
m

e
(m

s)

HttpURL

OkHttp

Retrofit

(a) Downloading Synchronous

20
0k

B

50
0k

B

80
0k

B

2M
B

5M
B

8M
B

0

1

2

3
·104

Ti
m

e
(m

s)

HttpURL

OkHttp

Retrofit

(b) Downloading Synchronous

20
0B

50
0B

80
0B

20
kB

50
kB

80
kB

200

400

600

800

Ti
m

e
(m

s)

Volley

OkHttp

Retrofit

(c) Downloading Asynchronous

20
0k

B

50
0k

B

80
0k

B

2M
B

5M
B

8M
B

0

0.2

0.4

0.6

0.8

1

·104

Ti
m

e
(m

s)

Volley

OkHttp

Retrofit

(d) Downloading Asynchronous

Fig. 7. Time delay comparison of networking libraries when downloading from smartphone-1 using WiFi.

20
0B

50
0B

80
0B

20
kB

50
kB

80
kB

500

1,000

1,500

Ti
m

e
(m

s)

HttpURL

OkHttp

Retrofit

(a) Downloading Synchronous

20
0k

B

50
0k

B

80
0k

B

2M
B

5M
B

8M
B

0

1

2

3

4

·104

Ti
m

e
(m

s)

HttpURL

OkHttp

Retrofit

(b) Downloading Synchronous

20
0B

50
0B

80
0B

20
kB

50
kB

80
kB

200

400

600

800

1,000

1,200

Ti
m

e
(m

s)

Volley

OkHttp

Retrofit

(c) Downloading Asynchronous
20

0k
B

50
0k

B

80
0k

B

2M
B

5M
B

8M
B

0

0.5

1

1.5
·104

Ti
m

e
(m

s)

Volley

OkHttp

Retrofit

(d) Downloading Asynchronous

Fig. 8. Time delay comparison of networking libraries when downloading from smartphone-2 using WiFi.

kB). The difference in network delay between OkHttp and
Volley for large files size (8 MB) rise to 2000 ms, Fig. 6(d).

Our experiment shows a similar pattern for both syn-
chronous and asynchronous transmission in the 4G network for
smartphone-1. For smartphone-2, the pattern is similar to that
of smartphone-1 for both WiFi and 4G network medium. In the
case of smartphone-2, the network delay for synchronous and
asynchronous transmission rise by 600−700 and 300−350 ms
respectively in a WiFi network. Similarly, the network delay
increases by 1000−1200 & 600−700 ms for both synchronous
and asynchronous transmission in the 4G network. This incre-
ment in network delay is due to the difference in hardware
and software configuration of both the smartphones, discussed
later in Section VI-A4.

2) Download Performance: Fig. 7 shows the downloading
performance of both synchronous and asynchronous offloading
libraries on smartphone-1 using WiFi network. Our experiment
shows a similar pattern for the 4G network. Fig. 7(a) and

7(b) shows that OkHttp and Retrofit performs better than
HttpURL. For small file sizes, the network delay difference
between OkHttp/Retrofit and HttpURL is around 100 − 200
ms. This difference can prove to be quite significant for the
applications downloading a large number of files or time-
sensitive result from the cloud. However, as the file size
increases, the difference gets more noticeable and reaches to
3000 − 4000 ms for large file size (8 MB). Similarly, for
asynchronous transmissions, as shown in Fig. 7(c) and 7(d),
the performance of Volley is better than OkHttp and Retrofit.
The network delay difference of Volley and OkHttp for small
files is around 100 ms, and for large file size, the difference
is around 2000 ms.

For smartphone-2, the network delay pattern in WiFi and
4G is similar to the smartphone-1, but in case of synchronous
transmission in WiFi network, HttpURL performs better than
OkHttp and Retrofit. The contrast in the performance of the
libraries can be seen in Fig. 7(a), 8(a) & 7(b), 8(b). The results
suggest that for downloading files/output synchronously from

www.ijacsa.thesai.org 581 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 2, 2019

H
ttp

U
R

L

O
kH

ttp

R
et

ro
fit

4

5

6

·104
Ti

m
e

(m
s)

Wi-Fi

4G

(a) Uploading Synchronous

Vo
lle

y

O
kH

ttp

R
et

ro
fit

0.5

1

1.5

2

2.5

3

·104

Ti
m

e
(m

s)

Wi-Fi

4G

(b) Uploading Asynchronous

H
ttp

U
R

L

O
kH

ttp

R
et

ro
fit

2

3

4

5

·104

Ti
m

e
(m

s)

Wi-Fi

4G

(c) Downloading Synchronous

Vo
lle

y

O
kH

ttp

R
et

ro
fit

0.5

1

1.5

2

·104

Ti
m

e
(m

s)

Wi-Fi

4G

(d) Downloading Asynchronous

Fig. 9. Time delay comparison of WiFi & 4G for different libraries using smartphone-1

H
ttp

U
R

L

O
kH

ttp

R
et

ro
fit

3.5

4

4.5

5

·104

Ti
m

e
(m

s)

Smartphone-1

Smartphone-2

(a) Uploading Synchronous

Vo
lle

y

O
kH

ttp

R
et

ro
fit

1

1.2

1.4

1.6

·104

Ti
m

e
(m

s)

Smartphone-1

Smartphone-2

(b) Uploading Asynchronous

H
ttp

U
R

L

O
kH

ttp

R
et

ro
fit

2

3

4

·104

Ti
m

e
(m

s)

Smartphone-1

Smartphone-2

(c) Downloading Synchronous

Vo
lle

y

O
kH

ttp

R
et

ro
fit

0.6

0.8

1

1.2

1.4

·104

Ti
m

e
(m

s)

Smartphone-1

Smartphone-2

(d) Downloading Asynchronous

Fig. 10. Time delay comparison of smartphone-1 and smartphone-2 on WiFi network

cloud to a high-end smartphone, OkHttp and Retrofit better
than HttpURL. But, for low-end smartphones, the HttpURL
performance is better than OkHttp and Retrofit.

3) Network comparison: In this section, we compare the
network delay of different network medium, i.e., WiFi and 4G
for both uploading and downloading. We compare the network
delay of both the network media by sending the same file
(8 MB) using smartphone-1. The result is shown in Fig. 9
and similar trend follows for smartphone-2. From the results,
we find that the performance of WiFi is better than the 4G
network. The delay difference between both the network for
uploading 8 MB file in synchronous mode is 1300−1700 ms,
and for asynchronous mode, the delay difference is 1100 −
1300. Similarly, the network delay difference in WiFi and 4G
network for downloading large data (8 MB) from the cloud in
synchronous mode is 2000 − 2300 ms and for asynchronous
mode is 800− 1000 ms.

The primary advantage of 4G is near-ubiquitous coverage
over WiFi. The recent studies have shown that the WiFi offers
higher and consistent throughput whereas round-trip times
of 4G are lengthy and bandwidth is limited [32]. In our
experiment, we found that the round-trip time of WiFi and
4G network to the virtual machine setup in the AWS cloud
lies in the range 300 - 350 ms and 480 - 550 ms respectively.

4) Hardware and Software comparison: Finally, we study
the effect of hardware and software on the performance of the
offloading libraries. We compare the uploading and download-
ing network delay analysis of both the smartphones using 8
MB file on the WiFi network. The result for the WiFi is shown
in Fig. 10, and a similar trend follows for the 4G network. In
the case of offloading, the time delay for synchronous libraries

H
ttp

U
R

L

O
kH

ttp

R
et

ro
fit

400

600

800

1,000

B
at

te
ry

(m
A

h)

Wifi

4G

(a) Uploading Synchronous
Vo

lle
y

O
kH

ttp

R
et

ro
fit

200

400

600

B
at

te
ry

(m
A

h)

Wifi

4G

(b) Uploading Asynchronous

Fig. 11. Battery Consumption Analysis for smartphone-1 on WiFi

is between 600− 700 ms, and for synchronous libraries, it is
around 300 − 350 ms. For downloading the result or data in
synchronously, the delay is around 900 − 1600 ms, and for
asynchronous transmission, it is around 800− 1000 ms.

Our analysis shows that the performance of the networking
libraries for a high-end smartphone (Smartphone-1) is better
compared to the low-end smartphone (Smartphone-2). This dif-
ference in the performance of libraries is due to the difference
in the hardware and software of the smartphones. Hardware
differences in smartphones like WiFi antenna, memory (re-
quired for buffering) and processing power plays an important
role in the performance of the libraries. Besides, smartphones
with latest OS can manage the resources more efficiently, in
comparison to an older version of the OS.

www.ijacsa.thesai.org 582 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 2, 2019

B. Success Rate Analysis

Next, we try to evaluate the success rate of the libraries,
i.e., the number of successful transmissions by sending 500
files (i.e., 1 MB × 500 = 500 MB) to the cloud in both
synchronous and asynchronous mode. The success rate is very
an important parameter for understanding the reliability of a
library while transferring sensitive data to the cloud. We find
that the success rate of synchronous libraries Table IV is better
than asynchronous libraries Table V. The success rate of the
4G network is less than the WiFi network, which can be due to
the large number of users and variations in the network traffic
in the 4G network. Overall the reliability of Retrofit is better
than the other libraries for both synchronous and asynchronous
scenarios on both networks. The success rate of Retrofit is
almost 100% in all the scenarios.

C. Battery Consumption Analysis

We also study the energy consumption of the offloading
libraries on WiFi and 4G networks, which is an important
concern for the resource-constrained mobile devices. In this,
we used the power-save mode (PSM) for the results presented
in Fig. 11. In power save mode, the smartphone’s WiFi radio
wakes up only when it has to transmit data and once every 100
ms when it checks whether there is any incoming data from the
access point. Fig. 11, also shows that the battery consumption
by the asynchronous libraries is almost half compared to
synchronous libraries. Also, the battery consumption in 4G is
almost twice as compared to the WiFi network, which is due
to the lengthy RTT and limited bandwidth of the 4G network
as compared to WiFi. Similar, results are also found for the
smartphone-2.

VII. DISCUSSION

In this section, we briefly discuss the role of networking
libraries in offloading computation intensive tasks form the
smart devices and the highlight the requirement of a framework
for adaptive library selection based on the local dynamics of
the smartphones.

• From experiments, we find that in the case of syn-
chronous offloading, HttpUrl performs better than
Retrofit and OkHttp for small file sizes. However, as
the file size increases, OkHttp performs better than
the two. This is true for both Wifi and 4G networks.
We notice an exception for the low-end smartphones
operating on WiFi networks, where HttpUrl shows a
better performance for large file sizes as well.

• Offloading in asynchronous mode is also library de-
pendent. In the case of asynchronous uploading, Vol-
ley and OkHttp perform better for small and large files,
respectively. However, for asynchronous download
from the cloud, Volley performs better than OkHttp
and Retrofit for both small and large files.

• One of the main objectives of offloading is to
save battery in smartphones. In this context, HttpUrl
shows better performance for synchronous transmis-
sion, whereas OkHttp is more energy efficient for
asynchronous transmissions.

TABLE IV. SUCCESS RATE OF SYNCHRONOUS LIBRARIES

S.No Name Success Rate-WiFi Success Rate-4G
1 HttpURL 100% 99%
2 OkHttp 100% 99%
3 Retrofit 100% 100%

TABLE V. SUCCESS RATE OF ASYNCHRONOUS LIBRARIES

S.No Name Success Rate-WiFi Success Rate-4G
1 Volley 99% 97%
2 OkHttp 100% 99%
3 Retrofit 100% 100%

• Although the offloading delay for synchronous trans-
missions is greater than that of asynchronous trans-
missions, the opposite is true for offloading reliability.
Retrofit shows better reliability for both synchronous
and asynchronous transmissions in WiFi and 4G net-
works.

Our above discussion shows that the performance of the
networking libraries depends upon the parameters like data
size, network medium, hardware and software of mobile de-
vices. An application with a predefined network library may
not achieve the desired offloading performance for all mobile
devices. So, an adaptive offloading framework is required for
providing better QoS to the user.

VIII. CONCLUSION

In this paper, we present a comprehensive analysis of
HttpUrl, OkHttp, Retrofit and Volley networking libraries
that are commonly used for offloading data from the mobile
devices. The main objective of this work is to understand “how
to offload” data in a real environment, to optimize the perfor-
mance of an offloading model. In this paper, we investigate the
performance of the libraries for parameters like code execution,
data size, network medium, hardware and software of mobile
devices. Our evaluation shows that, depending upon the nature
of the application, available resources and offloading goals
like execution speed, reducing energy consumption, reliability
of data transmission, an adaptive network library selection
framework can be developed for offloading computational
tasks to the cloud. In the future, we intend to propose an
offloading framework for adaptive network library selection
depending upon the above criteria.

REFERENCES

[1] B. G. Rodriguez-Santana, A. M. Viveros, B. E. Carvajal-Gamez,
and D. C. Trejo-Osorio, “Mobile computation offloading architecture
for mobile augmented reality, case study: Visualization of cetacean
skeleton,” International Journal of Advanced Computer Science
and Applications, vol. 7, no. 1, 2016. [Online]. Available:
http://dx.doi.org/10.14569/IJACSA.2016.070190

[2] A. Banerjee, F. Sufyanf, M. S. Nayel, and S. Sagar, “Centralized
framework for controlling heterogeneous appliances in a smart home
environment,” in 2018 International Conference on Information and
Computer Technologies (ICICT), March 2018, pp. 78–82.

[3] R. K. Balan and J. Flinn, “Cyber foraging: Fifteen years later,” IEEE
Pervasive Computing, vol. 16, no. 3, pp. 24–30, 2017.

[4] E. Meskar, T. D. Todd, D. Zhao, and G. Karakostas, “Energy aware
offloading for competing users on a shared communication channel,”
IEEE Transactions on Mobile Computing, vol. 16, no. 1, pp. 87–96,
Jan 2017.

www.ijacsa.thesai.org 583 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 2, 2019

[5] H. Flores, P. Hui, S. Tarkoma, Y. Li, S. Srirama, and R. Buyya,
“Mobile code offloading: from concept to practice and beyond,” IEEE
Communications Magazine, vol. 53, no. 3, pp. 80–88, March 2015.

[6] C. You, K. Huang, H. Chae, and B. H. Kim, “Energy-efficient resource
allocation for mobile-edge computation offloading,” IEEE Transactions
on Wireless Communications, vol. 16, no. 3, pp. 1397–1411, March
2017.

[7] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, “Thinkair:
Dynamic resource allocation and parallel execution in the cloud for
mobile code offloading,” in 2012 Proceedings IEEE INFOCOM, March
2012, pp. 945–953.

[8] H. Elazhary, S. Aloraini, and R. Aljuraid, “Context-aware mobile
application task offloading to the cloud,” International Journal of
Advanced Computer Science and Applications, vol. 8, no. 5, 2017.
[Online]. Available: http://dx.doi.org/10.14569/IJACSA.2017.080547

[9] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “Maui: Making smartphones last longer
with code offload,” in Proceedings of the 8th International Conference
on Mobile Systems, Applications, and Services, ser. MobiSys ’10.
New York, NY, USA: ACM, 2010, pp. 49–62. [Online]. Available:
http://doi.acm.org/10.1145/1814433.1814441

[10] J. Wang, J. Peng, Y. Wei, D. Liu, and J. Fu, “Adaptive application
offloading decision and transmission scheduling for mobile cloud com-
puting,” China Communications, vol. 14, no. 3, pp. 169–181, March
2017.

[11] H. Flores, P. Hui, P. Nurmi, E. Lagerspetz, S. Tarkoma, J. Manner,
V. Kostakos, Y. Li, and X. Su, “Evidence-aware mobile computational
offloading,” IEEE Transactions on Mobile Computing, vol. PP, no. 99,
pp. 1–1, 2017.

[12] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “Clonecloud:
Elastic execution between mobile device and cloud,” in Proceedings
of the Sixth Conference on Computer Systems, ser. EuroSys ’11.
New York, NY, USA: ACM, 2011, pp. 301–314. [Online]. Available:
http://doi.acm.org/10.1145/1966445.1966473

[13] A. Saarinen, M. Siekkinen, Y. Xiao, J. K. Nurminen, M. Kemppainen,
and P. Hui, “Can offloading save energy for popular apps?”
in Proceedings of the Seventh ACM International Workshop on
Mobility in the Evolving Internet Architecture, ser. MobiArch ’12.
New York, NY, USA: ACM, 2012, pp. 3–10. [Online]. Available:
http://doi.acm.org/10.1145/2348676.2348680

[14] B. S. Rawal, “Proxy re-encryption architect for storing and sharing
of cloud contents,” International Journal of Parallel, Emergent and
Distributed Systems, vol. 0, no. 0, pp. 1–17, 2018. [Online]. Available:
https://doi.org/10.1080/17445760.2018.1439491

[15] G. Andriani, E. Godoy, G. Koslovski, R. Obelheiro, and M. Pillon, “An
architecture for synchronising cloud file storage and organisation
repositories,” International Journal of Parallel, Emergent and
Distributed Systems, vol. 0, no. 0, pp. 1–17, 2018. [Online].
Available: https://doi.org/10.1080/17445760.2017.1422500

[16] H. Wu, “Multi-objective decision-making for mobile cloud offloading:
A survey,” IEEE Access, vol. 6, pp. 3962–3976, 2018.

[17] J. I. Benedetto, A. Neyem, J. Navon, and G. Valenzuela, “Rethinking
the mobile code offloading paradigm: From concept to practice,” in
Proceedings of the 4th International Conference on Mobile Software
Engineering and Systems, ser. MOBILESoft ’17. Piscataway,
NJ, USA: IEEE Press, 2017, pp. 63–67. [Online]. Available:
https://doi.org/10.1109/MOBILESoft.2017.20

[18] J. Shuja, A. Gani, K. Ko, K. So, S. Mustafa, S. A. Madani, and
M. K. Khan, “Simdom: A framework for simd instruction translation
and offloading in heterogeneous mobile architectures,” Transactions
on Emerging Telecommunications Technologies, pp. e3174–n/a, 2017,
e3174 ett.3174. [Online]. Available: http://dx.doi.org/10.1002/ett.3174

[19] M. Golkarifard, J. Yang, A. Movaghar, and P. Hui, “A hitchhiker’s
guide to computation offloading: Opinions from practitioners,” IEEE
Communications Magazine, vol. 55, no. 7, pp. 193–199, 2017.

[20] J. Li, K. Bu, X. Liu, and B. Xiao, “Enda: Embracing network
inconsistency for dynamic application offloading in mobile cloud
computing,” in Proceedings of the Second ACM SIGCOMM
Workshop on Mobile Cloud Computing, ser. MCC ’13. New
York, NY, USA: ACM, 2013, pp. 39–44. [Online]. Available:
http://doi.acm.org/10.1145/2491266.2491274

[21] C. Shi, K. Habak, P. Pandurangan, M. Ammar, M. Naik, and
E. Zegura, “Cosmos: Computation offloading as a service for mobile
devices,” in Proceedings of the 15th ACM International Symposium
on Mobile Ad Hoc Networking and Computing, ser. MobiHoc ’14.
New York, NY, USA: ACM, 2014, pp. 287–296. [Online]. Available:
http://doi.acm.org/10.1145/2632951.2632958

[22] B. Zhou, A. V. Dastjerdi, R. N. Calheiros, S. N. Srirama, and
R. Buyya, “A context sensitive offloading scheme for mobile cloud
computing service,” in Proceedings of the 2015 IEEE 8th International
Conference on Cloud Computing, ser. CLOUD ’15. Washington, DC,
USA: IEEE Computer Society, 2015, pp. 869–876. [Online]. Available:
https://doi.org/10.1109/CLOUD.2015.119

[23] Z. Zhou, H. Zhang, L. Ye, and X. Du, “Cuckoo: flexible
compute-intensive task offloading in mobile cloud computing,”
Wireless Communications and Mobile Computing, vol. 16, no. 18,
pp. 3256–3268, 2016, wCM-16-0140.R1. [Online]. Available:
http://dx.doi.org/10.1002/wcm.2757

[24] G. Xu, W. Yu, Z. Chen, H. Zhang, P. Moulema, X. Fu, and
C. Lu, “A cloud computing based system for cyber security
management,” International Journal of Parallel, Emergent and
Distributed Systems, vol. 30, no. 1, pp. 29–45, 2015. [Online].
Available: https://doi.org/10.1080/17445760.2014.925110

[25] A. Graillat, M. Moy, P. Raymond, and B. D. de Dinechin, “Parallel code
generation of synchronous programs for a many-core architecture,” in
2018 Design, Automation Test in Europe Conference Exhibition (DATE),
March 2018, pp. 1139–1142.

[26] X. Shi, J. Liang, S. Di, B. He, H. Jin, L. Lu, Z. Wang, X. Luo, and
J. Zhong, “Optimization of asynchronous graph processing on gpu with
hybrid coloring model,” in Proceedings of the 20th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, ser.
PPoPP 2015. New York, NY, USA: ACM, 2015, pp. 271–272.
[Online]. Available: http://doi.acm.org/10.1145/2688500.2688542

[27] M. Essaid, L. Idoumghar, J. Lepagnot, and M. Brévilliers,
“Gpu parallelization strategies for metaheuristics: a survey,”
International Journal of Parallel, Emergent and Distributed
Systems, vol. 0, no. 0, pp. 1–26, 2018. [Online]. Available:
https://doi.org/10.1080/17445760.2018.1428969

[28] S. Seo, D. Lee, and K. Yim, “Analysis on maliciousness for mobile
applications,” in 2012 Sixth International Conference on Innovative
Mobile and Internet Services in Ubiquitous Computing, July 2012, pp.
126–129.

[29] M. Backes, S. Bugiel, and E. Derr, “Reliable third-party library
detection in android and its security applications,” in Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’16. New York, NY, USA: ACM, 2016, pp. 356–
367. [Online]. Available: http://doi.acm.org/10.1145/2976749.2978333

[30] Y. Shulin and H. Jieping, “Research and implementation of web services
in android network communication framework volley,” in 2014 11th
International Conference on Service Systems and Service Management
(ICSSSM), June 2014, pp. 1–3.

[31] M. Lachgar, H. Benouda, and S. Elfirdoussi, “Android rest apis: Volley
vs retrofit,” in 2018 International Symposium on Advanced Electrical
and Communication Technologies (ISAECT), Nov 2018, pp. 1–6.

[32] J. Sommers and P. Barford, “Cell vs. wifi: On the performance
of metro area mobile connections,” in Proceedings of the
2012 Internet Measurement Conference, ser. IMC ’12. New
York, NY, USA: ACM, 2012, pp. 301–314. [Online]. Available:
http://doi.acm.org/10.1145/2398776.2398808

www.ijacsa.thesai.org 584 | P a g e


